LACUNARY STRONG A-CONVERGENCE WITH RESPECT TO A MODULUS

TUNAY BILGIN

Abstract. The definition of lacunary strong convergence with respect to a modulus is extended to a definition of lacunary strong A-convergence with respect to a modulus when $A = (a_{ik})$ is an infinite matrix of complex numbers. We study some connections between lacunary strong A-convergence with respect to a modulus and lacunary A-statistical convergence.

1. Introduction

The notion of modulus function was introduced by Nakano [11]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

(i) $f(x) = 0$ if and only if $x = 0$,
(ii) $f(x + y) \leq f(x) + f(y)$ for $x, y \geq 0$,
(iii) f is increasing and
(iv) f is continuous from the right at 0. It follows that f must be continuous on $[0, \infty)$.

Connor [2], Esi [3], Kolk [8], Maddox [9], [10], Öztürk and Bilgin [12], Pehlivan and Fisher [13], Ruckle [14] and others used a modulus function to construct sequence spaces.

Following Freedman et al. [4], we call the sequence $\theta = (k_r)$ lacunary if it is an increasing sequence of integers such that $k_0 = 0$, $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $q_r = k_r/k_{r-1}$. These notations will be used throughout the paper. The sequence space of lacunary

1991 Mathematics Subject Classification. 40A05, 40F05.

Key words and phrases. lacunary sequence, modulus function, statistical convergence.
strongly convergent sequences \(N_\theta \) was defined by Freedman et al. [4], as follows:

\[
N_\theta = \left\{ x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} |x_i - s| = 0 \text{ for some } s \right\}.
\]

Recently, the concept of lacunary strongly convergence was generalized by Pehlivan and Fisher [13] as below:

\[
N_\theta(f) = \left\{ x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} f(|x_i - s|) = 0 \text{ for some } s \right\}.
\]

Let \(A = (a_{ik}) \) be an infinite matrix of complex numbers. We write \(Ax = (A_i(x)) = \sum_{k=1}^{\infty} a_{ik} x_k \) converges for each \(i \).

The purpose of this paper is to introduce and study a concept of lacunary strong \(A \)-convergence with respect to a modulus.

2. \(N_\theta(A, f) \) Convergence

Definition. Let \(A = (a_{ik}) \) be an infinite matrix of complex numbers and \(f \) be a modulus. We define

\[
N_\theta(A, f) = \left\{ x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) = 0 \text{ for some } s \right\},
\]

\[
N_\theta^0(A, f) = \left\{ x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} f(|A_i(x)|) = 0 \right\}.
\]

A sequence \(x = (x_k) \) is said to be lacunary strong \(A \)-convergent to a number \(s \) with respect to a modulus if there is a complex number \(s \) such that \(x \in N_\theta(A, f) \). Note that, if we put \(f(x) = x \), then \(N_\theta(A, f) = N_\theta(A) \) and \(N_\theta^0(A, f) = N_\theta^0(A) \). If \(x \in N_\theta(A) \), we say that \(x \) is lacunary strong \(A \)-convergent to \(s \). If \(x \) is lacunary strong \(A \)-convergent to the value \(s \) with respect to a modulus \(f \), then we write \(x_i \to s(N_\theta(A, f)) \).

If \(A = I \) unit matrix, we write \(N_\theta(f) \) and \(N_\theta^0(f) \) for \(N_\theta(A, f) \) and \(N_\theta^0(A, f) \), respectively. Hence \(N_\theta(f) \) is the same as the space \(N_\theta(f) \) of Pehlivan and Fisher [13].

\(N_\theta(A, f) \) and \(N_\theta^0(A, f) \) are linear spaces. We consider only \(N_\theta^0(A, f) \). Suppose that \(x, y \in N_\theta^0(A, f) \) and \(a, b \) are in \(C \), the complex numbers. Then there exist integers
T_a and T_b such that $|a| \leq T_a$ and $|b| \leq T_b$. We therefore have
\[
h_r^{-1} \sum_{i \in I_r} f(|aA_i(x) + bA_i(y)|) \leq T_a h_r^{-1} \sum_{i \in I_r} f(|A_i(x)|) + T_b h_r^{-1} \sum_{i \in I_r} f(|A_i(y)|).
\]
This implies that $ax + by \in N^0_\theta(A, f)$.

Now we give relation between lacunary strong A-convergence and lacunary strong A-convergence with respect to a modulus.

Theorem 1. Let f be any modulus. Then $N_\theta(A) \subseteq N_\theta(A, f)$ and $N^0_\theta(A) \subseteq N^0_\theta(A, f)$.

Proof. We consider $N_\theta(A) \subseteq N_\theta(A, f)$ only. Let $x \in N_\theta(A)$ and $\varepsilon > 0$. We choose $0 < \delta < 1$ such that $f(u) < \varepsilon$ for every u with $0 \leq u \leq \delta$. We can write
\[
h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) = h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) + h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|)
\]
where the first summation is over $|A_i(x) - s| \leq \delta$ and the second over $|A_i(x) - s| > \delta$. By definition of f, we have
\[
h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) \leq \varepsilon + 2f(1)\delta^{-1} h_r^{-1} \sum_{i \in I_r} |A_i(x) - s|.
\]
Therefore $x \in N_\theta(A, f)$.

Theorem 2. Let f be any modulus. If \(\lim_{t \to \infty} \frac{f(t)}{t} = \beta > 0 \), then $N_\theta(A) = N_\theta(A, f)$.

Proof. If \(\lim_{t \to \infty} \frac{f(t)}{t} = \beta > 0 \), then $f(t) \geq \beta t$ for all $t > 0$. Let $x \in N_\theta(A, f)$.

Clearly,
\[
h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) \geq h_r^{-1} \sum_{i \in I_r} \beta |A_i(x) - s| = \beta h_r^{-1} \sum_{i \in I_r} |A_i(x) - s|,
\]
therefore $x \in N_\theta(A)$. By using Theorem 1 the proof is complete.

We now give an example to show that $N_\theta(A) \neq N_\theta(A, f)$ in the case when $\beta = 0$. Consider $A = I$ and the modulus $f(x) = \sqrt{x}$. In the case $\beta = 0$, define x_i to be h_r at the first term in I_r for every r and $x_i = 0$ otherwise. Then we have
\[
h_r^{-1} \sum_{i \in I_r} f(|A_i(x)|) = h_r^{-1} \sum_{i \in I_r} \sqrt{|x_i|} = h_r^{-1} \sqrt{|h_r|} \to 0 \text{ as } r \to \infty
\]
and so $x \in N_\theta(A, f)$. But $h_r^{-1} \sum_{i \in I_r} |A_i(x)| = h_r^{-1} \sum_{i \in I_r} |x_i| = h_r^{-1} h_r \to 1$ as $r \to \infty$ and so $x \notin N_\theta(A)$.

Theorem 3. Let f be any modulus. Then
(i) For $\liminf q_r > 1$ we have $w(A, f) \subseteq N_0(A, f)$.

(ii) For $\limsup q_r < \infty$ we have $N_0(A, f) \subseteq w(A, f)$.

(iii) $w(A, f) = N_0(A, f)$ is $1 \succ \liminf q_r \leq \limsup q_r < \infty$.

where $w(A, f) = \left\{ x = (x_1) : \liminf_{n \to \infty} n^{-1} \sum_{i=1}^{n} f(|A_i(x) - s|) = 0 \text{ for some } s \right\}$ (see, Esi [3]).

Proof. (i) Let $x \in w(A, f)$ and $\liminf q_r > 1$. There exist $\delta > 0$ such that $q_r = (k_r/k_{r-1}) \geq 1 + \delta$ for sufficiently large r. We have, for sufficiently large r, that $(h_r/k_r) \geq \delta/(1 + \delta)$ and $(k_r/h_r) \leq (1 + \delta)/\delta$. Then

$$k_r^{-1} \sum_{i=1}^{k_r} f(|A_i(x) - s|) \geq k_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) = (h_r/k_r) h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) \geq \delta/(1 + \delta) h_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|)$$

which yields that $x \in N_0(A, f)$.

(ii) If $\limsup q_r < \infty$ then there exists $K > 0$ such that $q_r < K$ for every r. Now suppose that $x \in N_0(A, f)$ and $\varepsilon > 0$. There exists m_0 such that for every $m \geq m_0$,

$$H_m = h_m^{-1} \sum_{i \in I_m} f(|A_i(x) - x|) < \varepsilon.$$ We can also find $T > 0$ such that $H_m \leq T$ for all m. Let n be any integer with $k_r \geq n \succ k_{r-1}$. Now write

$$n^{-1} \sum_{i=1}^{n} f(|A_i(x) - s|) \leq k_r^{-1} \sum_{i=1}^{k_r} f(|A_i(x) - s|)$$

$$= k_r^{-1} \left(\sum_{m=1}^{m_0} \sum_{i \in I_m} f(|A_i(x) - s|) + \sum_{m=m_0+1}^{k_r} \sum_{i \in I_m} f(|A_i(x) - s|) \right)$$

$$= k_r^{-1} \sum_{m=1}^{m_0} \sum_{i \in I_m} f(|A_i(x) - s|) + k_r^{-1} \sum_{m=m_0+1}^{k_r} \sum_{i \in I_m} f(|A_i(x) - s|)$$

$$\leq k_r^{-1} \sum_{m=1}^{m_0} \sum_{i \in I_m} f(|A_i(x) - s|) + \varepsilon (k_r - k_{m_0}) k_r^{-1}$$

$$= k_r^{-1} (h_1 H_1 + h_2 H_2 + \cdots + h_{m_0} H_{m_0}) + \varepsilon (k_r - k_{m_0}) k_r^{-1}$$

$$\leq k_r^{-1} \left(\sup_{1 \leq i \leq m_0} H_i k_{m_0} \right) + \varepsilon K \leq k_r^{-1} k_{m_0} T + \varepsilon K.$$
LACUNARY STRONG A-CONVERGENCE WITH RESPECT TO A MODULUS

from which we deduce that \(x \in w(A, f) \). (iii) follows from (i) and (ii).

The next result follows from Theorem 2 and 3.

Theorem 4. Let \(f \) be any modulus. If \(\lim_{t \to \infty} \frac{f(t)}{t} = \beta \gg 0 \) and \(l \ll \lim \inf r \leq \lim \sup r \ll \infty \), then \(N_\theta(A) = w(A, f) \).

3. Lacunary A-statistical convergence

The notation of statistical convergence was given in earlier works [1], [4], [6], [15] and [16]. Recently, Fridy and Orhan [7] introduced the concept of lacunary statistical convergence:

Let \(\theta \) be a lacunary sequence. Then a sequence \(x = (x_k) \) is said to be lacunary statistically convergent to a number \(s \) if for every \(\varepsilon \gg 0 \), \(\lim_{r \to \infty} h_r^{-1}|K_\theta(\varepsilon)| = 0 \), where \(|K_\theta(\varepsilon)| \) denotes the number of elements in \(K_\theta(\varepsilon) = \{i \in I_r : |x_i - s| \geq \varepsilon \} \). The set of all lacunary statistical convergent sequences is denoted by \(S_\theta \).

Let \(A = (a_{ik}) \) be an infinire matrix of complex numbers. Then a sequence \(x = (x_k) \) is said to be lacunary A-statistically convergent to a number \(s \) if for every \(\varepsilon \gg 0 \), \(\lim_{r \to \infty} h_r^{-1}|KA_\theta(\varepsilon)| = 0 \), where \(|KA_\theta(\varepsilon)| \) denotes the number of element in \(KA_\theta(\varepsilon) = \{i \in I : |A_i(x) - s| \geq \varepsilon \} \). The set of all lacunary A-statistical convergent sequences is denoted by \(S_\theta(A) \).

The following Theorem gives the relation between of the lacunary A-statistical convergence and lacunary strongly A-convergence.

Let \(I_1 = \{i \in I_r : |A_i(x) - s| \geq \varepsilon \} = KA_\theta(\varepsilon) \) and \(I_2 = \{i \in I_r : |A_i(x) - s| \ll \varepsilon \} \).

Theorem 5. Let \(A \) be a limitation method, then

(i) \(x_i \to s(N_\theta(A)) \) implies \(x_i \to s(S_\theta(A)) \).

(ii) \(x \) is bounded and \(x_i \to s(S_\theta(A)) \) implies \(x_i \to s(N_\theta(A)) \).

(iii) \(S_\theta(A) = N_\theta(A) \) is \(x \) is bounded.

Proof. (i) If \(\varepsilon \gg 0 \) and \(x_i \to s(N_\theta(A)) \) we can write

\[
h_r^{-1} \sum_{i \in I_r} |A_i(x) - s| \geq h_r^{-1}|KA_\theta(\varepsilon)|\varepsilon.
\]

It follows that \(x_i \to s(S_\theta(A)) \). Note that in this part of the proof we do not need the limitation method of \(A \).
(ii) Suppose that x is lacunary A-statistical convergent to s. Since x is bounded and A is limitation method, there is a constant $T > 0$ such that $|A_i(x) - s| \leq T$ for all i. Therefore we have, for every $\varepsilon > 0$, that

$$h^{-1}_r \sum_{i \in I_r} |A_i(x) - s| \leq h^{-1}_r \sum_{i \in I_r} |A_i(x) - s| + h^{-1}_r \sum_{i \in I_r^2} |A_i(x) - s| \leq T h^{-1}_r |KA_\theta(\varepsilon)| + \varepsilon.$$

Taking the limit as $\varepsilon \to 0$, the result follows. (iii) follows from (i) and (ii).

Now we give the relation between of the lacunary A-statistical convergence and lacunary strongly A-convergence with respect to modulus.

Theorem 6. (i) For any modulus f, $x_i \to s(N_\theta(A,f))$ implies $x_i \to s(S_\theta(A))$.

(ii) f is bounded and $x_i \to s(S_\theta(A))$ imply $x_i \to s(N_\theta(A,f))$.

(iii) $S_\theta(A) = N_\theta(A,f)$ if f is bounded.

Proof. (i) Let f be any modulus. If $\varepsilon > 0$ and $x_i \to s(N_\theta(A,f))$ we can write

$$h^{-1}_r \sum_{i \in I_r} f(|A_i(x) - s|) \geq h^{-1}_r \sum_{i \in I_r} f(|A_i(x) - s|) \geq h^{-1}_r |KA_\theta(\varepsilon)| f(\varepsilon).$$

It follows that $x_i \to s(S_\theta(A))$.

(ii) Suppose that f is bounded. Since f is bounded, there exists an integer T such that $f(x) \leq T$ for all $x \geq 0$. We see that

$$h^{-1}_r \sum_{i \in I_r} f(|A_i(x) - s|) \leq h^{-1}_r \sum_{i \in I_r} f(|A_i(x) - s|) + h^{-1}_r \sum_{i \in I_r^2} f(|A_i(x) - s|) \leq T h^{-1}_r |KA_\theta(\varepsilon)| + f(\varepsilon).$$

Since f is continuous and $x_i \to s(S_\theta(A))$, it follows from $\varepsilon \to 0$ that $x_i \to s(N_\theta(A,f))$. (ii) follows from (i) and (ii).

As an example to show that $S_\theta(A) \neq N_\theta(A,f)$ when f is unbounded, consider $A = I$. Since f is unbounded, there exists a positive sequence $0 < y_1 < y_2 < \ldots$ such that $f(y_i) \geq h_i$. Define the sequence $x = (x_i)$ by putting $x_{ki} = y_i$ for $i = 1, 2, \ldots$ and $x_i = 0$ otherwise. We have $x \in S_\theta(A)$, but $x \not\in N_\theta(A,f)$.

Finally we consider the case when $x_k \to s$ implies $x_k \to s(N_\theta(A,f))$.

Lemma 7. ([6]) If $\liminf q_r > 1$ then $x_i \to s(S)$ implies $x_i \to s(S_\theta)$.

44
Theorem 8. Let $\liminf q_r \succ 1$, A is regular and f is bounded. Then $x_i \to s$ implies $x_i \to s(\mathcal{N}_\theta(A,f))$.

Proof. Let $x_i \to s$. By regularity of A and definition of statistical convergence we have $A_i(x) \to s(S)$. Since $\liminf q_r \succ 1$ it follows lemma 7 that $A_i(x) \to s(S_\theta)$ i.e. $x_i \to s(S_\theta(A))$. Thus, using Theorem 6, we have $x_i \to s(\mathcal{N}_\theta(A,f))$.

References

Department of Mathematics, University of 100.Yil, Van Turkey