EXTREMAL PROBLEMS OF TURÁN TYPE

IOAN POPA

Abstract. We give estimations of certain weighted L^2-norms of the k-th derivative of polynomials which have a curved majorant. They are obtained as applications of special quadrature formulae.

1. Introduction

The following problem was raised by P. Turán. Let $\varphi(x) \geq 0$ for $-1 \leq x \leq 1$ and consider the class P_n,φ of all polynomials of degree n such that $|p_n(x)| \leq \varphi(x)$ for $-1 \leq x \leq 1$.

How large can $\max_{[-1,1]} |p_n^{(k)}(x)|$ be if p_n is arbitrary in P_n,φ?

The aim of this paper is to consider the solution in the weighted L^2-norm for the majorant

$$\varphi(x) = \frac{\alpha - \beta x}{\sqrt{1-x^2}}, 0 \leq \beta \leq \alpha.$$

Let us denote by

$$x_i = \cos \frac{(2i-1)\pi}{2n}, i = 1, 2, ..., n,$$

the zeros of $T_n(x) = \cos n\theta, x = \cos \theta,$ \hspace{1cm} (1.1)

the Chebyshev polynomial of the first kind,

$$y_i^{(k)}$$ the zeros of $U_n^{(k)}(x), U_{n-1}(x) = \sin n\theta/\sin \theta, x = \cos \theta,$ \hspace{1cm} (1.2)

the Chebyshev polynomial of the second kind and

$$G_{n-1}(x) = \alpha U_{n-1}(x) - \beta U_{n-2}(x), 0 \leq \beta \leq \alpha.$$ \hspace{1cm} (1.3)
Let $\Pi_{\alpha,\beta}$ be the class of all polynomials p_{n-1}, of degree $\leq n - 1$ such that

$$|p_{n-1}(x_i)| \leq \frac{\alpha - \beta x_i}{\sqrt{1 - x_i^2}}, \quad i = 1, 2, \ldots, n,$$

(1.4)

where the x_i's are given by (1.1) and $0 \leq \beta \leq \alpha$.

2. Results

Theorem 2.1. If $p_{n-1} \in \Pi_{\alpha,\beta}$ then we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} \left[p'_{n-1}(x)\right]^2 \, dx$$

(2.1)

$$\leq \frac{2\pi n (n - 1) \left[(\alpha^2 + \beta^2) (n - 2) \left(n^2 - 2n + 2\right) + 5\beta^2 (n^2 - n + 1)\right]}{15}$$

with equality for $p_{n-1} = G_{n-1}$.

Two cases are of special interest:

I. Case $\alpha = \beta = 1$, $\varphi(x) = \sqrt{\frac{1 - x}{1 + x}}$.

$$G_{n-1}(x) = V_{n-1}(x) = \frac{\cos\left((n - \frac{1}{2}) \arccos x\right)}{\cos\left(\frac{1}{2} \arccos x\right)}.$$

Note that $P_{n-1,\varphi} \subset \Pi_{1,1}$, $V_{n-1} \notin P_{n-1,\varphi}$, $V_{n-1} \in \Pi_{1,1}$.

Corollary 2.2. If $p_{n-1} \in \Pi_{1,1}$ then we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} \left[p'_{n-1}(x)\right]^2 \, dx \leq \frac{2\pi n (n - 1) \left(2n - 1\right) \left(n^2 - n + 3\right)}{15}$$

(2.2)

with equality for $p_{n-1} = V_{n-1}$.

II. Case $\alpha = 1$, $\beta = 0$, $\varphi(x) = \frac{1}{\sqrt{1 - x^2}}$, $G_{n-1} = U_{n-1}$.

Note that $P_{n-1,\varphi} \subset \Pi_{1,0}$, $U_{n-1} \in P_{n-1,\varphi}$, $U_{n-1} \in \Pi_{1,0}$.

Corollary 2.3. If $p_{n-1} \in \Pi_{1,0}$ then we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} \left[p'_{n-1}(x)\right]^2 \, dx \leq \frac{2\pi n \left(n^2 - 1\right)}{15}$$

(2.3)

with equality for $p_{n-1} = U_{n-1}$.

In this second case we have a more general result:
EXTREMAL PROBLEMS OF TURÁN TYPE

Theorem 2.4. If \(p_{n-1} \in \Pi_{1,0} \) and \(0 \leq b \leq a \) then we have

\[
\frac{1}{1-a-bx} \frac{1}{1-x^2} \left[p_{n-1}^{(k+1)}(x) \right]^2 dx = \frac{\pi a (n+k+1)!}{(n-k-2)!} \left[\frac{2 \left(n^2 - (k+2)^2 \right) (a^2 + 3b^2)}{(2k+1) (2k+3) (2k+5)} + \frac{2 (k+1) a^2 + 3b^2}{(2k+1) (2k+3)} \right]
\]

for \(k = 0, \ldots, n-2 \), with equality for \(p_{n-1} = U_{n-1} \).

Setting \(a = 1, b = 1 \) one obtains the following

Corollary 2.5. If \(p_{n-1} \in \Pi_{1,1} \) then we have

\[
\frac{1}{1-x} \frac{1}{1-x^2} \left[p_{n-1}^{(k+1)}(x) \right]^2 dx \leq \frac{\pi (n+k+1)!}{(n-k-2)!} \times \frac{8 \left(n^2 - (k+2)^2 \right) + (2k+5)^2}{(2k+1) (2k+3) (2k+5)}
\]

for \(k = 0, \ldots, n-2 \), with equality for \(p_{n-1} = U_{n-1} \).

Setting \(a = 1, b = 0 \) one obtains the following

Corollary 2.6. If \(p_{n-1} \in \Pi_{1,0} \) then we have

\[
\frac{1}{1-x} \frac{1}{1-x^2} \left[p_{n-1}^{(k+1)}(x) \right]^2 dx \leq \frac{2\pi (n+k+1)!}{(n-k-2)!} \times \frac{n^2 + k^2 + 3k + 1}{(2k+1) (2k+3) (2k+5)}
\]

for \(k = 0, \ldots, n-2 \), with equality for \(p_{n-1} = U_{n-1} \).

3. Lemmas

Here we state some lemmas which help us in proving our theorems.

Lemma 3.1. Let \(p_{n-1} \) be such that \(|p_{n-1}(x_i)| \leq \frac{\alpha - \beta x_i}{\sqrt{1-x_i^2}}, i = 1, 2, \ldots, n \), where the \(x_i \)'s are given by (1.1). Then we have

\[
|p_{n-1}'(y_j)| \leq |G_{n-1}'(y_j)|, \quad k = 0, 1, \ldots, n-1, \text{ and}
\]

\[
|p_{n-1}'(1)| \leq |G_{n-1}'(1)|, \quad |p_{n-1}'(-1)| \leq |G_{n-1}'(-1)|.
\]

113
Lemma 3.3. \(k \) then for

By the Lagrange interpolation formula based on the zeros of \(T_n \) and using \(T_n''(x_i) = \frac{(-1)^{i+1}n!}{(1-x_i^2)^{i+2}} \), we can represent any polynomial \(p_{n-1} \) by \(p_{n-1}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{T_n(x)}{x-x_i} (-1)^{i+1} (1-x_i^2)^{1/2} p_{n-1}(x_i). \)

From \(G_{n-1}(x) = (-1)^{i+1} \frac{\alpha-\beta x_i}{\sqrt{1-x_i^2}} \), we have \(G_{n-1}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{T_n(x)}{x-x_i} (\alpha-\beta x_i) \).

Proof. Let \(n \) and \(k \) be such that \(|p_{n-1}(x_i)| \leq \frac{1}{\sqrt{1-x_i^2}}, i = 1, 2, ..., n, \) where the \(x_i \)'s are given by (1.1). Then we have

\[
\left| p_{n-1}^{(k+1)}(y_i^{(k)}) \right| \leq \left| U_{n-1}^{(k+1)}(y_i^{(k)}) \right|, \text{ whenever } U_{n-1}^{(k)}(y_i^{(k)}) = 0, \quad (3.3)
\]

\[
k = 0, 1, ..., n-1, \text{ and }
\[
\left| p_{n-1}^{(k+1)}(1) \right| \leq \left| U_{n-1}^{(k+1)}(1) \right|, \left| p_{n-1}^{(k+1)}(-1) \right| \leq \left| U_{n-1}^{(k+1)}(-1) \right|. \quad (3.4)
\]

Proof. For \(\alpha = 1, \beta = 0, \) \(G_{n-1} = U_{n-1} \) and (3.1) give \(|p_{n-1}'(y_j)| \leq |U_{n-1}'(y_j)| \) and (3.2) \(|p_{n-1}'(1)| \leq |U_{n-1}'(1)|, \left| p_{n-1}'(-1) \right| \leq |U_{n-1}'(-1)| . \)

Now the proof ends by applying Duffin-Schaeffer Lemma. \(\square \)

We need the following quadrature formulae:

Lemma 3.4. For any given \(n \) and \(k, 0 \leq k \leq n-1, \) let \(y_i^{(k)}, i = 1, ..., n - k - 1, \)
be the zeros of $U_{n-1}^{(k)}$.

Then the quadrature formulae

$$\int_{-1}^{1} (1-x^2)^{k-1/2} f(x) \, dx = A_0 [f(-1) + f(1)] + \sum_{i=1}^{n-k-1} s_i f\left(y_i^{(k)}\right),$$

$$A_0 = \frac{2^{2k-1} (2k + 1) \Gamma (k + 1/2)^2 (n - k - 1)!}{(n + k)!}, s_i > 0$$

and

$$\int_{-1}^{1} (1-x^2)^{k-1/2} f(x) \, dx = B_0 [f(-1) + f(1)] + C_0 [f'(-1) - f'(1)] + \sum_{i=1}^{n-k-2} v_i f\left(y_i^{(k+1)}\right)$$

$$C_0 = \frac{2^{2k} (2k + 3) \Gamma (k + 3/2)^2 (n - k - 2)!}{(n + k + 1)!},$$

$$B_0 = C_0 \frac{2 \left(n^2 - (k + 2)^2\right)(2k + 3) + 4 (k + 1)(2k + 5)}{(2k + 1)(2k + 5)}$$

have algebraic degree of precision $2n - 2k - 1$.

For $r(x) = (a - bx)^3$, $0 \leq b \leq a$ the formulae

$$\int_{-1}^{1} r(x) (1-x^2)^{k-1/2} f(x) \, dx = A_1 f(-1) + B_1 f(1)$$

$$A_1 = \frac{2^{2k-1} (2k + 1) \Gamma (k + 1/2)^2 (n - k - 1)! (a+b)^3}{(n + k)!},$$

$$B_1 = \frac{2^{2k-1} (2k + 1) \Gamma (k + 1/2)^2 (n - k - 1)! (a-b)^3}{(n + k)!}$$
and

\[
\int_{-1}^{1} r(x) (1 - x^2)^{k-1/2} f(x) \, dx = C_1 f(-1) + D_1 f(1) + C_2 f'(-1) - D_2 f'(1) + \sum_{i=1}^{n-k-2} v_i r(y_i^{(k+1)}) f(y_i^{(k+1)}),
\]

\[
C_1 = B_0 (a + b)^3 - 3C_0 b (a + b)^2, \quad D_1 = B_0 (a - b)^3 + 3C_0 b (a - b)^2,
\]

\[
C_2 = C_0 (a + b)^3, \quad D_2 = C_0 (a - b)^3,
\]

have algebraic degree of precision \(2n - 2k - 4\).

Proof. The first quadrature formula (3.5) is the Bouzitat quadrature formula of the second kind [3, formula (4.8.1)], for the zeros of \(U_{n-1}^{(k)} = cP_{n-k-1}^{(k+\frac{1}{2}, k+\frac{1}{2})}\).

Setting \(\alpha = \beta = k - 1/2, m = n - k - 1\) in [3, formula (4.8.5)] we find \(A_0\) and \(s_i > 0\) (cf. [3, formula (4.8.4)]).

If in the above quadrature formula (3.6), we put

\[
f(x) = (1 - x)^n (1 + x)^{2k+1} P_{n-k-2}^{(k+\frac{1}{2}, k+\frac{1}{2})}(x),
\]

\[
U_{n-1}^{(k+1)}(x) = cP_{n-k-2}^{(k+\frac{1}{2}, k+\frac{1}{2})}(x),
\]

we obtain \(C_0\), and for

\[
f(x) = (1 + x)^n P_{n-k-2}^{(k+\frac{1}{2}, k+\frac{1}{2})}(x)
\]

we find \(B_0\).

If in formula (3.5) we replace \(f(x)\) with \(r(x) f(x)\) we get (3.7) and if in formula (3.6) we replace \(f(x)\) with \(r(x) f(x)\) we get (3.8).

4. Proof of the Theorems

Proof of Theorem 2.1

Setting \(k = 0\) in (3.5) we find the formula

\[
\int_{-1}^{1} \frac{f(x)}{\sqrt{1 - x^2}} \, dx = \frac{\pi}{2n} [f(-1) + f(1)] + \frac{\pi}{n} \sum_{i=1}^{n-1} f(y_i)
\]
According to this quadrature formula and using (3.1) and (3.2) we have
\[
\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} [p'_{n-1} (x)]^2 \, dx = \frac{\pi}{n} \left(\frac{n}{2} \right)^2 + \frac{\pi}{n} \left(\frac{n}{2} \right) \left(\frac{n}{2} + 1 \right) + \sum_{i=1}^{n-1} \left(p_{n-1} (y_i) \right)^2 \\
\leq \frac{\pi}{2n} \left(G'_{n-1} (1) \right)^2 + \frac{\pi}{2n} \sum_{i=1}^{n-1} \left(G'_{n-1} (y_i) \right)^2 \\
= \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[G'_{n-1} (x) \right]^2 \, dx.
\]

Using the following formula (k = 0 in (3.6))
\[
\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) \, dx = \frac{\pi}{n} \left(\frac{n}{2} \right)^2 \left[f(-1) + f(1) \right] + \frac{\pi}{4n} \sum_{i=1}^{n-1} \left(f'(y_i) \right) + \sum_{i=1}^{n-2} v_i f (y_i)
\]
we find
\[
\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[U'_{n-1} (x) \right]^2 \, dx = \frac{2\pi n (n^2-1)}{15},
\]
and
\[
\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[G'_{n-1} (x) \right]^2 \, dx = \frac{2\pi n (n+1)(n^2+1)-5\beta^2(n^2-n+1)}{15}.
\]

Proof of Theorem 2.4

According to the quadrature formula (3.7), positiveness of s_i’s, and using (3.3) and (3.4) we have
\[
\int_{-1}^{1} \left(a - bx \right)^3 (1-x^2)^{k-1/2} \left[p_{n-1}^{(k+1)} (x) \right]^2 \, dx
\]
\[
= A_1 \left[p_{n-1}^{(k+1)} (-1) \right]^2 + B_1 \left[p_{n-1}^{(k+1)} (1) \right]^2 + \sum_{i=1}^{n-k-1} s_i \left[y_i^{(k)} \right]^2 + \sum_{i=1}^{n} s_i r \left[y_i^{(k)} \right]^2
\]
\[
\leq A_1 \left[U_{n-1}^{(k+1)} (-1) \right]^2 + B_1 \left[U_{n-1}^{(k+1)} (1) \right]^2 + \sum_{i=1}^{n-k-1} s_i \left[y_i^{(k)} \right]^2 + \sum_{i=1}^{n} s_i r \left[y_i^{(k)} \right]^2
\]
\[
= \int_{-1}^{1} \left(a - bx \right)^3 (1-x^2)^{k-1/2} \left[U_{n-1}^{(k+1)} (x) \right]^2 \, dx
\]

In order to complete the proof we apply formula (3.8) to \(f = \left[U_{n-1}^{(k+1)} (x) \right]^2 \).

Having in mind \(U_{n-1}^{(k+1)} \left(y_i^{(k+1)} \right) = 0 \) and the following relations deduced from [1]
\[
U_{n-1}^{(k+1)} (1) = \frac{n(n^2-1)^2}{1,5,8,13, \ldots, (2k+1)^2}, \quad U_{n-1}^{(k+2)} (1) = \frac{n^2-2nk+2}{2k-1} U_{n-1}^{(k+1)} (1),
\]
\[
U_{n-1}^{(k+1)} (-1) = -U_{n-1}^{(k+1)} (1) U_{n-1}^{(k+2)} (-1) = -U_{n-1}^{(k+1)} (1) U_{n-1}^{(k+2)} (1),
\]
we find
\[
\int_{-1}^{1} \left(a - bx \right)^3 (1-x^2)^{k-1/2} \left[p_{n-1}^{(k+1)} (x) \right]^2 \, dx = C_1 \left[U_{n-1}^{(k+1)} (-1) \right]^2 + D_1 \left[U_{n-1}^{(k+1)} (1) \right]^2
\]
\[
+ 2C_2 U_{n-1}^{(k+1)} (-1) U_{n-1}^{(k+2)} (-1) - 2D_2 U_{n-1}^{(k+1)} (1) U_{n-1}^{(k+2)} (1)
\]
\[
= \frac{\pi n (n+k+1)!}{(n-k-2)!} \left[2 \left(n^2 - (k+2)^2 \right)^2 & (a^2 + 3b^2) \right] + \frac{2(k+1)^2 \pi^2 + 3b^2}{(2k+1)(2k+3)(2k+5)}.\]

References

Str. Ciortea 9/43, 3400 Cluj-Napoca

E-mail address: ioanpopa.cluj@personal.ro