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ŞTEFAN COBZAŞ

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. The aim of the present paper is to prove that the family of all

closed nonempty subsets of a complete probabilistic metric space L is com-

plete with respect to the probabilistic Pompeiu-Hausdorff metric H. The

same is true for the families of all closed bounded, respectively compact,

nonempty subsets of L. If L is a complete random normed space in the

sense of Šerstnev, then the family of all nonempty closed convex subsets of

L is also complete with respect to H. The probabilistic Pompeiu-Hausdorff

metric was defined and studied by R.J. Egbert, Pacific J. Math. 24 (1968),

437-455, in the case of Menger probabilistic metric spaces, and by R.M.

Tardiff, Pacific J. Math. 65 (1976), 233-251, in general probabilistic metric

spaces. The completeness with respect to probabilistic Pompeiu-Hausdorff

metric of the space of all closed bounded nonempty subsets of some Menger

probabilistic metric spaces was proved by J. Kolumbán and A. Soós, Stu-

dia Univ. Babes-Bolyai, Mathematica, 43 (1998), no. 2, 39-48, and 46

(2001), no. 3, 49-66.

1. Introduction

The study of probabilistic metric spaces (PM spaces for short) was initiated

by K. Menger [17] and A. Wald [28], in connection with some measurements problems

in physics. The positive number expressing the distance between two points p, q of a

metric space is replaced by a distribution function (in the sense of probability theory)
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Fp,q : R → [0, 1], whose value Fp,q(x) at the point x ∈ R can be interpreted as the

probability that the distance between p and q be less than x. Since then the subject

developed in various directions, an important one being that of fixed points in PM

spaces. Important contributions to the subject have been done by A.N. Šerstnev and

the Kazan school of probability theory, see [21, 22, 23, 24] and the bibliography in

[19].

A clear and thorough presentation of the results up to 1983 is given in the

book by B. Schweizer and A. Sklar [19]. Beside this book, at the present there

are several others dealing with various aspects of analysis in probabilistic metric

spaces and in probabilistic normed spaces - V. Istrăţescu [11], I. Istrăţescu and Gh.

Constantin [4, 5], V. Radu [18], S.-S. Chang and Y. J. Cho [3], O. Hadžić [8], O.

Hadžić and E. Pap [9]. In the present paper we shall follow the treatise [19].

The probabilistic Pompeiu-Hausdorff metric on the family of nonempty closed

subsets of a PM space was defined by Egbert [6] in the case of Menger PM spaces,

and by Tardiff [27] in general PM spaces (see also [19, §12.9]), by analogy with the

classical case. Sempi [20] used the probabilistic Pompeiu-Hausdorff metric to prove

the existence of a completion of a PM space. Some results have been obtained also

by Beg and Ali [2].

As it is well known, the family of nonempty closed bounded subsets of a

complete metric space is complete with respect to the Pompeiu-Hausdorff distance

(see, e.g., [10, Chapter 1]). The aim of the present paper is to prove the probabilistic

analog of this result for the family of all nonempty closed subsets of a probabilis-

tic metric space. We shall prove that the families of all nonempty closed bounded,

respectively compact, subsets of a complete probabilistic metric space L are also

complete with respect to the probabilistic Pompeiu-Hausdorff metric. If L is a com-

plete random normed space in the sense of Šerstnev, then the family of all nonempty

closed convex subsets of L is complete with respect to the Pompeiu-Hausdorff met-

ric too. In the case of Menger PM spaces (L, ρ,Min), and (L, ρ,W ), with t-norms

Min(s, t) = min{s, t}, s, t ∈ [0, 1], respectively W (s, t) = max{s + t− 1, 0}, the com-

pleteness of the space of all closed bounded nonempty subsets of L with respect to
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the probabilistic Pompeiu-Hausdorff metric was proved by Kolumbán and Soós in [13]

and [14]. In the case of a Menger PM space (L, ρ,Min), they proved also in [13] the

completeness of the family of all compact nonempty subsets of L. These completeness

results were applied in [13, 14, 15] to prove the existence of invariant sets for finite

families of contractions in PM spaces of random variables (E-spaces in the sense of

Sherwood [25], or [19, Ch. 9, Sect. 1]).

As in Aubin’s book [1], I have adopted the term Pompeiu-Hausdorff metric.

For a short comment on this fact, as well as on the similar case of the Painlevé-

Kuratowski convergence for sequences of sets, see [1, page xiv].

2. Preliminary notions

Denote by ∆ the set of distribution functions, meaning nondecreasing, left

continuous functions F : R → [0, 1] with F (−∞) = 0 and F (∞) = 1. Let D be the

subclass of ∆ formed by all functions F ∈ ∆ such that

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

The weak convergence of a sequence (Fn) in ∆ to F ∈ ∆, denoted by Fn
w−→

F , means that the equality

lim
n→∞

Fn(x) = F (x) (2.1)

holds for every continuity point x of F . Since F is non-decreasing the set of

its discontinuity points is at most countable, so that the set of continuity points of

F is dense in R. In order that Fn
w−→ F it is sufficient that the relation (2.1) holds

for every x in an arbitrary dense subset of R. An important result concerning weak

convergence of distribution functions is Helly’s First Theorem: every sequence in ∆

contains a weakly convergent subsequence (see Loève [16, Sect. 11.2]).

The topology of weak convergence in ∆ is metrizable. The first who realized

this was P. Lévy (see the Appendix to Fréchet’s book [7]), and for this reason the

metrics generating the weak convergence in ∆ are called Lévy metrics. Since the orig-

inal Lévy metric characterizes the weak convergence only in D, Sibley [26] proposed a

modification of Lévy metric that generates the weak convergence in ∆. We shall work
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with a further modification proposed by Schweizer and Sklar [19] and denoted by dL.

The distance dL(F,G) between two functions F,G ∈ ∆ is defined as the infimum of

all numbers h > 0 such that the inequalities

F (x− h)− h ≤ G(x) ≤ F (x + h) + h

and

G(x− h)− h ≤ F (x) ≤ G(x + h) + h

hold for every x ∈ (−h−1;h−1). One shows that dL is a metric on ∆ and, for any

sequence (Fn) in ∆ and F ∈ ∆, we have

Fn
w−→ F ⇐⇒ dL(Fn, F ) → 0.

By Helly’s First Theorem the space (∆, dL) is compact, hence complete (see [19,

§4.2]).

The sets of distance functions are:

∆+ = {F ∈ ∆ : F (0) = 0} and D+ = D ∩∆+.

It follows that for F ∈ ∆+ we have F (x) = 0, ∀x ≤ 0. The set ∆+ is closed

in the metric space ∆, hence compact and complete too.

Two important distance functions are

ε0(x) = 0 for x ≤ 0 and ε∞(x) = 0 for x < ∞

= 1 for x > 0 = 1 for x = ∞

The order in ∆+ is defined as the punctual order: for F,G ∈ ∆+ we put

F ≤ G ⇐⇒ ∀x > 0 F (x) ≤ G(x).

It follows that ε0 is the maximal element of ∆+ and of D+ as well, and ε∞

is the minimal element of ∆+.

In the following we shall define some functions, say F , on R and consider

them automatically extended to R by F (−∞) = 0 and F (∞) = 1.
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If {Fi : i ∈ I} is a family of functions in ∆+ then the function F : R → [0, 1]

defined by

F (x) = sup{Fi(x) : i ∈ I}, x ∈ R,

is the supremum of the family {Fi} in the ordered set (∆+,≤) : F = supi∈I Fi.

To define the infimum of the family {Fi} put

Γ(x) = inf{Fi(x) : i ∈ I}, x ∈ R. (2.2)

Since the function Γ is nondecreasing, but not necessarily left continuous on

R, we have to regularize it by taking the left limit

G(x) = `−Γ(x) := lim
x′↗x

Γ(x′) = sup
x′<x

Γ(x′), x ∈ R. (2.3)

Then G(x) ≤ Γ(x), ∀x ∈ R, the function G belongs to ∆+ and G = infi∈I Fi

- the infimum of the family {Fi} in the ordered set (∆+,≤).

A triangle function is a binary operation τ on ∆+, τ : ∆+×∆+ → ∆+, that

is commutative, associative, non-decreasing in each place (τ(F1, G1) ≤ τ(F2, G2), if

F1 ≤ F2 and G1 ≤ G2), and has ε0 as identity: τ(F, ε0) = F, F ∈ ∆+. The triangle

function τ is called continuous if it is continuous with respect to the dL-topology of

∆+. It follows that τ is, in fact, uniformly continuous, since the metric space (∆+, dL)

is compact.

3. Probabilistic metric spaces

A probabilistic metric space (PM space) is a triple (L, ρ, τ), where L is a set,

ρ is a mapping from L×L to ∆+, and τ is a continuous triangle function. The value

of ρ at (p, q) ∈ L× L is denoted by Fpq, i.e., ρ(p, q) = Fpq.

One supposes that the following conditions are satisfied for all p, q, r ∈ L:

(PM1) Fpp = ε0,

(PM2) Fpq = ε0 ⇒ p = q,

(PM3) Fpq = Fqp,

(PM4) Fpr ≥ τ(Fpq, Fqr).
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The mapping ρ is called the probabilistic metric on L and the condition (PM4)

is the probabilistic analogue of the triangle inequality.

The strong topology on a PM space is defined by the neighborhood system:

Ut(p) = {q ∈ L : Fpq(t) > 1− t}, t > 0. (3.1)

Putting

Ūt(p) = {q ∈ L : Fp(t) ≥ 1− t} (3.2)

we have Ut(p) ⊂ Ūt(p) and Ūt′(p) ⊂ Ut(p) for t′ < t, showing that the family (3.2)

of subsets of L forms also a neighborhood base for the strong topology of L.

Observe that Ut(p) = L, for t > 1, and Ūt(p) = L, for t ≥ 1, so that we

can restrict to t ∈ (0, 1) when working with strong neighborhoods. In fact, we can

suppose that t is as small as we need.

The strong topology on a PM space (L, ρ, τ) is derived from the uniformity

U generated by the vicinities:

Ut = {(p, q) ∈ L× L : Fpq(t) > 1− t}, t > 0. (3.3)

The strong topology is metrizable since {U1/n : n ∈ N} is a countable base for the

uniformity U . The probabilistic metric ρ is uniformly continuous mapping from L×L

with the product topology to (∆+, dL), meaning that

pn → p and qn → q in L ⇒ Fpnqn

w−→ Fpq. (3.4)

The convergence of a sequence (pn) in L to p ∈ L is characterized by

pn → p ⇐⇒ ∀t > 0 ∃n0 ∀n ≥ n0 pn ∈ Ut(p)

⇐⇒ Fpnp
w−→ ε0

⇐⇒ dL(Fpnp, ε0) → 0.

A sequence (pn) in L is called a Cauchy sequence, or fundamental, if

Fpnpm

w−→ ε0 for n, m →∞,
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or, equivalently,

∀t > 0 ∃n0 such that ∀n, m ≥ n0 (pn, pm) ∈ Ut ( ⇐⇒ Fpnpm(t) > 1− t).

A convergent sequence in L is a Cauchy sequence, and the PM space L is

called complete (with respect to the strong topology) if every Cauchy sequence is

convergent.

For these and other questions concerning the strong topology of a PM space,

see [19, Chapter 12].

Throughout this paper all the topological notions concerning a PM space will

be considered with respect to the strong topology.

4. The probabilistic Pompeiu-Hausdorff metric

For a metric space (X, d), two nonempty bounded subsets A,B of X and a

point p ∈ X, one introduces the following notations and notions :

d(p, B) = inf{d(p, q) : q ∈ B} − the distance from p to B,

h∗(A,B) = sup{d(p, B) : p ∈ A} − the excess of A over B,

and let

h(A,B) = max{h∗(A,B), h∗(B,A)}

be the Pompeiu-Hausdorff distance between the sets A,B.

Denoting by Pfb(X) the family of all nonempty closed bounded subset of X

it follows that h is a metric on Pfb(X), and the metric space (Pfb(X), h) is complete

if (X, d) is complete (see, e.g., [10, Chapter 1]).

In the case of a PM space (L, ρ, τ) the definitions are similar but, taking into

account the fact that the probabilistic triangle inequality (PM4) is written in reversed

form with respect to the usual triangle inequality, sup and inf will change their places.

For two nonempty subsets A,B of L and p ∈ L denote by

FpB = sup{Fpq : q ∈ B} ⇐⇒ FpB(x) = sup{Fpq(x) : q ∈ B}, x ∈ R, (4.1)
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the probabilistic distance from p to B, and let

F ∗
AB = inf{FpB : p ∈ A}. (4.2)

Taking into account the formulae (2.2) and (2.3), it follows

F ∗
AB = `−Γ∗AB ,

where

Γ∗AB(x) = inf{FpB(x) : p ∈ A}, x ∈ R.

The probabilistic Pompeiu-Hausdorff distance between the sets A,B is defined

by

H(A,B) = FAB , where

FAB(x) = min{F ∗
AB(x), F ∗

BA(x)}, x ∈ R. (4.3)

The probabilistic Pompeiu-Hausdorff metric was defined and studied by Egbert [6]

in the case of Menger PM spaces and by Tardiff [27] in general PM spaces (see also

[19, §12.9]). The mapping H(A,B) = FAB satisfies the following properties, where cl

denotes the closure with respect to the strong topology:

Proposition 4.1. ([19, Th. 12.9.2])

1. F{p}{q} = Fpq for p, q ∈ L;

2. For nonempty A,B ⊂ L, FAB = FBA, FAB = Fcl(A) cl(B), and

FAB = ε0 if and only if cl(A) = cl(B).

In order that H satisfy the probabilistic triangle inequality (PM4), we have

to impose a supplementary condition on the triangle function τ . The triangle function

τ is called sup-continuous if

τ(sup
i∈I

Fi, G) = sup
i∈I

τ(Fi, G) (4.4)

for any family {Fi : i ∈ I} ⊂ ∆+ of distance functions and any G ∈ ∆+.

Denote by Pf (L) the family of all nonempty closed subsets of a PM space

(L, ρ, τ).
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Theorem 4.2. ([19, Th. 12.9.5]) If the triangle function τ is sup-continuous then the

mapping H(A,B) = FAB , where FAB is defined by (4.3), is a probabilistic metric on

Pf (L).

In the following proposition we collect some properties which will be used in

the proof of the completeness of Pf (L) with respect to the probabilistic Pompeiu-

Hausdorff metric.

Proposition 4.3. Let (L, ρ, τ) be a PM space with sup-continuous triangle function

τ , and let A,B ∈ Pf (L) and p ∈ L. Then

1. FpB ≥ τ (FpA, F ∗
AB);

and

2. FpB ≥ Γ∗AB ≥ F ∗
AB ≥ FAB .

3. If FAB(s) > 1− s for some s, 0 < s < 1, then

∀p ∈ A ∃q ∈ B such that Fpq(s) > 1− s, (4.5)

and

∀q ∈ B ∃p ∈ A such that Fpq(s) > 1− s. (4.6)

Proof. For x ∈ R we have

∀a ∈ A ∀b ∈ B FpB(x) ≥ Fpb(x) ≥ τ(FpaFab)(x).

Taking the supremum with respect to b ∈ B and taking in account that τ is sup

continuous and monotonic in each place, we get

∀a ∈ A FpB(x) ≥ τ(Fpa, FaB)(x) ≥ τ(FpA, F ∗
AB)(x).

Taking now the supremum with respect to a ∈ A one obtains the inequality 1.

The inequalities 2 are immediate from definitions.

To prove 3, observe that

FAB(s) > 1− s ⇐⇒ F ∗
AB(s) > 1− s and F ∗

BA(s) > 1− s.

It follows

inf{Fp′B(s) : p′ ∈ A} = Γ∗(s) ≥ F ∗
AB(s) > 1− s,
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so that

sup{Fpq(s) : q ∈ B} > 1− s,

implying (4.5).

The inequality (4.6) can be proved similarly.

The completeness result will be obtained under a further restriction imposed

to τ . We say that the triangle function τ satisfies the condition (W) if

(W) F (x) > α and G(x) > β ⇒ τ(F,G)(x) > max{α + β − 1, 0},

for all x > 0, where F,G ∈ ∆+, and α, β ∈ R.

Remark. Considering the t-norm

W (x, y) = max{x + y − 1, 0}, (x, y) ∈ [0, 1]2,

(see [19, p. 5]) and the associated triangle function W, defined for F,G ∈ ∆+ by

W(F,G)(x) = W (F (x), G(x)), x ∈ R,

(see [19, p. 97]), the condition (W) essentially means that τ ≥ W.

Now we are ready to state and prove the completeness result.

Theorem 4.4. Let (L, ρ, τ) be a PM space with sup-continuous triangle function τ

satisfying the condition (W).

If the PM space L is complete then the space Pf (L) is complete with respect

to the probabilistic Pompeiu-Hausdorff metric.

Proof. Let (An) be a sequence in Pf (L) that is fundamental with respect to the

probabilistic Pompeiu-Hausdorff metric H.

Put

A =
⋂
n≥1

cl

 ⋃
m≥n

Am

 ,

and show that A ∈ Pf (L) (meaning that A ⊂ L is nonempty closed) and that the

sequence (An) converges to A with respect to the probabilistic Pompeiu-Hausdorff

metric H.
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Observe that

p ∈ A ⇐⇒ ∃ n1 < n2 < ... ∃pk ∈ Ank
: pk → p. (4.7)

For 0 < t < 1/2 fixed, choose n0 ∈ N such that

∀n, m ≥ n0 FAnAm(t) > 1− t.

For m ≥ n0 fixed, put n1 := m and pick an element p1 ∈ An1 .

Let now n2 > n1 be such that

∀n, n′ ≥ n2 FAnAn′ (
t

2
) > 1− t

2
.

The inequalities

F ∗
An1An2

(t) ≥ FAn1An2
(t) > 1− t

and the fact that p1 belongs to An1 imply Fp1An2
(t) > 1 − t, so that there exists

p2 ∈ An2 such that

Fp1p2(t) > 1− t.

Take now n3 > n2 such that

∀n, n′ ≥ n3 FAnAn′ (
t

22
) > 1− t

22
.

Reasoning like above, we can find an element p3 ∈ An3 such that

Fp2p3(
t

2
) > 1− t

2
.

Continuing in this way, we obtain a strictly increasing sequence of indices n1 < n2 < ...

and the elements pk ∈ Ank
, k ∈ N, such that

Fpkpk+1(
t

2k−1
) > 1− t

2k−1
, (4.8)

for all k ∈ N.

Claim I. ∀i ∈ N ∀k ∈ N Fpkpk+i
( t
2k−1 ) > 1− ( 1

2k−1 + 1
2k + ... + 1

2k+i−2 )t.

We proceed by induction on i. For i = 1 the assertion is true by the choice

of the elements pk (see (4.8)).
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Suppose that the assertion is true for i and prove it for i + 1. Appealing to

condition (W) we have

Fpkpk+i+1(
t

2k−1
) ≥ τ

(
Fpkpk+1 , Fpk+1pk+i+1

)
(

t

2k−1
) > 1− (

1
2k−1

+
1
2k

+ ... +
1

2k+i−1
)t,

since Fpkpk+1(
t

2k−1 ) > 1− 1
2k−1 and, by the induction hypothesis,

Fpk+1pk+i+1(
t

2k−1
) ≥ Fpk+1pk+i+1(

t

2k
) > 1− (

1
2k

+ ... +
1

2k+i−1
)t.

Claim II. The sequence (pk) is fundamental in the PM space L.

For 0 < s < 1 choose k0 ∈ N such that 2−k0+1 < s. Then for any k ≥ k0 and

arbitrary i ∈ N we have

Fpkpk+i
(s) ≥ Fpkpk+i

(
t

2k−1
) > 1− (

t

2k−1
+ ... +

t

2k+i−1
) > 1− t

2k
> 1− s.

Since the PM space L is complete, there exists p ∈ L such that pk → p in the strong

topology of L. The choice of the elements pk and (4.7) yield p ∈ A. Since the set A

is obviously closed it follows A ∈ Pf (L).

By Claim I we have

Fp1pk
(t) > 1− (1 +

1
2

+ ... +
1

2k−2
)t > 1− 2t.

Let now t′, t < t′ < 2t, be a continuity point of the distribution function Fp1p. The

continuity of the distance function (see (3.4)) and the inequalities

Fp1pk
(t′) ≥ Fp1pk

(t) > 1− 2t

yield, for k →∞, Fp1p(t′) ≥ 1− 2t, so that

Fp1A(t′) = sup
q∈A

Fp1q(t′) ≥ 1− 2t.

As p1 was arbitrarily chosen in Am, it follows

Γ∗AmA(t′) = inf{Fp′A(t′) : p′ ∈ Am} ≥ 1− 2t.
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But then

F ∗
AmA(2t) = sup

t′
Γ∗AmA(t′) ≥ 1− 2t,

where the supremum is taken over all continuity points t′ of the function Fp1p lying

in the interval (t, 2t). The fact that the set of these points is dense in the interval

(t, 2t) justifies the equality sign in the first of the above relations.

Taking into account that m ≥ n0 was arbitrarily chosen too, we finally obtain

∀m ≥ n0 F ∗
AmA(2t) ≥ 1− 2t, (4.9)

Let now p ∈ A and let n1 < n2 < ... and pk ∈ Ank
be such that pk → p in

the strong topology of the PM space L.

Choose k0 ∈ N such that

∀k ≥ k0 Fpkp(t) > 1− t.

Proposition 4.3, the inequality FpAnk0
≥ Fppk0

, and condition (W) give, for

any t′, t < t′ < 2t,

FpAm
(t′) ≥ FpAm

(t) ≥ τ
(
FpAnk0

, F ∗
Ank0

Am

)
(t) ≥ τ

(
Fppk0

, F ∗
Ank0

Am

)
(t) > 1− 2t.

Since p ∈ A was arbitrarily chosen, it follows

∀t′, t < t′ < 2t, Γ∗AAm
(t′) ≥ 1− 2t,

so that

∀m ≥ n0 F ∗
AAm

(2t) ≥ 1− 2t. (4.10)

The inequalities (4.9) and (4.10) yield

∀m ≥ n0 H(Am, A)(2t) = FAmA(2t) ≥ 1− 2t,

i.e., the sequence (Am) converges to A with respect to the probabilistic Pompeiu-

Hausdorff metric H.

The proof of the completeness is complete.
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The diameter of a subset A of a PM space (L, ρ, τ) is defined by

DA(t) = `−ΦA(t)

where

ΦA(t) = inf{Fpp′(t) : p, p′ ∈ A}.

The set A is called bounded if DA ∈ D+, i.e. sup{DA(t) : t > 0} = 1 (see [19, pages

200-201]). This is equivalent to

sup{ΦA(t) : t > 0} = 1. (4.11)

Now we shall show that the families Pfb(L) and Pk(L) of all closed bounded

nonempty subsets of a PM space L, respectively of all nonempty compact subsets of

L, are complete in Pf (L) with respect to the Pompeiu-Hausdorff metric, provided

the PM space L is complete. To prove the assertion concerning the compact sets,

we shall use the characterization of compactness in uniform spaces in terms of total

boundedness (see [12, Ch. 6]). Let (X,U) be a uniform space. For U ∈ U and a

subset A of X put U(A) = {x ∈ X : ∃y ∈ A such that (x, y) ∈ U}. It follows that

U(x) = U({x}) is a neighborhood of x and {U(x) : U ∈ U} forms a neighborhood

base at x. A subset Y of X is called totally bounded if for every U ∈ U there exists a

finite subset Z of X such that Y ⊂ U(Z). Then a subset of a uniform space (X,U) is

compact if and only if it is complete and totally bounded ([12, Ch. 6, Th. 32]). If L

is a PM space then, considering L as a uniform space with respect to the uniformity

generated by the vicinities (3.3), denote by Pftb(L) the family of all nonempty, closed

and totally bounded subsets of L.

Theorem 4.5. If (L, ρ, τ) is a PM space with sup-continuous triangle function τ

satisfying the condition (W), then the subspaces Pfb(L ) and Pftb(L) are closed in

Pf (L).

Consequently, if the PM space L is complete then the subspaces Pfb(L) and

Pk(L) are complete with respect to the probabilistic Pompeiu-Hausdorff metric.
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Proof. Let (An) be a sequence of closed bounded nonempty sets converging to A ∈

Pf (L) with respect to probabilistic Pompeiu-Hausdorff metric H. We have to show

that A is bounded too, i.e. that

sup{ΦA(t) : t > 0} = 1. (4.12)

Let 0 < ε < 1/3 and let m ∈ N be such that

∀n ≥ m FAAn(ε) > 1− ε. (4.13)

Since sup{ΦAm
(t) : t > 0} = 1 there exists t > 0 such that ΦAm

(t) > 1 − ε,

so that

∀q, q′ ∈ Am Fqq′(t) > 1− ε. (4.14)

We can suppose also that t ≥ ε. By (4.13) and (4.5), for any p, p′ ∈ A there exist

q, q′ ∈ Am such that

Fpq(ε) > 1− ε and Fp′q′(ε) > 1− ε. (4.15)

Since t ≥ ε we have Fpq(t) ≥ Fpq(ε) > 1 − ε and Fp′q′(t) ≥ Fp′q′(ε) > 1 − ε, so that,

by (4.14) and condition (W), we have

Fqp′(t) ≥ τ(Fqq′ , Fq′p′)(t) > 1− 2e,

and

Fpp′(t) ≥ τ(Fpq, Fqp′)(t) > 1− 3ε.

We have proved that for any ε, 0 < ε < 1/3, there exists t > 0 such that

Fpp′(t) > 1− ε for all p, p′ ∈ A. It follows ΦA(t) ≥ 1− 3ε, so that (4.12) holds.

Suppose now that (An) is a sequence of nonempty compact subsets of L

converging with respect to the probabilistic Pompeiu-Hausdorff metric H to a set

A ∈ Pf (L). We shall show that A is totally bounded with respect to the uniformity

having as vicinities the sets Ut given by (3.3).

Let 0 < ε < 1/2 and let n ∈ N be such that FAAn(ε) > 1 − ε. By (4.5) it

follows

∀p ∈ A ∃q ∈ An such that Fpq(ε) > 1− ε. (4.16)
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Now, since the set An is totally bounded, there exits a finite set Z ⊂ L such

that

∀q ∈ An ∃z ∈ Z such that Fqz(ε) > 1− ε. (4.17)

For an arbitrary p ∈ A choose first an element q ∈ An according to (4.16) and

then, for this q select z ∈ Z according to (4.17). Taking into account the condition

(W) we get

Fpq(ε) ≥ τ(Fpq, Fqz)(ε) > max{1− 2ε, 0} = 1− 2ε.

It follows A ⊂ U2ε(Z), i.e. the set A is totally bounded.

Now, if the PM space L is complete and A is closed in L, it follows that A is

complete too, hence compact, as complete and totally bounded.

Remark. As we have yet mentioned, in the case of Menger PM spaces

(L, ρ,Min), and (L, ρ,W ), the completeness of the space of all closed bounded subsets

of L was proved by Kolumbán and Soós in [13] and [14], respectively. Since Min ≥ W,

both of these results are contained in the above completeness result. The completeness

of Pk(L) in the case of a Menger PM space (L, ρ,Min) was proved in [13].

For a subset A of a PM space (L, ρ, τ) and 0 < ε ≤ 1 let

Aε = {q ∈ L : ∃p ∈ A Fpq(ε) > 1− ε} =
⋃
{Uε(p) : p ∈ A}.

As in the case of ordinary metric spaces we have:

Proposition 4.6. (i) cl A =
⋂

ε>0 Aε

If τ satisfies (W) then

(ii) A ⊂ Bε ⇒ cl A ⊂ B2ε.

Proof. Let q ∈ cl A and ε > 0. Choosing p ∈ Uε(q) ∩A it follows

q ∈ Uε(p) ⊂ Aε.

i.e. clA ⊂ ∩εAε. To prove the reverse inclusion we shall show that

∩n≥1A1/n ⊂ cl A.
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If q ∈ ∩n≥1A1/n then

∀n ∃pn ∈ A such that Fppn > 1− 1
n

,

which implies that (pn) converges to p in the strong topology of the PM space L, i.e.

p ∈ cl A.

To prove (ii), let p ∈ cl A. It follows Uε(p) ∩ A 6= ∅, so that Fpq(ε) > 1 − ε,

for some q ∈ A.

Since A ⊂ Bε it follows Fqr(ε) > 1 − ε, for some r ∈ B. But then, taking

into account the condition (W), we have for 0 < ε ≤ 1/2

Fpr(ε) ≥ τ(Fpq, Fqr)(ε) > max{1− 2ε, 0} = 1− 2ε,

showing that p ∈ B2ε. If ε > 1/2 then B2ε = L.

In the following proposition we give two expressions for the probabilistic

Pompeiu-Hausdorff limit of a sequence of sets in Pf (L), inspired by a well known

result for the usual Pompeiu-Hausdorff metric (see [10, Proposition 1.3]).

Proposition 4.7. Let (L, ρ, τ) be a PM space with sup-continuous triangle function

τ satisfying the condition (W). If (An) is sequence in Pf (L) converging to A ∈ Pf (L)

with respect to the probabilistic Pompeiu-Hausdorff metric H then

A =
⋂
n≥1

cl

 ⋃
m≥n

Am

 =
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε. (4.18)

Proof. Show first that

A ⊂
⋂
n≥1

cl

 ⋃
m≥n

Am

 . (4.19)

Let p ∈ A and let n1 ∈ N be such that

∀m ≥ n1 FAAm(
1
2
) > 1− 1

2
.

By (4.5),

∃p1 ∈ An1 Fpp1(
1
2
) > 1− 1

2
.
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Continuing in this way we obtain a sequence n1 < n2 < ... of indices and the elements

pk ∈ Ank
such that

Fppk
(

1
2k

) > 1− 1
2k

.

It follows pk → p, so that

p ∈
⋂
n≥1

cl

 ⋃
m≥n

Am

 .

Let now 0 < ε < 1/2 and let n0 ∈ N be such that

∀m ≥ n0 FAAm
(ε) > 1− ε.

By (4.6) it follows

∀m ≥ n0 ∀q ∈ Am ∃p ∈ A such that Fpq(ε) > 1− ε,

so that

∀m ≥ n0 Am ⊂ Aε,

or, equivalently, ⋃
m≥n0

Am ⊂ Aε.

But then ⋂
n≥1

cl

 ⋃
m≥n

Am

 ⊂ cl

 ⋃
m≥n0

Am

 ⊂ A2ε.

Since 0 < ε < 1/2 is arbitrary we have

⋂
n≥1

cl

 ⋃
m≥n

Am

 ⊂
⋂

0<ε<1/2

A2ε = clA = A.

It follows

A =
⋂
n≥1

cl

 ⋃
m≥n

Am

 . (4.20)

Let’s prove now that

A ⊂
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε. (4.21)

For 0 < ε < 1/2 choose n0 ∈ N such that

∀m ≥ n0 FAAm(ε) > 1− ε.
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By (4.5) we have

∀m ≥ n0 ∀p ∈ A ∃q ∈ Am Fpq(ε) > 1− ε,

implying

A ⊂
⋂

m≥n0

(Am)ε ⊂
⋃
n≥1

⋂
m≥n

(Am)ε

Again, since 0 < ε < 1/2 was arbitrarily chosen, we get (4.21).

Finally, prove that

B :=
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε ⊂
⋂
n≥1

cl

 ⋃
m≥n

Am

 =: C. (4.22)

If p ∈ B then

∀ε, 0 < ε < 1, ∃n0(ε) ∀m ≥ n0(ε) p ∈ (Am)ε.

For n ≥ 1 letting m = max{n, n0(ε)} we have

p ∈ (Am)ε ⊂

 ⋃
m′≥n

Am′


ε

.

We have obtained

∀n ≥ 1 ∀ε > 0 p ∈

 ⋃
m′≥n

Am′


ε

,

implying

∀n ≥ 1 p ∈ cl

 ⋃
m′≥n

Am′

 ,

so that

p ∈
⋂
n≥1

cl

 ⋃
m′≥n

Am′

 .

Combining now (4.20), (4.21) and (4.22) we obtain (4.18).

Now we shall prove that the family Pfc(L) of all nonempty closed convex

subsets of a complete Šerstnev random normed space L is complete with respect to

the probabilistic Pompeiu-Hausdorff metric H.

61
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A Šerstnev random normed space (RN space) is a triple (L, ν, τ) where L is

a real linear space, τ is a continuous triangle function such that τ(D+ ×D+) ⊂ D+,

and ν is a mapping ν : L → D+ satisfying the following conditions:

(RN1) ν(p) = ε0 ⇐⇒ p = θ;

(RN2) ν(ap)(x) = ν(p)( x
|a| ) for x ≥ 0 and a 6= 0;

(RN3) ν(p + q) ≥ τ(ν(p), ν(q)), p, q ∈ L.

If (L, ν, τ) is a Šerstnev RN space then

ρ(p, q) = ν(p− q), p, q ∈ L, (4.23)

is a random metric on L. The topology of L is the strong topology corresponding to

the random metric (4.23), and L is a metrizable topological vector space with respect

to this topology. Random normed spaces were defined and studied by A. N. Šerstnev

[21, 22, 24] (see also [19, Ch. 15, Sect. 1]).

The following result holds:

Theorem 4.8. Let (L, ν, τ) be a Šestnev random normed space with sup-continuous

triangle function satisfying the condition

τ(F,G)(x) ≥ sup
t∈[0,1]

min{F (tx), G((1− t)x)}, (4.24)

for x ≥ 0 and F,G ∈ D+.

Then the family Pfc(L) of all nonempty closed convex subsets of L is closed in

Pf (L) with respect to the probabilistic Pompeiu-Hausdorff metric H, hence complete

if the random normed space L is complete.

If L is complete then the family Pkc(L) of all nonempty compact convex sub-

sets of L is complete with respect to the probabilistic Pompeiu-Hausdorff metric.

Proof. Observe first that if the set A ⊂ L is convex then the set Aε is convex too.

Indeed, let q1, q2 ∈ Aε and t1, t2 > 0, ; t1 + t2 = 1. If p1, p2 ∈ A are such that

ν(pi − qi)(ε) > 1− ε, i = 1, 2, then t1p1 + t2p2 ∈ A and, by (4.24) and (RN2),
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ν(t1p1 + t2p2 − (t1q1 + t2q2))(ε) ≥

≥ min{ν(t1(p1 − q1))(t1ε), ν(t2(p2 − q2))(t2ε)}

= min{ν(p1 − q1)(ε), ν(p2 − q2)(ε)} > 1− ε,

showing that t1q1 + t2q2 ∈ Aε.

Let now (An) be a sequence of nonempty closed convex subsets of L converg-

ing to A ∈ Pf (L) with respect to H. By Proposition 4.7

A =
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε.

Since each Am is convex, the same is true for (Am)ε, as well as for

Bn,ε =
⋂

m≥n

(Am)ε, n = 1, 2, ....

The union of the increasing sequence B1,ε ⊂ B2,ε ⊂ ... of convex sets will be convex

too, so that their intersection for all ε > 0 is a convex set.

The assertion concerning the family Pkc(L) of all nonempty compact convex

subsets of L follows from Theorem 4.5 and the first assertion of the theorem.
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