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REPRESENTATION THEOREMS
AND ALMOST UNIMODAL SEQUENCES

DORIN ANDRICA AND DANIEL VĂCĂREŢU

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. We define the almost unimodal sequences and we show that

under some conditions the polynomial P (Xk + n) is almost unimodal

(Theorem 1.7). A nontrivial example of almost unimodality shows that

the sequence A
(1)
k (n), k = −n(n + 1)

2
, . . . ,−1, 0, 1, . . . ,

n(n + 1)

2
is sym-

metric and almost unimodal (Theorem 3.1). This result is connected to

some representation properties of integers.

1. Almost unimodal sequences and polynomials

A finite sequence of real numbers {d0, d1, . . . , dm} is said to be unimodal if

there exists an index 0 ≤ m∗ ≤ m, called the mode of the sequence, such that dj

increases up to j = m∗ and decreases from then on, that is, d0 ≤ d1 ≤ · · · ≤ dm∗

and dm∗ ≥ dm∗+1 ≥ · · · ≥ dm. A polynomial is said to be unimodal if its sequence of

coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra.

The reader is referred to [BoMo] and [AlAmBoKaMoRo] for surveys of the diverse

techniques employed to prove that specific families of polynomials are unimodal.

We recall few basic results concerning the unimodality.

Theorem 1.1. If P is a polynomial with positive nondecreasing coefficients, then

P (X + 1) is unimodal.
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Theorem 1.2. Let bk > 0 be a nondecreasing sequence. Then the sequence

cj =
m∑

k=j

bk

(
k

j

)
, 0 ≤ j ≤ m (1.1)

is unimodal with mode m∗ =
⌊

m− 1
2

⌋
.

Theorem 1.3. Let 0 ≤ a0 ≤ a1 ≤ · · · ≤ am be a sequence of real numbers and n ∈ N,

and consider the polynomial

P = a0 + a1X + a2X
2 + · · ·+ amXm. (1.2)

Then the polynomial P (X + n) is unimodal with mode m∗ =
⌊

m

n + 1

⌋
.

We can reformulate Theorem 1.3 in terms of the coefficients of polynomial P .

Theorem 1.4. Let 0 ≤ a0 ≤ a1 ≤ · · · ≤ am be a sequence of real numbers and n ∈ N.

Then the sequence

qj = qj(m,n) =
m∑

k=j

ak

(
k

j

)
nk−j , 0 ≤ j ≤ m (1.3)

is unimodal with mode m∗ =
⌊

m

n + 1

⌋
.

In order to introduce the almost unimodality of a sequence we need the

following notion.

Definition 1.5. A finite sequence of real numbers {c0, c1, . . . , cn} is called almost

nondecreasing if it is nondecreasing excepting a subsequence which is zero.

It is clear that, if the sequence {c0, c1, . . . , cn} is nondecreasing, then it is

almost nondecreasing. The converse is not true, as we can see from the following

example. The sequence {0, 1, 0, 2, 0, 3, . . . , 0,m} is almost nondecreasing but it is not

nondecreasing.

Definition 1.6. A finite sequence of real numbers {d0, d1, . . . , dm} is called almost

unimodal if there exists an index 0 ≤ m∗ ≤ m, such that dj almost increases up to

j = m∗ and dj almost decreases from then on.
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As in the situation of unimodality, the index m∗ is called the mode of the se-

quence. Also, a polynomial is said to be almost unimodal, if its sequence of coefficients

is almost unimodal.

For instance, the polynomial

(Xk + 1)m =
(

m

0

)
+

(
m

1

)
Xk +

(
m

2

)
X2k + · · ·+

(
m

m

)
Xmk

is almost unimodal for k ≥ 2, but it is not unimodal.

The following result is useful in the study of almost unimodality.

Theorem 1.7. Let 0 ≤ a0 ≤ a1 ≤ · · · ≤ am be a sequence of real numbers, let n be a

positive integer and consider the polynomial

P = a0 + a1X + a2X
2 + · · ·+ amXm.

Then for any integer k ≥ 2, the polynomial P (Xk + n) is almost unimodal.

Proof. We note that if Q is a unimodal polynomial, then for any k ≥ 2 the polynomial

Q(Xk) is almost unimodal. Applying Theorem 1.3 we get that P (X +n) is unimodal

and now using the remark above it follows that P (Xk + n) is almost unimodal with

mode m∗ = k

⌊
m

n + 1

⌋
.

Remark 1.8. If n ≥ m, then m∗ = 0, hence the sequence of coefficients of P (Xk +n)

is almost nonincreasing. For example, the sequence of coefficients of (Xk + 3)3 is

27, 0, . . . , 0︸ ︷︷ ︸
k−1

, 27, 0, . . . , 0︸ ︷︷ ︸
k−1

, 9, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1.

2. Some representation results for integers

In 1960, P. Erdös and J. Surányi ([ErSu], Problem 5, pp.200) have proved

the following result: Any integer k can be written in infinitely many ways in the form

k = ±12 ± 22 ± · · · ± n2 (2.1)

for some positive integer n and for some choices of signs + and −.
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In 1979, J. Mitek [Mi] has extended the above result as follows: For any fixed

positive integer s ≥ 2 the result in (2.1) holds in the form

k = ±1s ± 2s ± · · · ± ns (2.2)

The following notion has been introduced in [Dr] by M.O. Drimbe:

Definition 2.1. A sequence (an)n≥1 of positive integers is an Erdös-Surányi se-

quence if any integer k can be represented in infinitely many ways in the form

k = ±a1 ± a2 ± · · · ± an (2.3)

for some positive integer n and for some choices of signs + and −.

The main result in [Dr] is contained in

Theorem 2.2. Any sequence (an)n≥1 of positive integers satisfying:

i) a1 = 1,

ii) an+1 ≤ 1 + a1 + · · ·+ an, for any positive integer n,

iii) (an)n≥1 contains infinitely many odd integers,

is an Erdös-Suranyi sequence.

As direct consequences of Theorem 2.1, in the paper [Dr], the following ex-

amples of Erdös-Suranyi sequences are pointed out:

1) The Fibonacci’s sequence (Fn)n≥0, where F0 = 1, F1 = 1 and Fn+1 =

Fn + Fn−1, for n ≥ 1;

2) The sequence of primes (pn)n≥1.

We can see that the sequence (ns)n≥1 does not satisfy condition ii) in Theorem

2.2 but it is an Erdös Suranyi sequences, according to the result of J. Mitek [Mi]

contained in (2.2). Following the paper [Ba] one can extend Theorem 2.2 in such way

to include sequences (ns)n≥1. The following notion has been introduced in [Kl] by T.

Klove:

Definition 2.3. A sequence (an)n≥1 of positive integers is complete if any suffi-

ciently great integer can be expressed as a sum of distinct terms of (an)n≥1.
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The above property is equivalent to the fact that for any sufficient great

integer k there exists a positive integer t = t(k) such that

k = u1a1 + u2a2 + · · ·+ utat, (2.4)

where ui ∈ {0, 1}, i = 1, 2, . . . , t.

The main result in [Ba] is contained in

Theorem 2.4. Any complete sequence (an)n≥1 of positive integers, containing infin-

itely many odd integers, is an Erdös-Surányi sequence.

Proof. Let q can be represented as in (2.4). Let Sn = a1+· · ·+an, n ≥ 1. The sequence

(Sn)n≥1 is increasing and it contains infinitely many odd integers but also infinitely

many even integers. Let k be a fixed positive integer. One can find infinitely many

integers Sp, having the same parity as k, such that Sp > k + 2q. Consider Sn a such

integer and let m =
1
2
(Sn − k). Because q < m, it follows that m can be represented

as in (2.4). Taking into account that m < Sn, we have m = u1a1 + · · ·+ unan, where

ui ∈ {0, 1}, i = 1, 2, . . . , n. Then, we have

k = Sn − 2m = (1− 2u1)a1 + · · ·+ (1− 2un)an.

From ui ∈ {0, 1} we get 1− 2ui ∈ {−1, 1}, i = 1, 2, . . . , n.

Remark 2.5. The result of J. Mitek [Mi] follows from Theorem 2.4 and from the

property that the sequence (ns)n≥1 is complete, for any positive integer s. The

completeness of (ns)n≥1 is a result of P. Erdös (see [Si], pp.395).

3. Integral formulae and almost unimodality

Consider an Erdös-Surányi sequence (am)m≥1. If we fix n, then there are 2n

integers of the form ±a1 ± · · · ± an. In this section we explore the number of ways

to express an integer k in the form (2.3). Denote Ak(n) to be this value. Using the

method in [AnTo] let us consider the function

fn(z) =
(

za1 +
1

za1

) (
za2 +

1
za2

)
. . .

(
zan +

1
zan

)
(3.1)
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It is clear that this is the generating function for the sequence Ak(n), i.e. we

may write

fn(z) =
Sn∑

j=−Sn

Aj(n)zj , (3.2)

where Sn = a1 + · · ·+ an. It is interesting to note the symmetry of the coefficients in

(3.2), i.e. Aj(n) = A−j(n). If we write z = cos t + i sin t, then by using DeMoivre’s

formula we may rewrite (3.1) as

fn(z) = 2n cos a1t · cos a2t . . . cos ant (3.3)

By noting that Ak(n) is the constant term in the expansion z−kfn(z), we

obtain

z−kfn(z) = 2n(cos kt− i sin kt) cos a1t . . . cos ant

= Ak(n) +
∑
j 6=k

Aj(n)(cos(j − k)t + i sin(j − k)t) (3.4)

Finally, making use of the fact that
∫ 2π

0

cos mtdt =
∫ 2π

0

sinmtdt = 0, we

integrate (3.4) on the interval [0, 2π] to find an elegant integral formula for Ak(n):

Ak(n) =
2n

2π

∫ 2π

0

cos a1t . . . cos ant cos ktdt (3.5)

After integrating, we find that the imaginary part of Ak(n) is 0, which implies

the relation ∫ 2π

0

cos a1t . . . cos ant sin ktdt = 0 (3.6)

for each k between −Sn and Sn.

Applying formula (3.5) for Erdös-Surányi sequence (ms)m≥1, we get

A
(s)
k (n) =

2n

2π

∫ 2π

0

cos 1st cos 2st . . . cos nst cos ktdt,

where A
(s)
k (n) denote the integer Ak(n) for this sequence.

The following result gives a nontrivial example of almost unimodality.
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Theorem 3.1. The sequence A
(1)
k (n), k = 0, 1, . . . ,

n(n− 1)
2

, is almost nonincreasing

and consequently, the sequence A
(1)
j (n), j = −n(n + 1)

2
, . . . ,−1, 0, 1, . . . ,

n(n + 1)
2

is

symmetric and almost unimodal.

Proof. First of all we show that A
(1)
k (n) is the number of representations of

1
2

(
n(n + 1)

2
− k

)
as

n∑
i=1

εii, where εi ∈ {0, 1}. Indeed, we note that if ε ∈ {0, 1},

then 1− 2ε ∈ {−1, 1} and we have
n∑

i=1

(1− 2εi)i = k if and only if

n(n + 1)
2

− 2
n∑

i=1

εii = k,

hence
n∑

i=1

εii =
1
2

(
n(n + 1)

2
− k

)
. (3.7)

Denote B
(1)
k (n) the number of representations of

1
2

(
n(n + 1)

2
− k

)
in the

form (3.7). It is clear that B
(1)
k (n) = 0 if and only if k and

n(n + 1)
2

have different

parities. Also, we have
n(n + 1)

4
≤ j ≤ n(n + 1)

2
for any integer j of the form

1
2

(
n(n + 1)

2
− k

)
, k = 0, 1, . . . ,

n(n + 1)
2

. Assume that we can write j as ε1 · 1 + ε2 ·

2+ · · ·+εn ·n and ε1 = 1. Then, we have j−1 = ε2 ·2+ · · ·+εn ·n, where ε2, . . . , εn ∈

{0, 1}. If we have in this sum three consecutive terms of the form i − 1, 0, i + 1,

we can move 1 at the first position and obtain three consecutive terms of the form

i − 1, i, 0. After another such step for other three consecutive terms s − 1, 0, s + 1,

taking into account that a such map is injective it follows that B
(1)
j (n) ≤ B

(1)
j−2(n),

hence A
(1)
j (n) ≤ A

(1)
j−2(n) if both A

(1)
j−2(n) and A

(1)
j (n) are not zero.

Remark 3.2. The conclusion of Theorem 3.1 is not generally true for A
(s)
k (n), where

s ≥ 2 (see the values of A
(2)
k (6) in the table below).
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4. Numerical results

Numerical values for A
(1)
k for n up to 9

n = 1

k Ak

0 0

1 1

n = 2

k Ak

0 0

1 1

2 0

3 1

n = 3

k Ak

0 2

1 0

2 1

3 0

4 1

5 0

6 1

n = 4

k Ak

0 2

1 0

2 2

3 0

4 2

5 0

6 1

7 0

8 1

9 0

10 1

n = 5

k Ak

0 0

1 3

2 0

3 3

4 0

5 3

6 0

7 2

8 0

9 2

10 0

11 1

12 0

13 1

14 0

15 1

n = 6

k Ak

0 0

1 5

2 0

3 5

4 0

5 4

6 0

7 4

8 0

9 4

10 0

11 3

12 0

13 2

14 0

15 2

16 0

17 1

18 0

19 1

20 0

21 1

n = 7

k Ak

0 8

1 0

2 8

3 0

4 8

5 0

6 7

7 0

8 7

9 0

10 6

11 0

12 5

13 0

14 5

15 0

16 4

17 0

18 3

19 0

20 2

21 0

22 2

23 0

24 1

25 0

26 1

27 0

28 1

n = 8

k Ak

0 14

1 0

2 13

3 0

4 13

5 0

6 13

7 0

8 12

9 0

10 11

11 0

12 10

13 0

14 9

15 0

16 8

17 0

18 7

19 0

20 6

21 0

22 5

23 0

24 4

25 0

26 3

27 0

28 2

29 0

30 2

31 0

32 1

33 0

34 1

35 0

36 1

n = 9

k Ak

0 0

1 23

2 0

3 23

4 0

5 22

6 0

7 21

8 0

9 21

10 0

11 19

12 0

13 18

14 0

15 17

16 0

17 15

18 0

19 13

20 0

21 12

22 0

23 10

24 0

25 9

26 0

27 8

28 0

29 6

30 0

31 5

32 0

33 4

34 0

35 3

36 0

37 2

38 0

39 2

40 0

41 1

42 0

43 1

44 0

45 1

30



REPRESENTATION THEOREMS AND ALMOST UNIMODAL SEQUENCES

Numerical values for A
(2)
k for n up to 6

n = 1

k Ak

0 0

1 1

n = 2

k Ak

1 0

2 0

3 1

4 0

5 1

n = 3

k Ak

0 0

1 0

2 0

3 0

4 1

5 0

6 1

7 0

8 0

9 0

10 0

11 0

12 1

13 0

14 1

n = 4

k Ak

0 0

1 0

2 1

3 0

4 1

5 0

6 0

7 0

8 0

9 0

10 1

11 0

12 1

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 1

21 0

22 1

23 0

24 0

25 0

26 0

27 0

28 1

29 0

30 1

n = 5

k Ak

0 0

1 0

2 0

3 2

4 0

5 2

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 1

14 0

15 1

16 0

17 0

18 0

19 0

20 0

21 1

22 0

23 1

24 0

25 0

26 0

27 1

n = 5

k Ak

28 0

29 1

30 0

31 0

32 0

33 0

34 0

35 1

36 0

37 1

38 0

39 0

40 0

41 0

42 0

43 0

44 0

45 1

46 0

47 1

48 0

49 0

50 0

51 0

52 0

53 1

54 0

55 1

n = 6

k Ak

0 0

1 2

2 0

3 0

4 0

5 0

6 0

7 1

8 0

9 2

10 0

11 1

12 0

13 1

14 0

15 1

16 0

17 1

18 0

19 1

20 0

21 1

22 0

23 1

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 2

32 0

33 2

34 0

35 0

36 0

37 0

38 0

39 2

40 0

41 2

42 0

43 0

44 0

n = 6

k Ak

45 0

46 0

47 0

48 0

49 1

50 0

51 1

52 0

53 0

54 0

55 0

56 0

57 1

58 0

59 1

60 0

61 0

62 0

63 1

64 0

65 1

66 0

67 0

68 0

69 0

70 0

71 1

72 0

73 1

74 0

75 0

76 0

77 0

78 0

79 0

80 0

81 1

82 0

83 1

84 0

85 0

86 0

87 0

88 0

89 1

90 0

91 1
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Numerical values for A
(1)
0 (n) and A

(2)
0 (n)

(1) (2)
n A0

1 0

2 0

3 2

4 2

5 0

6 0

7 8

8 14

9 0

10 0

11 70

12 124

13 0

14 0

15 722

16 1314

17 0

18 0

19 8220

20 15272

21 0

22 0

23 99820

24 187692

25 0

26 0

27 1265204

28 2399784

29 0

30 0

31 16547220

32 31592878

33 0

34 0

35 221653776

36 425363952

37 0

38 0

39 3025553180

40 5830034720

41 0

42 0

43 41931984034

44 81072032060

45 0

46 0

47 588431482334

48 1140994231458

49 0

50 0

n A0

51 8346638665718

52 16221323177468

53 0

54 0

55 119447839104366

56 232615054822964

57 0

58 0

59 1722663727780132

60 3360682669655028

61 0

62 0

63 25011714460877474

64 48870013251334676

65 0

66 0

67 365301750223042066

68 714733339229024336

69 0

70 0

71 5363288299585278800

72 10506331021814142340

73 0

74 0

75 79110709437891746598

76 155141342711178904962

77 0

78 0

79 1171806326862876802144

80 2300241216389780443900

81 0

82 0

83 17422684839627191647442

84 34230838910489146400266

85 0

86 0

87 259932234752908992679732

88 511107966282059114105424

89 0

90 0

91 3890080539905554395312172

92 7654746470466776636508150

93 0

94 0

95 58384150201994432824279356

96 114963593898159699687805154

97 0

98 0

99 878552973096352358805720000

100 1731024005948725016633786324

n A0

1 0

2 0

3 0

4 0

5 0

6 0

7 2

8 2

9 0

10 0

11 2

12 10

13 0

14 0

15 86

16 114

17 0

18 0

19 478

20 860

21 0

22 0

23 5808

24 10838

25 0

26 0

27 55626

28 100426

29 0

30 0

31 696164

32 1298600

33 0

34 0

35 7826992

36 14574366

37 0

38 0

39 100061106

40 187392994

41 0

42 0

43 1223587084

44 2322159814

45 0

46 0

47 16019866270

48 30353305134

49 0

50 0
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Str. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania

E-mail address: dorinandrica@yahoo.com

33


