ORDER OF CLOSE-TO-CONVEXITY FOR ANALYTIC FUNCTIONS OF COMPLEX ORDER

BASEM A. FRASIN

Dedicated to Professor Grigore Ştefan Şalăgean on his 60th birthday

Abstract. The aim of this paper is to find the order of close-to-convexity for certain analytic functions of complex order.

1. Introduction and definitions

Let A denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{ z : |z| < 1 \}$. A function $f(z)$ in A is said to be starlike function of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$, if and only if

$$\Re \left\{ 1 + \frac{1}{\gamma} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right\} > 0, \quad (z \in U).$$

We denote by $S(\gamma)$ the class of all such functions. Also, a function $f(z)$ in A is said to be convex function of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$, that is, $f \in C(\gamma)$, if and only if

$$\Re \left\{ 1 + \frac{1}{\gamma} \left(\frac{zf''(z)}{f'(z)} \right) \right\} > 0, \quad (z \in U).$$

The class $S(\gamma)$ was introduced by Nasr and Aouf [7] and the class $C(\gamma)$ was introduced by Wiatrowski [15] and considered in [6] (see also [5], [10], [13] and [2]).
We note that \(f(z) \in \mathcal{C}(\gamma) \Leftrightarrow zf'(z) \in \mathcal{S}(\gamma) \) and \(\mathcal{S}(1-\alpha) = \mathcal{S}^*(\alpha), \mathcal{C}(1-\alpha) = \mathcal{C}(\alpha) \) where \(\mathcal{S}^*(\alpha) \) and \(\mathcal{C}(\alpha) \) denote, respectively, the familiar classes of starlike and convex functions of a real order \(\alpha (0 \leq \alpha < 1) \) in \(\mathcal{U} \) (see, for example, [14]).

A function \(f(z) \) in \(\mathcal{A} \) is said to be close-to-convex of complex order \(\gamma (\gamma \in \mathbb{C} - \{0\}) \) and type \(\delta \) if there exists a function \(g(z) \) belonging to \(\mathcal{S}(\gamma) \) such that

\[
\text{Re} \left\{ 1 + \frac{1}{\gamma} \left(\frac{zf'(z)}{g(z)} - 1 \right) \right\} > \delta, \quad (z \in \mathcal{U}).
\] (1.4)

We denote by \(\mathcal{K}(\gamma, \delta) \) the subclass of \(\mathcal{A} \) consisting of functions which are close-to-convex of complex order \(\gamma \) and type \(\beta \) in \(\mathcal{U} \). We note that the class \(\mathcal{K}(1,0) \) is the class of close-to-convex functions introduced by Kaplan [4] and Ozaki [11].

Pflatzgraff et al. [12] have proved that if \(f(z) \) in \(\mathcal{A} \) satisfies the condition

\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (\frac{1}{2} \leq \alpha < 1),
\] (1.5)

then \(f(z) \) in the class \(\mathcal{S} \) (and convex in at least one direction in \(\mathcal{U} \)). Furthermore, Cerebiez-Tarabicka et al. [1] have shown that if \(f(z) \) in \(\mathcal{A} \) satisfies the condition

\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > -\frac{1}{2} \quad (\frac{1}{2} \leq \alpha < 1),
\] (1.6)

then

\[
\text{Re} \left(\frac{zf'(z)}{g(z)} \right) > 0, \quad (z \in \mathcal{U}).
\] (1.7)

Recently, Owa [9] proved that if \(f(z) \) in \(\mathcal{A} \) satisfies the condition

\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} - \beta \right) > 0 \quad (z \in \mathcal{U})
\] (1.8)

then

\[
\text{Re} \left(\frac{zf'(z)}{g(z)} \right) > \frac{3}{5} \quad (z \in \mathcal{U})
\] (1.9)

where \(g(z) \in \mathcal{S}^*(\alpha/(\alpha + 1)), \alpha \geq 0 \).

Also, Frasin and Oros [3] proved that if the function \(f(z) \) in \(\mathcal{A} \) satisfies the condition

\[
\text{Re} \left(\frac{zf''(z)}{f'(z)} - \beta \right) > 0 \quad (z \in \mathcal{U})
\] (1.10)

then

\[
\text{Re} \left(\frac{zf'(z)}{g(z)} \right) > \frac{1}{2\beta - 1} \quad (z \in \mathcal{U})
\] (1.11)
where \(g(z) \in \mathcal{S}^* \) and \(1 \leq \beta \leq 3/2 \).

In order to show our results, we shall need the following lemma due to Obradović et al. [8].

Lemma 1.1. Let \(f \in \mathcal{S}(b) \), \(b \in \mathbb{C} \setminus \{0\} \), and let \(a \in \mathbb{C} \setminus \{0\} \) with \(0 \leq 2ab \leq 1 \). Then

\[
\Re \left\{ \left(\frac{f(z)}{z} \right)^a \right\} > 2^{-2ab} \quad (z \in \mathcal{U}).
\]

(1.12)

2. Main results

With the aid of Lemma 1.1, we can prove the following result.

Theorem 2.1. If the functions \(f(z) \) and \(g(z) \) are in \(\mathcal{A} \) and satisfies the conditions

\[
\Re \left\{ 1 + \frac{1}{b} \left(\frac{zf''(z)}{f'(z)} \right) \right\} > 0 \quad (z \in \mathcal{U}),
\]

(2.1)

with \(0 \leq 2a\gamma \leq 1 \), \(\gamma = b/(a+1) \); \(a, b \in \mathbb{C} \setminus \{0\} \); \(a \neq -1 \), and

\[
\Im \left(\frac{a+1}{b} \right) \leq 0 \text{ or } \Im \left(\frac{zf'(z)}{g(z)} \right) \leq 0,
\]

(2.2)

then \(f(z) \) belongs to the class \(\mathcal{K}(\gamma, \delta) \), where

\[
\delta = 1 + \left(\frac{2-2ab}{a+1} - 1 \right) \Re \left(\frac{a+1}{b} \right).
\]

Proof. If we define \(g(z) \) by

\[
1 + \frac{a+1}{b} \left(\frac{zf'(z)}{g(z)} - 1 \right) = 1 + \frac{1}{b} \left(\frac{zf''(z)}{f'(z)} \right),
\]

(2.3)

then from the condition (2.1) and (2.3), we have \(g(z) \in \mathcal{S}(\gamma) \), with \(\gamma = b/(a+1) \). It is easy to see that (2.3) implies

\[
f'(z) = \left(\frac{g(z)}{z} \right)^{a+1}
\]

(2.4)
or

\[
\frac{zf'(z)}{g(z)} = \left(\frac{g(z)}{z} \right)^a
\]

(2.5)
Applying Lemma 1.1 to \(g(z) \), we obtain
\[
\Re \left\{ 1 + \frac{a + 1}{b} \frac{zf'(z)}{g(z)} - 1 \right\} = \Re \left\{ 1 + \frac{a + 1}{b} \left(\frac{g(z)}{z} \right)^a - 1 \right\} \\
= 1 + \Re \left(\frac{a + 1}{b} \right) \Re \left\{ \left(\frac{g(z)}{z} \right)^a - 1 \right\} \\
- \Im \left(\frac{a + 1}{b} \right) \Im \left\{ \left(\frac{g(z)}{z} \right)^a - 1 \right\} \\
\geq 1 + \Re \left(\frac{a + 1}{b} \right) \Re \left\{ \left(\frac{g(z)}{z} \right)^a - 1 \right\} \\
> 1 + (2^{-2a\gamma} - 1) \Re \left(\frac{a + 1}{b} \right) \\
= 1 + \left(2^{-2a\gamma} - 1 \right) \Re \left(\frac{a + 1}{b} \right).
\]

This completes the proof of Theorem 2.1. □

Letting \(a = 1 \) in Theorem 2.1, we have

Corollary 2.2. If the function \(f \in C(b) \) with \(0 < b \leq 2 \), then \(f \in K(b/2, \delta) \), where
\[
\delta = 1 + \frac{2^{1-b} - 2}{b}.
\]

Letting \(b = 1 \) in Theorem 2.1, we have

Corollary 2.3. If the functions \(f(z) \) and \(g(z) \) are in \(A \) and satisfies the conditions
\[
\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0 \quad (z \in U), \tag{2.6}
\]
with \(0 < 2a\gamma \leq 1 \), \(\gamma = 1/(a + 1) \); \(a \in \mathbb{C} \setminus \{0\} \); \(a \neq -1 \), and
\[
\Im (a + 1) \leq 0 \text{ or } \Im \left(\frac{zf'(z)}{g(z)} \right) \leq 0, \tag{2.7}
\]
then \(f(z) \) belongs to the class \(K(\gamma, \delta) \), where
\[
\delta = 1 + \left(2^{\frac{2}{2a\gamma}} - 1 \right) \Re (a + 1).
\]

Letting \(b = 1 \) in Corollary 2.2 or \(a = 1 \) in Corollary 2.3, we have
Corollary 2.4. Let the functions $f(z)$ and $g(z)$ be in A. If

$$\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0 \quad (z \in U), \quad (2.8)$$

then

$$\text{Re} \left\{ \frac{z^2 f'(z)}{g(z)} \right\} > \frac{1}{2} \quad (z \in U), \quad (2.9)$$

Therefore, if $f(z)$ is convex in U then $f(z)$ is close-to-convex of order $1/2$ in U.

Letting $b = a + 1$ in in Theorem 2.1, we have

Corollary 2.5. Let the functions $f(z)$ and $g(z)$ be in A. If

$$\text{Re} \left\{ 1 + \frac{1}{a+1} \left(\frac{zf''(z)}{f'(z)} \right) \right\} > 0 \quad (z \in U), \quad (2.10)$$

where $0 < a \leq 1/2$, then

$$\text{Re} \left\{ \frac{zf'(z)}{g(z)} \right\} > \frac{1}{4a} \quad (z \in U). \quad (2.11)$$

Letting $a = 1/2$ in Corollary 2.5, we have

Corollary 2.6. Let the functions $f(z)$ and $g(z)$ be in A. If

$$\text{Re} \left\{ 1 + \frac{2}{3} \left(\frac{zf''(z)}{f'(z)} \right) \right\} > 0 \quad (z \in U), \quad (2.12)$$

then

$$\text{Re} \left\{ \frac{zf'(z)}{g(z)} \right\} > \frac{1}{2} \quad (z \in U), \quad (2.13)$$

That is, $f(z)$ is close-to-convex of order $1/2$ in U.

References

Faculty of Science
Department of Mathematics
Al al-Bayt University, P.O. Box 130095
Mafraq, Jordan
E-mail address: bafrasin@yahoo.com