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COMPLETENESS WITH RESPECT TO THE PROBABILISTIC
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Abstract. The aim of the present paper is to prove that the family of all
closed nonempty subsets of a complete probabilistic metric space L is com-
plete with respect to the probabilistic Pompeiu-Hausdorff metric H. The
same is true for the families of all closed bounded, respectively compact,
nonempty subsets of L. If L is a complete random normed space in the
sense of Serstnev, then the family of all nonempty closed convex subsets of
L is also complete with respect to H. The probabilistic Pompeiu-Hausdorff
metric was defined and studied by R.J. Egbert, Pacific J. Math. 24 (1968),
437-455, in the case of Menger probabilistic metric spaces, and by R.M.
Tardiff, Pacific J. Math. 65 (1976), 233-251, in general probabilistic metric
spaces. The completeness with respect to probabilistic Pompeiu-Hausdorff
metric of the space of all closed bounded nonempty subsets of some Menger
probabilistic metric spaces was proved by J. Kolumban and A. Soéds, Stu-
dia Univ. Babes-Bolyai, Mathematica, 43 (1998), no. 2, 39-48, and 46
(2001), no. 3, 49-66.

1. Introduction

The study of probabilistic metric spaces (PM spaces for short) was initiated
by K. Menger [17] and A. Wald [28], in connection with some measurements problems
in physics. The positive number expressing the distance between two points p, q of a
metric space is replaced by a distribution function (in the sense of probability theory)
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F,,: R — [0,1], whose value F), ,(z) at the point z € R can be interpreted as the
probability that the distance between p and ¢ be less than x. Since then the subject
developed in various directions, an important one being that of fixed points in PM
spaces. Important contributions to the subject have been done by A.N. Serstnev and
the Kazan school of probability theory, see [21, 22, 23, 24] and the bibliography in
[19].

A clear and thorough presentation of the results up to 1983 is given in the
book by B. Schweizer and A. Sklar [19]. Beside this book, at the present there
are several others dealing with various aspects of analysis in probabilistic metric
spaces and in probabilistic normed spaces - V. Istratescu [11], I. Istratescu and Gh.
Constantin [4, 5], V. Radu [18], S.-S. Chang and Y. J. Cho [3], O. Hadzi¢ [8], O.
Hadzi¢ and E. Pap [9]. In the present paper we shall follow the treatise [19].

The probabilistic Pompeiu-Hausdorff metric on the family of nonempty closed
subsets of a PM space was defined by Egbert [6] in the case of Menger PM spaces,
and by Tardiff [27] in general PM spaces (see also [19, §12.9]), by analogy with the
classical case. Sempi [20] used the probabilistic Pompeiu-Hausdorff metric to prove
the existence of a completion of a PM space. Some results have been obtained also
by Beg and Ali [2].

As it is well known, the family of nonempty closed bounded subsets of a
complete metric space is complete with respect to the Pompeiu-Hausdorff distance
(see, e.g., [10, Chapter 1]). The aim of the present paper is to prove the probabilistic
analog of this result for the family of all nonempty closed subsets of a probabilis-
tic metric space. We shall prove that the families of all nonempty closed bounded,
respectively compact, subsets of a complete probabilistic metric space L are also
complete with respect to the probabilistic Pompeiu-Hausdorff metric. If L is a com-
plete random normed space in the sense of Serstnev, then the family of all nonempty
closed convex subsets of L is complete with respect to the Pompeiu-Hausdorff met-
ric too. In the case of Menger PM spaces (L, p, Min), and (L, p, W), with ¢t-norms
Min(s, t) = min{s, t}, s,t € [0,1], respectively W(s,t) = max{s+¢— 1,0}, the com-
pleteness of the space of all closed bounded nonempty subsets of L with respect to
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the probabilistic Pompeiu-Hausdorff metric was proved by Kolumbén and Sods in [13]
and [14]. In the case of a Menger PM space (L, p, Min), they proved also in [13] the
completeness of the family of all compact nonempty subsets of L. These completeness
results were applied in [13, 14, 15] to prove the existence of invariant sets for finite
families of contractions in PM spaces of random variables (E-spaces in the sense of
Sherwood [25], or [19, Ch. 9, Sect. 1]).

As in Aubin’s book [1], I have adopted the term Pompeiu-Hausdorfl metric.
For a short comment on this fact, as well as on the similar case of the Painlevé-

Kuratowski convergence for sequences of sets, see [1, page xiv].

2. Preliminary notions

Denote by A the set of distribution functions, meaning nondecreasing, left
continuous functions F : R — [0, 1] with F(—co0) = 0 and F(co) = 1. Let D be the
subclass of A formed by all functions F' € A such that

lim F(z)=0 and lim F(x)=1.

The weak convergence of a sequence (F,) in A to F € A, denoted by F,, <
F', means that the equality
lim F,(z) = F(z) (2.1)

n—oo

holds for every continuity point « of F'. Since F is non-decreasing the set of
its discontinuity points is at most countable, so that the set of continuity points of
F is dense in R. In order that F,, % F it is sufficient that the relation (2.1) holds
for every x in an arbitrary dense subset of R. An important result concerning weak
convergence of distribution functions is Helly’s First Theorem: every sequence in A
contains a weakly convergent subsequence (see Loeve [16, Sect. 11.2]).

The topology of weak convergence in A is metrizable. The first who realized
this was P. Lévy (see the Appendix to Fréchet’s book [7]), and for this reason the
metrics generating the weak convergence in A are called Lévy metrics. Since the orig-
inal Lévy metric characterizes the weak convergence only in D, Sibley [26] proposed a
modification of Lévy metric that generates the weak convergence in A. We shall work
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with a further modification proposed by Schweizer and Sklar [19] and denoted by dy,.
The distance d,(F, G) between two functions F,G € A is defined as the infimum of

all numbers h > 0 such that the inequalities
Flx—h)—h<Gx)<F(x+h)+h
and
Glx—h)—h<Fz)<Gx+h)+h
hold for every x € (—h~';h~!). One shows that dz, is a metric on A and, for any
sequence (F,) in A and F € A, we have

F, % F <= dy(F, F)—0.

By Helly’s First Theorem the space (A,dy) is compact, hence complete (see [19,
§4.2)).

The sets of distance functions are:
AT={FeA:F(0)=0} and DT =DnNA™T.

It follows that for F' € AT we have F(z) = 0, Vo < 0. The set AT is closed
in the metric space A, hence compact and complete too.
Two important distance functions are

eo(x)=0 for =<0 and €xo(x) =0 for x< oo

=1 for >0 =1 for =00

The order in AT is defined as the punctual order: for F,G € AT we put
F<G <<= V>0 F(z)<G(x).

It follows that €y is the maximal element of At and of Dt as well, and e
is the minimal element of AT,

In the following we shall define some functions, say F', on R and consider
them automatically extended to R by F(—oc) =0 and F(co) = 1.
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If {F; :i € I} is a family of functions in A then the function F : R — [0, 1]
defined by

F(z) =sup{F;(x):i € I}, z € R,

is the supremum of the family {F;} in the ordered set (A™,<): F = sup,; Fi.
To define the infimum of the family {F;} put

[(z) = inf{Fy(z) : i € I}, x € R. (2.2)

Since the function I' is nondecreasing, but not necessarily left continuous on

R, we have to regularize it by taking the left limit
G(z) =0 T(x) := lim I'(z') = sup I'(2), = € R. (2.3)
z' Sw @' <z

Then G(z) < T'(z), Vo € R, the function G belongs to A™ and G = inf;c; F;
- the infimum of the family {F}} in the ordered set (AT, <).

A triangle function is a binary operation 7 on A*, 7: AT x AT — At that
is commutative, associative, non-decreasing in each place (7(F1,G1) < 7(F», Gs), if
Fy < Fy and G < Gs), and has ¢ as identity: 7(F,eq) = F, F' € AT. The triangle
function 7 is called continuous if it is continuous with respect to the d-topology of
AT. Tt follows that 7 is, in fact, uniformly continuous, since the metric space (AT, dr)

is compact.

3. Probabilistic metric spaces

A probabilistic metric space (PM space) is a triple (L, p, 7), where L is a set,
p is a mapping from L x L to AT, and 7 is a continuous triangle function. The value
of p at (p,q) € L x L is denoted by Fq, ie., p(p,q) = Fpq.
One supposes that the following conditions are satisfied for all p,q,r € L:
(PM1) F,, = o,
(PM2) F,,=¢€ = p=gq,
(PM3)  Fpq = Fp,
(PM4)  F, > 7(Fpq, Fyr)-
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The mapping p is called the probabilistic metric on L and the condition (PM4)
is the probabilistic analogue of the triangle inequality.

The strong topology on a PM space is defined by the neighborhood system:
Up)={q€ L:F,ylt)>1-t}, t>0. (3.1)

Putting

U(p) ={qeL:F,(t)>1—1t} (3.2)

we have U;(p) C Uy(p) and Uy (p) C Uy(p) for ¢’ < t, showing that the family (3.2)
of subsets of L forms also a neighborhood base for the strong topology of L.
Observe that Uy(p) = L, for t > 1, and Uy(p) = L, for t > 1, so that we
can restrict to ¢ € (0,1) when working with strong neighborhoods. In fact, we can
suppose that t is as small as we need.
The strong topology on a PM space (L, p, 7) is derived from the uniformity
U generated by the vicinities:

U ={(p,q) € LXL:F,y(t)>1—t}, t>0. (3.3)

The strong topology is metrizable since {U;/,, : n € N} is a countable base for the
uniformity &/. The probabilistic metric p is uniformly continuous mapping from L x L

with the product topology to (AT, d), meaning that

w

pn—p and g, > q in L = F, ., — Fp. (3.4)

ndn
The convergence of a sequence (p,,) in L to p € L is characterized by
Pn—p < Vt>03IngVn>ng pn€ Ui(p)
= F,., e
< dr(Fp,p,€0) — 0.
A sequence (p,) in L is called a Cauchy sequence, or fundamental, if

w
Fpop,, — € for n,m— oo,
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or, equivalently,
V¢ > 0 Ing such that VYn,m > ng (pn,pm) € Ur (<= Fp,p,, () > 1 —1).

A convergent sequence in L is a Cauchy sequence, and the PM space L is
called complete (with respect to the strong topology) if every Cauchy sequence is
convergent.

For these and other questions concerning the strong topology of a PM space,
see [19, Chapter 12].

Throughout this paper all the topological notions concerning a PM space will

be considered with respect to the strong topology.

4. The probabilistic Pompeiu-Hausdorff metric

For a metric space (X, d), two nonempty bounded subsets A, B of X and a

point p € X, one introduces the following notations and notions :
d(p, B) = inf{d(p,q) : ¢ € B} — the distance from p to B,
h*(A, B) = sup{d(p,B) : p € A} — the excess of A over B,
and let

h(A, B) = max{h*(A, B), h*(B, A)}

be the Pompeiu-Hausdorfl distance between the sets A, B.

Denoting by Py(X) the family of all nonempty closed bounded subset of X
it follows that h is a metric on P,(X), and the metric space (Pyy(X), h) is complete
if (X, d) is complete (see, e.g., [10, Chapter 1]).

In the case of a PM space (L, p, 7) the definitions are similar but, taking into
account the fact that the probabilistic triangle inequality (PM4) is written in reversed
form with respect to the usual triangle inequality, sup and inf will change their places.

For two nonempty subsets A, B of L and p € L denote by

Fop =sup{F,,:q € B} < F,p(x) =sup{F,(x):q€ B}, x €R, (4.1)

49



STEFAN COBZAS
the probabilistic distance from p to B, and let
Fip=inf{F,p:pe€ A}. (4.2)
Taking into account the formulae (2.2) and (2.3), it follows
Fap={T})p,
where
I g(z) =inf{F,p(z) : p € A}, z € R.
The probabilistic Pompeiu-Hausdorff distance between the sets A, B is defined

by
H(A,B) = F4p, where

Fap(x) =min{Fig(z), Fi4(x)}, z€R. (4.3)

The probabilistic Pompeiu-Hausdorff metric was defined and studied by Egbert [6]
in the case of Menger PM spaces and by Tardiff [27] in general PM spaces (see also
[19, §12.9]). The mapping H (A, B) = F4p satisfies the following properties, where cl
denotes the closure with respect to the strong topology:

Proposition 4.1. ([19, Th. 12.9.2])

1. Fyyg = Fpqg  for pqe L

2. For nonempty A,B C L, Fap = Fpa, Fap = Fauam), and
Fap =€y if and only if cl(A) = cl(B).

In order that H satisfy the probabilistic triangle inequality (PM4), we have
to impose a supplementary condition on the triangle function 7. The triangle function
T is called sup-continuous if

7(sup F;, G) = sup7(F;, G) (4.4)
i€l icl
for any family {F; :i € I} C At of distance functions and any G € AT,

Denote by Py(L) the family of all nonempty closed subsets of a PM space
(L, p, 7).
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Theorem 4.2. ([19, Th. 12.9.5]) If the triangle function T is sup-continuous then the
mapping H(A, B) = Fap, where Fap is defined by (4.3), is a probabilistic metric on
Py(L).

In the following proposition we collect some properties which will be used in
the proof of the completeness of P;(L) with respect to the probabilistic Pompeiu-
Hausdorff metric.

Proposition 4.3. Let (L,p,7) be a PM space with sup-continuous triangle function

T, and let A,B € Pr(L) andp € L. Then
1. F,p>7(Fpa,Fip);

and
2. Fp>T%, > Fiy > Fag.
3. If Fap(s) > 1—s for some s, 0 < s <1, then
Vp € A 3q € B such that Fpy(s) > 1 —s, (4.5)
and
Vg € B 3p € A such that Fpy(s) > 1 —s. (4.6)

Proof. For x € R we have
Yae€ AVbe B Fyp(z) > Fpp(x) > 7(FpaFap) ().

Taking the supremum with respect to b € B and taking in account that 7 is sup

continuous and monotonic in each place, we get
Va€ A Fop(x) > 7(Fpq, Fup)(x) > 7(Fpa, Fap)(x).

Taking now the supremum with respect to a € A one obtains the inequality 1.
The inequalities 2 are immediate from definitions.

To prove 3, observe that
Fap(s)>1—s <= Fipg(s)>1—sand Fp,(s) >1—s.

It follows
inf{F,p(s):p' € A} =T%(s) > Fig(s) > 1—s,
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so that
sup{Fpq(s): g€ B} >1—3s,

implying (4.5).
The inequality (4.6) can be proved similarly. O

The completeness result will be obtained under a further restriction imposed

to 7. We say that the triangle function 7 satisfies the condition (W) if
(W) F(z) > aand G(z) > 8 = 7(F,G)(x) > max{a+ § — 1,0},

for all x > 0, where F,G € AT, and «, € R.

Remark. Considering the t-norm
W(z,y) = max{z +y — 1,0}, (x,y) € [0,1]%
(see [19, p. 5]) and the associated triangle function W, defined for F,G € AT by
W(F,G)(z) =W(F(x),G(z)), x € R,

(see [19, p. 97]), the condition (W) essentially means that 7 > W.

Now we are ready to state and prove the completeness result.

Theorem 4.4. Let (L,p,7) be a PM space with sup-continuous triangle function T
satisfying the condition (W).
If the PM space L is complete then the space Py(L) is complete with respect

to the probabilistic Pompeiu-Hausdorff metric.

Proof. Let (Ay) be a sequence in Py(L) that is fundamental with respect to the
probabilistic Pompeiu-Hausdorff metric H.
Put
A= | U 4m |
n>1 m>n

and show that A € P;(L) (meaning that A C L is nonempty closed) and that the
sequence (A,) converges to A with respect to the probabilistic Pompeiu-Hausdorff
metric H.
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Observe that
peEA = dIni<ne<..dpp€A: ppL—Dp. (4.7)
For 0 < t < 1/2 fixed, choose ny € N such that
Vn,m >ng Fa,a, (t)>1—t.

For m > ng fixed, put n; := m and pick an element p; € A,,.
Let now ny > ny be such that

t t
Vn,nlzng FAnAn’(i)>1_§'

The inequalities

i, (0) > Faya, () > 1t
and the fact that p; belongs to A,, imply F}, 4, (f) > 1 —t, so that there exists
p2 € Ap, such that

Fplpz (t) >1-t
Take now n3 > nsy such that
Vn,n' >n3 Fa,a,(z)>1— .
Reasoning like above, we can find an element p3 € A,,, such that

t t
szp3(§) >1- 3

Continuing in this way, we obtain a strictly increasing sequence of indices n; < no < ...
and the elements p, € A,,,, k € N, such that

t t

Fpkpk+1(2]€7_1) >1- SE—T° (4.8)

for all k € N.
Claim I. Vi€ NVEEN Fpp ., (5i7) > 1= (571 + 5 + - + 552 )t-
We proceed by induction on ¢. For ¢ = 1 the assertion is true by the choice

of the elements py, (see (4.8)).
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Suppose that the assertion is true for ¢ and prove it for ¢ + 1. Appealing to

condition (W) we have

t 1 1
kpk+i+1(2k7_1) Z T ( F,

t
Fy F, pk+1pk+i+1)(2;€7_1) > 1—(F+?+~~+W)t»

PkPr+12

since F,p,,, (z7=7) > 1 — 57— and, by the induction hypothesis,

t t 1 1
Fpk+1pk+i+1(2]€7_1) > Fpk+1pk+,~+1(27) >1- (ﬁ +ot W)t'

Claim II. The sequence (py) is fundamental in the PM space L.

For 0 < s < 1 choose kg € N such that 27%0*! < 5. Then for any k > ko and

arbitrary ¢ € N we have

t t t t
(S)ZFPkPk+z(F)>1_(2k71++ )>1 — >1—s.

F " okti-1 Y

PePk+i

Since the PM space L is complete, there exists p € L such that py — p in the strong
topology of L. The choice of the elements p and (4.7) yield p € A. Since the set A
is obviously closed it follows A € Py(L).

By Claim I we have

1 1
Fplpk(t)>1_(1+§+...+2,€7_2)t>1—2t.

Let now ¢/, t < t' < 2¢, be a continuity point of the distribution function F, ,. The

continuity of the distance function (see (3.4)) and the inequalities
Fplpk (t/) 2 Fplpk (t) >1-2t
yield, for k — oo, Fpp(t') > 1 —2t, so that
Fy a(t') = sup Fp,4(t') > 1 —2t.
qeA

As p; was arbitrarily chosen in A,,, it follows

i A(t) =inf{Fyat'):p' € A} >1 -2t
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But then
Fi o a(2t) =suply A(t') >1—2t,
t/
where the supremum is taken over all continuity points ¢’ of the function F),, lying
in the interval (¢,2¢). The fact that the set of these points is dense in the interval

(t,2t) justifies the equality sign in the first of the above relations.

Taking into account that m > ng was arbitrarily chosen too, we finally obtain
Vm >ng Fj a(2t)>1-2t, (4.9)

Let now p € A and let n1 < ng < ... and p; € A,, be such that p, — p in
the strong topology of the PM space L.
Choose kg € N such that

Vk > ko Fpp(t)>1—t.

Proposition 4.3, the inequality F},a, > Fpp, , and condition (W) give, for
°0
any t/, t < t' < 2t,

Foan®) = Foa(®) = 7 (Foan,  Fi a,) (027 (Fopeys Fi a, ) (0> 121

kg kg

Since p € A was arbitrarily chosen, it follows
Vi', b <t <2t, Th, (t')>1-2t,
so that
Vm>ng Fia, (2t) >1—2t. (4.10)

The inequalities (4.9) and (4.10) yield
Ym > no H(Am, A)(Qt) = FA,,LA(2t) > 1-— 2t,

i.e., the sequence (A,,) converges to A with respect to the probabilistic Pompeiu-
Hausdorff metric H.
The proof of the completeness is complete. O
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The diameter of a subset A of a PM space (L, p, 7) is defined by
Da(t) =0 D4y(2)

where
D 4(t) = inf{F,y(t) : p,p’ € A}.

The set A is called bounded if Dy € DT, i.e. sup{Da(t) :t >0} =1 (see [19, pages
200-201]). This is equivalent to

sup{®4(t) :t >0} =1. (4.11)

Now we shall show that the families Py, (L) and Py(L) of all closed bounded
nonempty subsets of a PM space L, respectively of all nonempty compact subsets of
L, are complete in P¢(L) with respect to the Pompeiu-Hausdorff metric, provided
the PM space L is complete. To prove the assertion concerning the compact sets,
we shall use the characterization of compactness in uniform spaces in terms of total
boundedness (see [12, Ch. 6]). Let (X,U) be a uniform space. For U € U and a
subset A of X put U(A) = {z € X : Jy € A such that (x,y) € U}. It follows that
U(x) = U({z}) is a neighborhood of x and {U(z) : U € U} forms a neighborhood
base at z. A subset Y of X is called totally bounded if for every U € U there exists a
finite subset Z of X such that Y C U(Z). Then a subset of a uniform space (X,U) is
compact if and only if it is complete and totally bounded ([12, Ch. 6, Th. 32]). If L
is a PM space then, considering L as a uniform space with respect to the uniformity
generated by the vicinities (3.3), denote by Pyry,(L) the family of all nonempty, closed
and totally bounded subsets of L.

Theorem 4.5. If (L,p,7) is a PM space with sup-continuous triangle function T
satisfying the condition (W), then the subspaces Pyp(L) and Pyu(L) are closed in
Pr(L).

Consequently, if the PM space L is complete then the subspaces Pgy(L) and

Pi(L) are complete with respect to the probabilistic Pompeiu-Hausdorff metric.
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Proof. Let (A,) be a sequence of closed bounded nonempty sets converging to A €
P;(L) with respect to probabilistic Pompeiu-Hausdorff metric H. We have to show
that A is bounded too, i.e. that

sup{®a(t) : t >0} = 1. (4.12)
Let 0 < € < 1/3 and let m € N be such that
Vn>m Faa,(e)>1—¢. (4.13)

Since sup{®a,, (t) : t > 0} = 1 there exists ¢ > 0 such that ®4_(¢) > 1 —¢,
so that
Vg,q € Ay Fup(t) >1—e (4.14)
We can suppose also that ¢ > e. By (4.13) and (4.5), for any p,p’ € A there exist
q,q € Ay, such that

Fple) >1—€ and Fpy(e)>1—ce (4.15)

Since t > € we have F,4(t) > Fpy(€) > 1 — € and Fpy(t) > Fpq(€) > 1 — ¢, so that,
by (4.14) and condition (W), we have

qu/(t) > T(qu/, Fq/p/)(t) > 1 — 2e,

and
Fop (t) 2 7(Fpgs Fopr )(t) > 1 — 3e.

We have proved that for any ¢, 0 < € < 1/3, there exists ¢ > 0 such that
Fop (t) > 1 —€ for all p,p’ € A. Tt follows ®4(t) > 1 — 3¢, so that (4.12) holds.
Suppose now that (A,) is a sequence of nonempty compact subsets of L
converging with respect to the probabilistic Pompeiu-Hausdorff metric H to a set
A € Pg(L). We shall show that A is totally bounded with respect to the uniformity
having as vicinities the sets U; given by (3.3).
Let 0 < € < 1/2 and let n € N be such that Faga,(e) > 1 —¢. By (4.5) it
follows
Vp € A 3Jq € A, such that Fp,(e) > 1 —e. (4.16)
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Now, since the set A, is totally bounded, there exits a finite set Z C L such
that

Vg € A, 3z € Z such that Fi;(e) > 1 —e. (4.17)

For an arbitrary p € A choose first an element ¢ € A,, according to (4.16) and
then, for this ¢ select z € Z according to (4.17). Taking into account the condition
(W) we get

Fpy(€) > T(Fpq, Fyz)(e) > max{l — 2¢,0} =1 — 2e.

It follows A C Ua(Z), i.e. the set A is totally bounded.
Now, if the PM space L is complete and A is closed in L, it follows that A is

complete too, hence compact, as complete and totally bounded. O

Remark. As we have yet mentioned, in the case of Menger PM spaces
(L, p,Min), and (L, p, W), the completeness of the space of all closed bounded subsets
of L was proved by Kolumbdn and So6s in [13] and [14], respectively. Since Min > W,
both of these results are contained in the above completeness result. The completeness
of P;(L) in the case of a Menger PM space (L, p, Min) was proved in [13].

For a subset A of a PM space (L,p,7) and 0 < € <1 let

Aez{qeL:EIpeAqu(e)>1—e}=U{Ue(p):pEA}.

As in the case of ordinary metric spaces we have:

Proposition 4.6. (i) clA =), A
If T satisfies (W) then
(ii)) AC B, = clAC Ba..

Proof. Let g € c1 A and € > 0. Choosing p € U.(¢q) N A it follows
q € Uc(p) C A..
i.e. clA C N:A.. To prove the reverse inclusion we shall show that

nglAl/n C clA.
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Ifqe ﬂnZlAl/n then
1
Vn 3p, € A such that Fp,,, >1— —,
n

which implies that (p,) converges to p in the strong topology of the PM space L, i.e.
p € clA.

To prove (ii), let p € cl A. Tt follows Uc(p) N A # 0, so that Fy,(e) > 1 — €,
for some ¢q € A.

Since A C B it follows Fi,.(¢) > 1 —¢, for some r € B. But then, taking

into account the condition (W), we have for 0 < e <1/2
Fpr(€) > T(Fpq, Fgr)(e) > max{l — 2¢,0} =1 — 2¢,
showing that p € By.. If € > 1/2 then By, = L. O

In the following proposition we give two expressions for the probabilistic
Pompeiu-Hausdorff limit of a sequence of sets in P¢(L), inspired by a well known

result for the usual Pompeiu-Hausdorff metric (see [10, Proposition 1.3]).
Proposition 4.7. Let (L,p,7) be a PM space with sup-continuous triangle function
T satisfying the condition (W). If (A,) is sequence in Py(L) converging to A € Ps(L)
with respect to the probabilistic Pompeiu-Hausdorff metric H then

A=Ndl U4 |=NU N Am)e (4.18)

n>1 m>n e>0n>1m>n
Proof. Show first that

Ac(dl U 4m |- (4.19)

n>1 m>n

Let p € A and let ny € N be such that

1 1
VYm > ny FAA"”(i) >1-— 3
By (4.5),
1 1
Elpl S Anl Fppl(i) >1-— 5
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Continuing in this way we obtain a sequence n; < ns < ... of indices and the elements

pr € Ay, such that ' '
Fppk(QTg) >1- ok

It follows pr — p, so that

pE ﬂcl UAm

n>1 m>n

Let now 0 < € < 1/2 and let ny € N be such that
VYm >mng Faa,, () >1—¢
By (4.6) it follows
Vm > ng Vg € A, 3p € A such that Fpg(e) > 1 —,

so that
Vm > ng A, C A,

or, equivalently,

U Am c A

m>ng

But then

ﬂcl UAm cecl UAm C As..

n>1 m>n m>ng

Since 0 < € < 1/2 is arbitrary we have

e JAn|c [ Ae=cAd=A

n>1 m>n 0<e<1/2
It follows

A= d| J 4m

n>1 m>n

Let’s prove now that

AcU N Am)e

e0n>1m>n

For 0 < € < 1/2 choose ng € N such that

VYm > ng Faa,,(€) >1—e
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By (4.5) we have
Vm >ngVpe Adg € A, Fpy(e) > 1 —c¢,

implying

Ac () Amec U ) Am)e

m>ng n>lm>n

Again, since 0 < € < 1/2 was arbitrarily chosen, we get (4.21).

Finally, prove that

B=(U N@wec | U 4Am | =C. (4.22)

e>0n>1m>n n>1  \m>n
If p € B then
Ve, 0 < e <1, Ing(e) Vm > no(e) p € (Ap)e.
For n > 1 letting m = max{n,no(e)} we have

pE (Am)e C U Am/

m’'>n
= €

We have obtained

Vn>1Ve>0pc¢€ UAm/ ,

m’'>n .
implying
Vn>1 pecl UAm/ ,
m’'>n
so that
pE m cl U Am/
n>1 m’'>n
Combining now (4.20), (4.21) and (4.22) we obtain (4.18). O

Now we shall prove that the family P;.(L) of all nonempty closed convex
subsets of a complete Serstnev random normed space L is complete with respect to

the probabilistic Pompeiu-Hausdorff metric H.

61



STEFAN COBZAS

A Serstnev random normed space (RN space) is a triple (L, v, 7) where L is
a real linear space, T is a continuous triangle function such that 7(D* x D) c D™,
and v is a mapping v : L — D7 satisfying the following conditions:

(RN1) v(p) =€ <= p=0;

(RN2)  v(ap)(z) = Z/(p)(‘%‘) for >0 and a # 0;

(RN3) v(p+q) 2 7(v(p), ¥(q)), p:q € L.
If (L,v,7) is a Serstnev RN space then

pp,q) =v(p—q), pa €L, (4.23)

is a random metric on L. The topology of L is the strong topology corresponding to
the random metric (4.23), and L is a metrizable topological vector space with respect
to this topology. Random normed spaces were defined and studied by A. N. Serstnev
[21, 22, 24] (see also [19, Ch. 15, Sect. 1]).

The following result holds:

Theorem 4.8. Let (L,v,7) be a Sestnev random normed space with sup-continuous

triangle function satisfying the condition

T(F,G)(x) > ts%pl] min{F(tz), G((1 — t)x)}, (4.24)
€10,
forx >0 and F,G € DT.
Then the family Prc(L) of all nonempty closed convex subsets of L is closed in
Py(L) with respect to the probabilistic Pompeiu-Hausdorff metric H, hence complete
if the random normed space L is complete.
If L is complete then the family Py.(L) of all nonempty compact convex sub-

sets of L is complete with respect to the probabilistic Pompeiu-Hausdorff metric.

Proof. Observe first that if the set A C L is convex then the set A, is convex too.
Indeed, let q1,q2 € Ac and t1,t5 > 0,;t1 +to = 1. If p1, po € A are such that

vipi —qi)(€) >1—¢€, i =1,2, then t1p; + taps € A and, by (4.24) and (RN2),

62



PROBABILISTIC POMPEIU-HAUSDORFF METRIC

v(tipr +taps — (tiqn + t2g2))(€) >
> min{v(ti(p1 — q1))(t1€), v(ta(p2 — g2))(t2€) }

= min{r(p1 — q1)(€), ¥(p2 — g2)(€)} > 1 — ¢,

showing that t1q1 + t2qs € A..

Let now (4,,) be a sequence of nonempty closed convex subsets of L converg-

ing to A € Py(L) with respect to H. By Proposition 4.7

A=1U ] (A

e0n>1m>n

Since each A,, is convex, the same is true for (4,,)., as well as for

Bpe= (] (Am)e n=1,2,...

m>n

The union of the increasing sequence By . C By C ... of convex sets will be convex

too, so that their intersection for all € > 0 is a convex set.

The assertion concerning the family Pg.(L) of all nonempty compact convex

subsets of L follows from Theorem 4.5 and the first assertion of the theorem. O
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