ON ANALOGS OF THE DUAL BRUNN-MINKOWSKI INEQUALITY FOR WIDTH-INTEGRALS OF CONVEX BODIES

ZHAO CHANGJIAN, WING-SUM CHEUNG, AND MIHÁLY BENCZE

Abstract. In this paper we prove two new inequalities about width-integrals of centroid and projection bodies. Two analogs of the dual Brunn-Minkowski inequality for width-integral of convex bodies are established.

0. Definitions and preliminary results

The setting for this paper is \(n \)-dimensional Euclidean space \(\mathbb{R}^n (n > 2) \). Let \(K^n \) denote the set of convex bodies (compact, convex subsets with non-empty interiors) in \(\mathbb{R}^n \). Let \(\varphi^n \) denote the set of star bodies in \(\mathbb{R}^n \). The subset of \(\varphi^n \) consisting of the centred star bodies will be denoted by \(\varphi_c^n \). We reserve the letter \(u \) for unit vectors, and the letter \(B \) is reserved for the unit ball centered at the origin. The surface of \(B \) is \(S^{n-1} \). For \(u \in S^{n-1} \), let \(E_u \) denote the hyperplane, through the origin, that is orthogonal to \(u \). We will use \(K^n_u \) to denote the image of \(K \) under an orthogonal projection onto the hyperplane \(E_u \).

We use \(V(K) \) for the \(n \)-dimensional volume of convex body \(K \). Let \(h(K, \cdot) : S^{n-1} \rightarrow \mathbb{R} \), denote the support function of \(K \in K^n \); i.e.

\[
 h(K, u) = \text{Max} \{ u \cdot x : x \in K \}, \quad u \in S^{n-1},
\]

where \(u \cdot x \) denotes the usual inner product \(u \) and \(x \) in \(\mathbb{R}^n \).

Let \(\delta \) denote the Hausdorff metric on \(K^n \); i.e., for \(K, L \in K^n \),

\[
 \delta(K, L) = |h_K - h_L|_{\infty},
\]
where $| \cdot |_\infty$ denotes the sup-norm on the space of continuous functions, $C(S^{n-1})$.

For a convex body K and a nonnegative scalar $\lambda, \lambda K$, is used to denote \{\lambda x : x \in K\}. For $K_i \in \mathcal{K}^n$, $\lambda_i \geq 0, (i = 1, 2, \ldots, r)$, the Minkowski linear combination $\lambda_1 K_1 + \cdots + \lambda_r K_r \in \mathcal{K}^n$ is defined by

$$\lambda_1 K_1 + \cdots + \lambda_r K_r = \{\lambda_1 x_1 + \cdots + \lambda_r x_r \in \mathcal{K}^n : x_i \in K_i\}. \quad (2)$$

It is trivial to verify that

$$h(\lambda_1 K_1 + \cdots + \lambda_r K_r, \cdot) = \lambda_1 h(K_1, \cdot) + \cdots + \lambda_r h(K_r, \cdot). \quad (3)$$

1.1 Mixed volumes

If $K_i \in \mathcal{K}^n (i = 1, 2, \ldots, r)$ and $\lambda_i (i = 1, 2, \ldots, r)$ are nonnegative real numbers, then of fundamental impotence is the fact that the volume of $\lambda_1 K_1 + \cdots + \lambda_r K_r$ is a homogeneous polynomial in λ_i given by $[4,p.275]

$$V(\lambda_1 K_1 + \cdots + \lambda_r K_r) = \sum_{i_1, \ldots, i_n} \lambda_{i_1} \ldots \lambda_{i_n} V_{i_1 \ldots i_n}, \quad (4)$$

where the sum is taken over all n-tuples (i_1, \ldots, i_n) of positive integers not exceeding r. The coefficient $V_{i_1 \ldots i_n}$ depends only on the bodies K_{i_1}, \ldots, K_{i_n}, and is uniquely determined by (8), it is called the mixed volume of K_{i_1}, \ldots, K_{i_n}, and is written as $V(K_{i_1}, \ldots, K_{i_n})$. Let $K_1 = \cdots = K_{n-r} = K$ and $K_{n-i+1} = \cdots = K_n = L$, then the mixed volume $V(K_1 \ldots K_n)$ is usually written $V_i(K, L)$. If $L = B$, then $V_i(K, B)$ is the ith projection measure (Quermassintegral) of K and is written as $W_i(K)$.

If $K_i (i = 1, 2, \ldots, n-1) \in \mathcal{K}^n$, then the mixed volume of the convex figures $K_i^u (i = 1, 2, \ldots, n-1)$ in the $(n-1)$-dimensional space E_n will be denoted by $v(K_1^u, \ldots, K_{n-1}^u)$. It is well known, and easily shown $[5,p.45]$, that for $K_i \in \mathcal{K}^n (i = 1, 2, \ldots, n-1)$, and $u \in S^{n-1}$

$$v(K_1^u, \ldots, K_{n-1}^u) = n V(K_1, \ldots, K_{n-1}, [u]) \quad (5)$$

where $[u]$ denotes the line segment joining $u/2$ and $-u/2$.

1.2 Width-integrals of convex bodies

For $u \in S^{n-1}$, $b_K = \frac{1}{2}(h(K, u) + h(K, -u))$ is called as half the width of K in the direction u. Two convex bodies K and L are said to have similar width if there exists

ZHAO CHANGJIAN, WING-SUM CHEUNG, AND MIHÁLY BENCZE
a constant $\lambda > 0$ such that $b_K = \lambda b_L$ for all $u \in S^{n-1}$. The width-integral of index i is defined by: For $K \in \mathcal{K}^n$, $i \in \mathbb{R}$

$$B_i(K) = \frac{1}{n} \int_{S^{n-1}} b_K^{n-i} dS(u),$$

(6)

where dS is the $(n-1)$-dimensional volume element on S^{n-1}. The width-integral of index i is a map

$$B_i : \mathcal{K}^n \to \mathbb{R}.$$

It is positive, continuous, homogeneous of degree $n-i$ and invariant under motion. In addition, for $i \leq n$ it is also bounded and monotone under set inclusion.

The following result easy is proved, for $K_j \in \mathcal{K}^n (j = 1, \ldots, m)$

$$b_{K_1 + \cdots + K_m} = b_{K_1} + \cdots + b_{K_m},$$

(7)

1.3 The Blaschke linear combination and the harmonic Blaschke linear combination

A convex body K is said to have a positive continuous curvature function [8],

$$f(K, \cdot) : S^{n-1} \to [0, \infty),$$

if for each $L \in \varphi^n$, the mixed volume $V_1(K, L)$ has the integral representation

$$V_1(K, L) = \frac{1}{n} \int_{S^{n-1}} f(K, u) h(L, u) dS(u).$$

The subset of \mathcal{K}^n consisting of bodies which have a positive continuous curvature function will be denoted by κ^n. Let κ^n_σ denote the set of centrally symmetric member of κ^n.

The following result is true [9], for $K \in \kappa^n$

$$\int_{S^{n-1}} u f(K, u) dS(u) = 0.$$

Suppose $K, L \in \kappa^n$ and $\lambda, \mu \geq 0$(not both zero). From above it follows that the function $\lambda f(K, \cdot) + \mu f(L, \cdot)$ satisfies the hypothesis of Minkowski’s existence theorem (see [5]). The solution of the Minkowski problem for this function is denoted by

$$\lambda \cdot K + \mu \cdot L$$

that is

$$f(\lambda \cdot K + \mu \cdot L, \cdot) = \lambda f(K, \cdot) + \mu f(L, \cdot),$$

(8)
where the linear combination \(\lambda \cdot K + \mu \cdot L \) is called a Blaschke linear combination.

The relationship between Blaschke and Minkowski scalar multiplication is given by

\[
\lambda \cdot K = \lambda^{1/(n-1)} K. \tag{9}
\]

A new addition, harmonic Blaschke addition, be defined by Lutwak [8]. Suppose \(K, L \in \varphi^n \), and \(\lambda, \mu \geq 0 \)(not both zero). To define the harmonic Blaschke linear combination, \(\lambda K + \mu L \), first define \(\xi > 0 \) by

\[
\xi^{1/(n+1)} = \frac{1}{n} \int_{S^{n-1}} \left[\lambda V(K)^{-1} \rho(K, u)^{n+1} + \mu V(L)^{-1} \rho(L, u)^{n+1} \right]^{n/(n+1)} dS(u). \tag{10}
\]

The body \(\lambda K + \mu L \in \varphi^n \) is defined as the body whose radial function is given by

\[
\xi^{-1} \rho(\lambda K + \mu L, \cdot)^{n+1} = \lambda V(K)^{-1} \rho(K, \cdot)^{n+1} + \mu V(L)^{-1} \rho(L, \cdot)^{n+1}. \tag{11}
\]

It follows immediately that \(\xi = V(\lambda K + \mu L) \), and hence

\[
V(\lambda K + \mu L)^{-1} \rho(\lambda K + \mu L, \cdot)^{n+1} = \lambda V(K)^{-1} \rho(K, \cdot)^{n+1} + \mu V(L)^{-1} \rho(L, \cdot)^{n+1}.
\]

Lutwak [10] define a mapping:

\[
\Lambda : \varphi^n \rightarrow \kappa^n
\]

and point out that \(\Lambda \) transforms harmonic Blaschke linear combination into Blaschke linear combinations, i.e.

If \(K, L \in \varphi^n \) and \(\lambda, \mu \geq 0 \), then

\[
\Lambda(\lambda K + \mu L) = \lambda \cdot \Lambda K + \mu \cdot \Lambda L.
\]

Further, We obtain that

If \(K_j \in \varphi^n (j = 1, \ldots, m) \), and \(\lambda_j \geq 0(j = 1, \ldots, m) \), then

\[
\Lambda(\lambda_1 K_1 + \cdots + \lambda_m K_m) = \lambda_1 \cdot \Lambda K_1 + \cdots + \lambda_m \cdot \Lambda K_m. \tag{12}
\]

and

\[
\Lambda(\lambda K) = \lambda \Lambda K \tag{13}
\]
1.4 Projection bodies and Centroid bodies

The projection bodies, ΠK, of the body $K \in \mathcal{K}^n$ is defined as the convex figure whose support function is given, for $u \in S^{n-1}$, by

$$h(\Pi K, u) = v(K^n)$$

(14)

It is easy to see, that a projection body is always centered (symmetric about the origin), and if K has interior points then ΠK will have interior point as well. Here, we introduce the following property.

If $K, L \in \mathcal{K}^n$ and $\lambda, \mu \geq 0$, then

$$\Pi(\lambda \cdot K + \mu \cdot L) = \lambda \Pi K + \mu \Pi L.$$
(15)

Further, we may prove that

If $K_j \in \mathcal{K}^n (j = 1, \ldots, m)$ and $\lambda_j \geq 0 (j = 1, \ldots, m)$, then

$$\Pi(\lambda_1 \cdot K_1 + \cdots + \lambda_m \cdot K_m) = \lambda_1 \Pi K_1 + \cdots + \lambda_m \Pi K_m.$$
(16)

The centroid body, ΓK, of $K \in \mathcal{K}^n$, is the convex body whose support function, at $x \in \mathbb{R}^n$, is given by

$$h(\Gamma K, x) = \frac{1}{V(K)} \int_K |x \cdot y| \, dy.$$
(17)

Here, we give the following property:

If $K_j \in \mathcal{K}^n (j = 1, \ldots, m)$, and $\lambda_j \geq 0 (j = 1, \ldots, m)$, then

$$\Gamma(\lambda_1 \cdot K_1 + \cdots + \lambda_m \cdot K_m) = \lambda_1 \Gamma K_1 + \cdots + \lambda_m \Gamma K_m.$$
(18)

If $K \in \mathcal{K}^n$, then from (20) it follows that ΓK is centered.

Please see the next section for above interrelated notations, definitions and their background material.

1. Main results

Width-integrals were first considered by Blaschke [1,p.85] and later by Hadwiger [2,p.266]. In [3], Lutwak also introduced the width-integral of index i and proved some important results, one of them is the following Theorem:
Theorem A. If $K, L \in \mathcal{K}^n$ and $i < n - 1$, then
\[B_i(K + L)^{1/(n-i)} \leq B_i(K)^{1/(n-i)} + B_i(L)^{1/(n-i)} \] (18)
with equality if and only if K and L have similar width.

Since inequality (1) is a new result similar to the following Brunn-Minkowski inequality for the cross-sectional measures [2, p.249].

Theorem B. If $K, L \in \mathcal{K}^n$ and $i < n - 1$, then
\[W_i(K + L)^{1/(n-i)} \leq W_i(K)^{1/(n-i)} + W_i(L)^{1/(n-i)} \] (19)
with equality if and only if K and L are homothetic.

Hence, inequality (1) is called as the dual Brunn-Minkowski inequality for width-integrals of convex bodies.

The main purpose of this paper is to establish two analogs of inequality (1), them can be stated as:

Theorem C. If $K_1, \ldots, K_m \in \varphi^n$, $\lambda_1, \ldots, \lambda_m > 0$ and $i < n - 1$, then
\[B_i(\Gamma(\lambda_1 K_1 + \cdots + \lambda_m K_m))^{1/(n-i)} \leq \lambda_1 B_i(\Gamma K_1)^{1/(n-i)} + \cdots + \lambda_m B_i(\Gamma K_m)^{1/(n-i)}, \] (20)
with equality if and only if $\Gamma K_j (j = 1, 2, \ldots, m)$ have similar width.

Theorem D. If $K_1, \ldots, K_m \in \varphi^n_\subset$, $\lambda_1, \ldots, \lambda_m > 0$ and $i < n - 1$, then
\[B_i(\Pi(\Lambda(\lambda_1 K_1 + \cdots + \lambda_m K_m)))^{1/(n-i)} \leq \lambda_1 B_i(\Pi(\Lambda K_1))^{1/(n-i)} + \cdots + \lambda_m B_i(\Pi(\Lambda K_m))^{1/(n-i)}, \] (21)
with equality if and only if $\Pi(\Lambda K_j) (j = 1, 2, \ldots, m)$ have similar width.

2. A dual Brunn-Minkowski inequality about the width-integrals of centroid bodies for the harmonic Blaschke linear combination

The following dual Brunn-Minkowski inequality about the width-integrals of centroid bodies will be proved.

Theorem C. If $K_1, \ldots, K_m \in \varphi^n$, $\lambda_1, \ldots, \lambda_m > 0$ and $i < n - 1$, then
\[B_i(\Gamma(\lambda_1 K_1 + \cdots + \lambda_m K_m))^{1/(n-i)} \leq \lambda_1 B_i(\Gamma K_1)^{1/(n-i)} + \cdots + \lambda_m B_i(\Gamma K_m)^{1/(n-i)}, \] (22)
with equality if and only if $\Gamma K_j (j = 1, 2, \ldots, m)$ have similar width.

Proof. From (7), (10), (11), (21) and in view of Minkowski inequality for integral [11, p.147], we obtain that

$$B_i(\Gamma(\lambda_1 K_1 + \cdots + \lambda_m K_m))^{1/(n-i)} = \left(\frac{1}{n} \int_{S^{n-1}} b_{\Gamma(\lambda_1 K_1 + \cdots + \lambda_m K_m)}^{n-i} dS(u) \right)^{1/(n-i)}$$

$$= \left(\frac{1}{n} \int_{S^{n-1}} (\lambda_1 b_{\Gamma K_1} + \cdots + \lambda_m b_{\Gamma K_m})^{n-i} dS(u) \right)^{1/(n-i)}$$

$$\leq \lambda_1 \left(\frac{1}{n} \int_{S^{n-1}} b_{\Gamma K_1}^{n-i} dS(u) \right)^{1/(n-i)} + \cdots + \lambda_m \left(\frac{1}{n} \int_{S^{n-1}} b_{\Gamma K_m}^{n-i} dS(u) \right)^{1/(n-i)}$$

$$= \lambda_1 B_i(\Gamma K_1) + \cdots + \lambda_m B_i(\Gamma K_m),$$

with equality if and only if $\Gamma K_j (j = 1, \ldots, m)$ have similar width.

The proof is complete. □

Taking $m = 2$ to (23), we have

Corollary 1. If $K, L \in \varphi^n$, $\lambda, \mu > 0$ and $i < n - 1$, then

$$B_i(\Gamma(\lambda K + \mu L))^{1/(n-i)} \leq \lambda B_i(\Gamma K)^{1/(n-i)} + \mu B_i(\Gamma L)^{1/(n-i)},$$

(23)

with equality if and only if ΓK and ΓL have similar width.

Another important consequence is obtained when $\lambda = \mu = 1$.

Corollary 2. If $K, L \in \varphi^n$ and $i < n - 1$, then

$$B_i(\Gamma(\lambda K + \mu L))^{1/(n-i)} \leq B_i(\Gamma K)^{1/(n-i)} + B_i(\Gamma L)^{1/(n-i)},$$

(24)

with equality if and only if ΓK and ΓL have similar width.

3. A dual Brunn-Minkowski inequality about the width-integrals of projection bodies for the harmonic Blaschke linear combination

The following dual Brunn-Minkowski inequality about the width-integrals of projection bodies will be proved.

Theorem D. If $K_1, \ldots, K_m \in \varphi^n$, $\lambda_1, \ldots, \lambda_m > 0$ and $i < n - 1$, then

$$B_i(\Pi(\Lambda(\lambda_1 K_1 + \cdots + \lambda_m K_m)))^{1/(n-i)}$$
\[\leq \lambda_1 B_i(\Pi(\Lambda K_1))^{1/(n-i)} + \ldots + \lambda_m B_i(\Pi(\Lambda K_m))^{1/(n-i)}, \quad (25) \]

with equality if and only if \(\Pi(\Lambda K_j)(j = 1, 2, \ldots, m) \) have similar width.

Proof. From (7), (10), (11), (16), (19) and in view of Minkowski inequality for integral [11, p.147], we obtain that

\[
B_i(\Pi(\Lambda(\lambda_1 K_1 + \cdots + \lambda_m K_m)))^{\frac{1}{n-i}} = \left(\frac{1}{n} \int_{S_{n-1}} b^{n-i}_{\Pi(\Lambda(\lambda_1 K_1 + \cdots + \lambda_m K_m))} dS(u) \right)^{\frac{1}{n-i}} \\
= \left(\frac{1}{n} \int_{S_{n-1}} b^{n-i}_{\Pi(\lambda_1 \Lambda K_1 + \cdots + \lambda_m \Lambda K_m)} dS(u) \right)^{\frac{1}{n-i}} \\
= \left(\frac{1}{n} \int_{S_{n-1}} b^{n-i}_{\sum_{j=1}^{m} \lambda_j \Pi(\Lambda K_j)} dS(u) \right)^{\frac{1}{n-i}} \\
\leq \sum_{j=1}^{m} \lambda_j \left(\frac{1}{n} \int_{S_{n-1}} b^{n-i}_{\Pi(\Lambda K_j)} dS(u) \right)^{\frac{1}{n-i}} = \sum_{j=1}^{m} \lambda_j B_i(\Pi(\Lambda K_j))^{\frac{1}{n-i}},
\]

with equality if and only if \(\Pi(\Lambda K_j)(j = 1, \ldots, m) \) have similar width.

The proof is complete. \(\square \)

Taking \(m = 2 \) to (26), we have

Corollary 3. If \(K, L \in \varphi_n^0, \lambda, \mu > 0 \) and \(\lambda < n - 1 \), then

\[
B_i(\Pi(\Lambda(\lambda K_1 + \lambda_2 K_2)))^{1/(n-i)} \leq AB_i(\Pi(\Lambda K))^{1/(n-i)} + \mu B_i(\Pi(\Lambda L))^{1/(n-i)},
\]

with equality if and only if \(\Pi(\Lambda K) \) and \(\Pi(\Lambda L) \) have similar width.

Another remarkable case is obtained for \(\lambda = \mu = 1 \).

Corollary 4. If \(K, L \in \varphi_n^0 \) and \(\lambda < n - 1 \), then

\[
B_i(\Pi(\Lambda(\lambda K + \lambda_2 L)))^{1/(n-i)} \leq B_i(\Pi(\Lambda K))^{1/(n-i)} + B_i(\Pi(\Lambda L))^{1/(n-i)},
\]

with equality if and only if \(\Pi(\Lambda K) \) and \(\Pi(\Lambda L) \) have similar width.

Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant No. 10271071) and Academic Mainstay of Middle-age and Youth Foundation of Shandong Province.
ON ANALOGS OF THE DUAL BRUNN-MINKOWSKI INEQUALITY

References

DEPARTMENT OF MATHEMATICS, SHANGHAI UNIVERSITY,
SHANGHAI, 200436, P. R. CHINA, DEPARTMENT OF MATHEMATICS,
BINZHOU TEACHERS COLLEGE, SHANDONG, 256604, P. R. CHINA
E-mail address: chjzhao@163.com

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG,
POKFULAM ROAD, HONG KONG

STR. HARMANULUI 6, RO-2212 SACELE, JUD. BRASOV, ROMANIA