PROJECTORS AND HALL \(\pi\)-SUBGROUPS
IN FINITE \(\pi\)-SOLVABLE GROUPS

RODICA COVACI

Abstract. Let \(\pi\) be a set of primes and \(X\) be a \(\pi\)-closed Schunck class with the \(P\) property. The paper gives conditions with respect to which an \(X\)-projector \(H\) of a finite \(\pi\)-solvable group \(G\) is a Hall \(\pi\)-subgroup of \(G\), and consequently we have that \(N_G(N_G(H)) = N_G(H)\).

1. Preliminaries

All groups considered in the paper are finite. Let \(\pi\) be a set of primes, \(\pi'\) the complement to \(\pi\) in the set of all primes and \(O_{\pi'}(G)\) the largest normal \(\pi'\)-subgroup of a group \(G\).

We first give some useful definitions.

Definition 1.1. ([8], [11]) a) A class \(X\) of groups is a homomorph if \(X\) is epimorphically closed, i.e. if \(G \in X\) and \(N\) is a normal subgroup of \(G\), then \(G/N \in X\).

b) A group \(G\) is primitive if \(G\) has a stabilizer, i.e. a maximal subgroup \(H\) with \(\text{core}_GH = \{1\}\), where \(\text{core}_GH = \cap\{H^g/g \in G\}\).

c) A homomorph \(X\) is a Schunck class if \(X\) is primitively closed, i.e. if any group \(G\), all of whose primitive factor groups are in \(X\), is itself in \(X\).

Definition 1.2. a) A positive integer \(n\) is said to be a \(\pi\)-number if for any prime divisor \(p\) of \(n\) we have \(p \in \pi\).

b) A finite group \(G\) is a \(\pi\)-group if \(|G|\) is a \(\pi\)-number.
Definition 1.3. ([6]) A group G is π-solvable if every chief factor of G is either a solvable π-group or a π'-group. For π the set of all primes, we obtain the notion of solvable group.

Definition 1.4. A class X of groups is said to be π-closed if

$$G/O_{\pi'}(G) \in X \Rightarrow G \in X.$$

A π-closed homomorph, respectively a π-closed Schunck class is called π-homomorph, respectively π-Schunck class.

Definition 1.5. ([7], [8]) Let X be a class of groups, G a group and H a subgroup of G.

a) H is an X-maximal subgroup of G if: (i) $H \in X$; (ii) $H \leq H^* \leq G$, $H^* \in X$ imply $H = H^*$.

b) H is an X-projector of G if, for any normal subgroup N of G, HN/N is X-maximal in G/N.

c) H is an X-covering subgroup of G if: (i) $H \in X$; (ii) $H \leq K \leq G$, $K_0 \leq K$, $K/K_0 \in X$ imply $K = HK_0$.

Definition 1.6. ([3], [4]) Let X be a class of groups. We say that X has the P property if, for any π-solvable group G and for any minimal normal subgroup M of G such that M is a π'-group, we have $G/M \in X$.

The following results are used in this paper.

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a group is abelian.

Theorem 1.8. ([1]) Suppose that G has a $\neq \{1\}$ normal solvable subgroup and let S be a maximal subgroup of G with $\text{core}_G S = \{1\}$. Then, the existence of a $\neq \{1\}$ normal solvable subgroup of S implies the existence of a normal subgroup $N \neq \{1\}$ of S with $(|N|, |G : S|) = 1$.

Theorem 1.9. ([2]) a) Let X be a class of groups, G a group and H a subgroup of G. If H is an X-covering subgroup of G or H is an X-projector of G, then H is X-maximal in G.

18
b) If X is a homomorph and G is a group, then a subgroup H of G is an X-covering subgroup of G if and only if H is an X-projector in any subgroup K of G with $H \subseteq K$.

Theorem 1.10. Let X be a homomorph.

a) ([7]) If H is an X-covering subgroup of a group G and N is a normal subgroup of G, then HN/N is an X-covering subgroup of G/N.

b) ([8]) If H is an X-projector of a group G and N is a normal subgroup of G, then HN/N is an X-projector of G/N.

c) ([7]) If H is an X-covering subgroup of G and $H \leq K \leq G$, then H is an X-covering subgroup of K.

Theorem 1.11. ([5]) Let X be a π-homomorph. The following conditions are equivalent:

(1) X is a Schunck class;

(2) any π-solvable group has X-covering subgroups;

(3) any π-solvable group has X-projectors.

2. Hall π-subgroups in finite π-solvable groups

Of special interest in this paper will be the Hall π-subgroups and some of their properties. The Hall subgroups were given in [9]. Ph. Hall studied them in finite solvable groups. In [6], S. A. Ćunihić extended this study to finite π-solvable groups.

Definition 2.1. Let G be a group and H a subgroup of G.

a) H is a π-subgroup of G if H is a π-group.

b) H is an Hall π-subgroup of G if: (i) H is a π-subgroup of G;

(ii) $|H|, |G : H| = 1$, i.e. $|G : H|$ is a π'-number.

We shall use some properties of the Hall π-subgroups given in [10]:

Theorem 2.2. ([10]) (Ph. Hall, S. A. Ćunihić) If G is a π-solvable group, then:

a) G has Hall π-subgroups and G has Hall π'-subgroups;
b) any two Hall π-subgroups of G are conjugate in G; any two Hall π'-subgroups of G are conjugate in G too.

Theorem 2.3. ([10]) Let G be a group and H an Hall π-subgroup of G.

a) If $H \leq K \leq G$, then H is an Hall π-subgroup of K.

b) If N is a normal subgroup of G, then HN/N is an Hall π-subgroup of G/N.

We complete these properties with two new ones, which will be used in the formation theory considerations in the main section of this paper.

Theorem 2.4. Let G be a π-solvable group, H a subgroup of G and N a normal subgroup of G. If HN/N is an Hall π-subgroup of G/N and H is an Hall π-subgroup of HN, then H is an Hall π-subgroup of G.

Proof.

(i) H is a π-subgroup of G, since H is a π-subgroup of HN.

(ii) We shall prove that $|G : H|$ is a π'-number. Indeed, we know that $|G : HN| = |G/N : HN/N|$ is a π'-number. Further, $|HN : H|$ is a π'-number too. Then $|G : H| = |G : HN||HN : H|$ is a π'-number. □

Theorem 2.5. If G is a π-solvable group and H is a Hall π-subgroup of G, then $N_G(N_G(H)) = N_G(H)$.

Proof. We know that

$$N_G(H) = \{g \in G/H^g = H\} \supseteq H$$

and so we have $N_G(H) \subseteq N_G(N_G(H))$. We now prove that $N_G(N_G(H)) \subseteq N_G(H)$. Let $x \in N_G(N_G(H))$. It is known that $N_G(H) \unlhd N_G(N_G(H))$. It follows that $N_G(H)^x = N_G(H)$, hence $H^x \subseteq N_G(H)^x = N_G(H)$, which implies by 2.3.a) that H and H^x are Hall π-subgroups of $N_G(H)$. Applying Hall-Čunihin Theorem 2.2.b), we obtain that H and H^x are conjugate in $N_G(H)$. So there is an element $y \in N_G(H)$ such that $(H^x)^y = H$. It follows that $H^{xy} = H$, hence $xy \in N_G(H)$. But $y \in N_G(H)$ implies $y^{-1} \in N_G(H)$ and so $x = (xy)y^{-1} \in N_G(H)$. □
3. Projectors which are Hall π-subgroups in finite π-solvable groups

In [8], W. Gaschütz gives for finite solvable groups the following result: If X is a Schunck class, G a solvable group and S an X-projector of G such that S is a p-group, then S is a Sylow p-subgroup of G.

It is the aim of this paper to study similar properties in the more general case of finite π-solvable groups.

All groups considered in this section are finite π-solvable.

Theorem 3.1. Let X be a π-Schunck class with the P property. If G is a π-solvable group, such that there is a minimal normal subgroup M of G which is a π'-group, and if H is an X-projector of G which is a π-group, then H is an Hall π-subgroup of G.

Proof. We will show that $|G : H|$ is a π'-number. Let M be a minimal normal subgroup of G, such that M is a π'-group. We know that X has the P property, and so, by 1.6., we have $G/M \in X$.

On the other side, H being an X-projector of G, we have, by 1.10., that HM/M is an X-projector of G/M. Now 1.9.a) implies that HM/M is X-maximal in G/M. But $G/M \in X$. It follows that $HM/M = G/M$, hence $HM = G$. From this and from $HM/M \cong H/H \cap M$, we obtain that

Since $|M : H \cap M|$ divides $|M|$ which is a π'-number, we obtain that $|M : H \cap M|$ is also a π'-number. Hence $|G : H|$ is a π'-number. □

In order to renounce to the condition on the group G of having a minimal normal subgroup M which is a π'-group, the next theorem contains the assumption that H is an X-covering subgroup of G. This means, by 1.9.b), that H is a particular X-projector.

Theorem 3.2. Let X be a π-Schunck class with the P property. If G is a π-solvable group and H is an X-covering subgroup of G which is a π-group, then H is an Hall π-subgroup of G.

21
Proof. By induction on $|G|$. We consider two cases:

1) There is a minimal normal subgroup M of G, such that M is a π'-group. By 1.9.b), H is an \aleph-projector of G. Applying theorem 3.1., it follows that H is an Hall π-subgroup of G.

2) Any minimal normal subgroup M of G is a solvable π-group. Hence, by 1.7., M is abelian. If $H = G$, it follows from H π-group that H is an Hall π-subgroup of $G = H$. Let now $H \neq G$. We distinguish two possibilities:

a) For any minimal normal subgroup M of G we have $HM = G$.

Let us first prove that H is a maximal subgroup of G. Indeed, we have $H < G$. Further, if $H \leq H^* < G$, we prove that $H = H^*$. Suppose that $H < H^*$, and let $h^* \in H^* \setminus H$. Let M be a minimal normal subgroup of G. By the above, we have that M is abelian and $G = HM$. So $h^* = hm$, where $h \in H$, $m \in M$. It follows that $m = h^{-1}h^* \in M \cap H^*$. Let us prove that $M \cap H^* = \{1\}$. Suppose that $M \cap H^* \neq \{1\}$. We have $M \cap H^* \subseteq H^*$. Further, $M \cap H^* \subseteq G$, since if $x \in G = HM = H^*M = MH^*$ and $m \in M \cap H^*$, then $x = m_1h^*$, where $m_1 \in M$, $h^* \in H^*$, and M being abelian, we have:

$$x^{-1}mx = (m_1h^*)^{-1}m(m_1h^*) = (h^*)^{-1}m_1^{-1}mm_1h^* = (h^*)^{-1}mm_1^{-1}m_1h^* =$$

$$= (h^*)^{-1}mh^* \in M \cap H^*.$$

So $M \cap H^* \subseteq G$, $M \cap H^* \subseteq M$, $M \cap H^* \neq \{1\}$. But M is a minimal normal subgroup. Hence $M \cap H^* = M$, which implies that $M \subseteq H^*$ and so $G = H^*M = H^*$, a contradiction with $H^* < G$. It follows that $M \cap H^* = \{1\}$. Hence $m = 1$ and so $h^* = h \in H$, in contradiction with the choice of h^*. We proved that $H = H^*$. So H is a maximal subgroup of G.

Let us notice that $core_GH = \{1\}$. Indeed, if we suppose that $core_GH \neq \{1\}$, it follows since $core_GH \trianglelefteq G$ that there exists a minimal normal subgroup M of G such that $M \subseteq core_GH$. We obtain $G = HM \subseteq Hcore_GH = H$, in contradiction with $H \neq G$. So $core_GH = \{1\}$.

We are now in the hypotheses of theorem 1.8. By 1.8., it follows the existence of a normal subgroup $N \neq \{1\}$ of H, such that $([N], |G : H|) = 1$. But H being a
π-group, \(N \) is also a π-group. Then \(|G : H|\) is a π'-number. It follows that \(H \) is an Hall π-subgroup of \(G \).

b) There is a minimal normal subgroup \(M \) of \(G \) such that \(HM \neq G \).

We apply the induction to the π-solvable group \(HM \), with \(|HM| < |G|\). By \ref{1.10.c}, \(H \) is an \(\pi \)-covering subgroup of \(HM \). Further, \(H \) is a π-group. By the induction, \(H \) is an Hall π-subgroup of \(HM \).

We now apply the induction to the π-solvable group \(G/M \), with \(|G/M| < |G|\). By \ref{1.10.a}, \(HM/M \) is an \(\pi \)-covering subgroup of \(G/M \). Further, we have that \(|HM/M| = |H/H \cap M|\) divides \(|H|\), and so \(HM/M \) is a π-group. By the induction, \(HM/M \) is an Hall π-subgroup of \(G/M \).

Finally, theorem 2.4. leads us to the conclusion that \(H \) is an Hall π-subgroup of \(G \). □

Corollary 3.3. Let \(\pi \)-Schunck class with the P property. If \(G \) is a π-solvable group and \(H \) is an \(\pi \)-covering subgroup of \(G \) which is a π-group, then \(N_G(N_G(H)) = N_G(H) \).

Proof. Follows from 3.2. and 2.5.. □

References

Babeș-Bolyai University, Str. Kogălniceanu 1, Cluj-Napoca, Romania

E-mail address: rcovaci@math.ubbcluj.ro