
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.01

AN ANALYSIS ON VERY DEEP CONVOLUTIONAL

NEURAL NETWORKS: PROBLEMS AND SOLUTIONS

TIDOR-VLAD PRICOPE

Abstract. Neural Networks have become a powerful tool in computer
vision because of the recent breakthroughs in computation time and model
architecture. Very deep models allow for better deciphering of the hidden
patterns in the data; however, training them successfully is not a trivial
problem, because of the notorious vanishing/exploding gradient problem.
We illustrate this problem on VGG models, with 8 and 38 hidden layers, on
the CIFAR100 image dataset, where we visualize how the gradients evolve
during training. We explore known solutions to this problem like Batch
Normalization (BatchNorm) or Residual Networks (ResNets), explaining
the theory behind them. Our experiments show that the deeper model
suffers from the vanishing gradient problem, but BatchNorm and ResNets
do solve it. The employed solutions slighly improve the performance of
shallower models as well, yet, the fixed deeper models outperform them.

1. Introduction

We have witnessed a lot of breakthroughs in deep learning lately [15] and
all of them had a certain thing in common: very large and deep neural net-
works. The network depth has played probably the most important role in
these successes, just over a span of a few years, the top-5 image classification
accuracy over the ImageNet dataset has increased from 84% [12] to 95% [20],
[16] using deeper networks with rather small receptive fields [2]. There seems
to be a general rule that deeper is better and other results in this area have
also underscored the superiority of deeper networks [25] in terms of accuracy
and/or performance.

However, to achieve the advancements we have today, challenging problems
had to be solved. There is a fundamental problem that very deep CNNs
(Convolutional Neural Networks) suffer from. It was showed [10] that training

Received by the editors: 26 January 2021.
2010 Mathematics Subject Classification. 68T45 .
1998 CR Categories and Descriptors. I.2.1 [Artificial Intelligence]: Learning – Connec-
tionism and neural nets.
Key words and phrases. Deep Learning, Neural Network, Image Classification, Deep Convo-
lutional Neural Network, Vanishing Gradient Problem, VGG.

5



6 TIDOR-VLAD PRICOPE

becomes more difficult as we increase the number of layers of a NN (Neural
Network), stacking many non-linear transformations typically results in poor
propagation of activations and gradients [19]. This is caused by the well-
known problem of vanishing/exploding gradients [7]. With a big model,
as the gradient is back-propagated to earlier layers, repeated multiplication
may make the gradient infinitively small (or infinitely large) and a meaningful
signal won’t reach the input layers causing the network not to learn anything
even after the first iterations.

In this paper, we are going to visualize and explore this problem, analyze
and test proposed solutions like BatchNorm [10], Resnets [6] and DenseNets
[9]. We experiment on VGG (Visual Geometry Group) architectures [16] which
are based on convolutional layers and are still an inspiration for top models
these days. The motivation behind this work is the fact that current and
previous state-of-the-art technology in computer Vision AI does heavily rely
on a very deep convolutional architecture. Therefore, it is important to know
how to detect problems and how to successfully fix them when using
such tools. We will confirm one of the statements that were thought about the
VGG networks - going deeper without any change whatsoever is unacceptable,
visualizing the gradients during training. We propose some intuition and a
mathematical underpinning of the problem that causes this phenomenon and
explore solutions.

Our main contribution is a throughout evaluation of VGG networks of in-
creasing depth using different stabilization techniques on the CIFAR100 image
dataset [11]. We show that a plain (traditional) VGG network with 7 convo-
lutional layers outperforms a much deeper network that uses 37 convolutions
on a same setup. We prove that this is caused by the vanishing gradient prob-
lem (analyzing the gradients with respect to the model parameters) and we
fix it using BatchNorm and Resnets showing that deeper is better if proper
techniques are used to stabilize the learning of such models.

For the purpose of this research, we have used one of the most powerful
GPU machines openely available to public as of today: the Nvidia Tesla V100,
which allowed for 60% decrease in training time compared to other solid GPU
workstations like Tesla T4 or K80.

2. Identifying problems of a deep CNN

As a baseline model we have a VGG network with 7 convolutional layers and
1 flatten layer. After training for 100 epochs, this model gets a train accuracy
of around 54% and a test accuracy of 49%. The learning stage of this model
is healthy enough, the accuracy does not decrease after a certain point and
the generalization gap analyzing the loss is not that big. The gradient flow -



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 7

mean absolute value of gradients with respect to the model parameters can be
seen in Figure 1. However, these are not satisfactory results, good models on
this dataset achieve consistently over 70% accuracy [9].

Figure 1. Gradient Flow in each layer for the healthy VGG 08 network.

Therefore, we tried repeating convolutional blocks over and over until we
ended up with a VGG neural network with 37 convolutional layers and 1 flatten
layer. Unsurprisingly, training this network, in its current form, did not yield
great results, the test and train accuracy remained steady at 1% during the
whole training stage and the loss did not decrease almost at all. It seems
that the more shallow architecture beat the deeper one in this experiment. In
1989, Cybenko proved [3] that a network with a large enough single hidden
layer of sigmoid units can approximate any decision boundary. Empirical
work, however, suggests that it can be difficult to train shallow nets to be
as accurate as deep nets. Moreover, for vision tasks, multiple studies suggest
that deeper models are preferred under a parameter budget [4], [19], [16].

So why is it not the case that we get better performance with higher number
of hidden units?



8 TIDOR-VLAD PRICOPE

.in
pu

t_
co

nv
..c

on
v_

0
.in

pu
t_

co
nv

..b
n_

0
.b

lo
ck

_0
_0

..c
on

v_
0

.b
lo

ck
_0

_0
..c

on
v_

1
.b

lo
ck

_0
_1

..c
on

v_
0

.b
lo

ck
_0

_1
..c

on
v_

1
.b

lo
ck

_0
_2

..c
on

v_
0

.b
lo

ck
_0

_2
..c

on
v_

1
.b

lo
ck

_0
_3

..c
on

v_
0

.b
lo

ck
_0

_3
..c

on
v_

1
.b

lo
ck

_0
_4

..c
on

v_
0

.b
lo

ck
_0

_4
..c

on
v_

1
.re

du
ct

_b
lo

ck
_0

..c
on

v_
0

.re
du

ct
_b

lo
ck

_0
..c

on
v_

1
.b

lo
ck

_1
_0

..c
on

v_
0

.b
lo

ck
_1

_0
..c

on
v_

1
.b

lo
ck

_1
_1

..c
on

v_
0

.b
lo

ck
_1

_1
..c

on
v_

1
.b

lo
ck

_1
_2

..c
on

v_
0

.b
lo

ck
_1

_2
..c

on
v_

1
.b

lo
ck

_1
_3

..c
on

v_
0

.b
lo

ck
_1

_3
..c

on
v_

1
.b

lo
ck

_1
_4

..c
on

v_
0

.b
lo

ck
_1

_4
..c

on
v_

1
.re

du
ct

_b
lo

ck
_1

..c
on

v_
0

.re
du

ct
_b

lo
ck

_1
..c

on
v_

1
.b

lo
ck

_2
_0

..c
on

v_
0

.b
lo

ck
_2

_0
..c

on
v_

1
.b

lo
ck

_2
_1

..c
on

v_
0

.b
lo

ck
_2

_1
..c

on
v_

1
.b

lo
ck

_2
_2

..c
on

v_
0

.b
lo

ck
_2

_2
..c

on
v_

1
.b

lo
ck

_2
_3

..c
on

v_
0

.b
lo

ck
_2

_3
..c

on
v_

1
.b

lo
ck

_2
_4

..c
on

v_
0

.b
lo

ck
_2

_4
..c

on
v_

1
.re

du
ct

_b
lo

ck
_2

..c
on

v_
0

.re
du

ct
_b

lo
ck

_2
..c

on
v_

1
lo

gi
t_

lin
ea

r_
la

ye
r

Layers

0.00000

0.00005

0.00010

0.00015

0.00020

Av
er

ag
e 

Gr
ad

ie
nt

Gradient flow

Figure 2. Gradients vanishing when training a VGG model
with 37 convolutional layers (VGG 38 network). Simply stack-
ing layers does not work.

Well, increasing network depth does not work by simply stacking layers
together. Very deep networks are hard to train because of the vanishing gra-
dient problem (Figure 2). An intuition for that happening is that, when the
network is too deep, the gradients from where the loss function is calculated
easily shrink to zero after several applications of the chain rule, so gradients
aren’t really back-propagated sufficiently to the initial layers of the network.
This can be clearly seen in the Figure 2 that shows the mean absolute value
of the gradients at each epoch. The gradients quickly turn very close to 0 after
just 2 layers during backpropagation from output layer to input layer.

This is just an intuition, but neural networks haven’t been regarded as un-
interpretable black-boxes for no reason, can we somehow explain this phenom-
enon mathematically?

In a way, yes. In very deep architectures, the variance of the data changes at
each activation and the idea that earlier layers influence later layers in complex



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 9

ways is not new. The problem is to understand why and how these high order
interactions between layers are an issue for learning.

Suppose that we are minimizing a loss function f(w) using gradient de-
scent, where w are the weights. We consider what happens when we take
a step in the direction of the gradients from the current weights w0 . Of
course, we don’t know the form of function f yet, however, recall the Weier-
strass Approximation Theorem in Rn which states that every real-valued
continuous function in a closed n dimensional subspace can be uniformly ap-
proximated as closely as desired by a polynomial function. Note that this
does not contradict our context here, as it is generally assumed NNs do pro-
vide differentiable, well-behaved functions (as gradients are backpropagated
through the layers), so it is a reasonable assumption to consider f contin-
uous (as a consequence). To approximate f , usually a second order Tay-
lor polynomial expansion is taken (around the current weights w0): f(w) ≈
f(w0) + (w−w0)

T g+ 1
2(w−w0)

TH(w−w0) where g and H are the gradient
and Hessian matrix of f(w) at w0 . When we take a step in the direction of
the gradient with size ε , the loss function becomes :

f(w0 − εg) ≈ f(w0)− εgT g + 1
2ε

2gTHg (∗)

This is actually a well known formula in convex optimization as it was used
in old papers that were not even Deep Learning related [21]. Notice the third
term on the right-hand side of the equation: 1

2ε
2gTHg. If this term was 0, the

loss function would strictly decrease. This happens when the model has no
second-order terms - i.e. when it is a strictly linear model. On the other hand,
if this term was sufficiently large, it may exceed the absolute value of εgT g
so the loss might actually increase. This happens when the second-order
effects outweigh the first-order effects. It is regarded that the last term (the
one that contains the Hessian and the gradient) represents the effect of the
curvature of the loss function [14]. If the curvature is small, the gradient
is mostly constant, meaning we can take a large step-size ε and decrease
the loss. On the other hand, when the curvature is large, the gradient changes
quickly, meaning a large step-size poses a risk of increasing the loss. In the
worst case, the gradient is the eigenvector of H with the largest eigenvalue.

The mathematical background presented above was needed as solutions to
the vanishing gradient problem do refer to this problem of conditioning, to
be more precise, the ill-conditioning of the Hessian matrix. The only way to
ensure that the curvature does not cause the loss to increase is by decreasing
the step-size ε -making it extremely small. Using a very small learning rate
(lr) with VGG 38 is just not practical, though. Of course, we analyzed what
happens only for second-order effects, but this gives tremendous insight into
the behavior of deeper neural networks. We are confident that this translates



10 TIDOR-VLAD PRICOPE

to higher order effects caused by very deep NN architectures, that need higher
order Taylor series for a good approximation, where there are third, fourth,
and even higher-degree effects between the weights. This means that gradient
updates can be even more unpredictable because the higher order interactions
complicate the gradient update, and the only way to ensure that these effects
do not adversely affect the loss is to make the step-size extremely small, or to
incorporate techniques that allow higher learning rates to be used.

3. Background Literature

3.1. Batch Normalization.

Batch normalization (BN) [10] is a technique to normalize activations in
intermediate layers of deep neural networks. BN has become a staple in state-
of-the-art models because of its tendency to speed up training and improve
performance. The main idea is to normalize the output of a previous activa-
tion layer by subtracting the batch mean and dividing by the batch standard
deviation. It is empirically proved that this solves the vanishing gradient
problem in very deep CNNs possibly due to more controlled activations and
well-behaved gradient updates.

To our understanding, the motivation comes from the fact that we always
knew input normalization is needed for a healthy learning; if the input layer
is benefiting from it, why not do the same for the values in the hidden layers,
as the distribution of each layer’s inputs changes all the time during training?
We normalize the input layer by adjusting and scaling the activations. This
way, it reduces the amount by what the hidden unit values shift around.
The authors refer to this phenomenon as internal covariate shift.

However, after this shift/scale of activation outputs by some randomly ini-
tialized parameters, the weights in the next layer are no longer optimal. To
address this problem, the authors introduced, for each activation, a pair
of trainable parameters γ, β, which scale and shift the normalized value:
y = γx + β. BN lets the gradient descent do the denormalization by chang-
ing only these two weights (γ, β) for each activation, instead of losing the
stability of the network by changing all the weights.

It comes as a consequence that BN allows each layer of a network to learn
by itself a little bit more independently of other layers, but, intuitively, why
does that help? Recall formula (∗). With BN, the mean and variance of
the activations of each layer are independent by the values themselves, they
are not decided by complex interactions between multiple layers,
but rather by two simple parameters. This means that the magnitude



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 11

of the higher order interactions are likely to be suppressed, allowing
larger learning rates to be used.

Among other advantages of BN, it helps bypass local minima and makes
the training more resilient to weights initialization and the authors show that
it is invariant to parameter scale. It is a form of regularization, the networks
with BN usually do not require Dropout [17]. BN also enabled the training of
deep neural networks with sigmoid activations that were previously deemed
too difficult to train due to the vanishing gradient problem.

Nevertheless, as any method in machine learning, there are some limi-
tations. Convergence is necessary for generalizing well, but if a network
converges without normalization, BN does not add further improvement in
generalization [1]. It was also showed that BN strongly depends on how the
batches are constructed during training, and it may not converge to a desired
solution if the statistics on the batch are not close to the statistics over the
whole dataset. Moreover, it was shown [13] that BN fails/overfits when the
mini-batch size is 1 and are in general, very sensitive to the mini-batch size.

3.2. Residual Neural Networks.

Residual Neural Networks (Resnets) [6] are a family of neural networks
with a specific common trait: they use skip connections in their architecture
to fit the input from the previous layer to the next layer without any modifi-
cation of the input. Resnets solve the vanishing gradient problem by letting
the gradients flow directly through the skip connections backwards from later
layers to initial filters. Other problems that these NNs solve is the shattered
gradients problem in which we get gradients that are not correlated within
samples in any way.

The motivation behind the authors’ work is the fact that adding multiple
layers to an already defined NN architecture shouldn’t come at any perfor-
mance cost if the layers that we add are identity mappings - that don’t do
anything. It should be easy for a NN (which is a good function approximator)
to learn the identity map f(x) = x. The authors also took inspiration from
other sources as Resnet was not the first one to use skip connections. LSTMs
[8] have a similar mechanism with their parametrized forget gate that controls
how much information will flow to the next time step and there is also High-
way Networks [18] which actually contain Resnets in their solution space
and yet they perform no better than them.

It is said that the problem of training very deep CNN models has largely
been overcome via carefully constructed initializations and BN, however, archi-
tectures incorporating skip-connections such as highway and resnets perform
much better than standard feedforward architectures despite BN. But why



12 TIDOR-VLAD PRICOPE

wasn’t BN enough to train very deep models, what is it that these
deep residual models do better? In short, when training deep networks
there comes a point where an increase in depth causes accuracy to saturate,
then degrade rapidly - the degradation problem caused by shattered gra-
dients. Shattered gradients resemble white noise and cancel each other out,
making training more difficult. Shallow networks have unshattered gradients.
However, for deeper networks, training them with batch norm leads to shat-
tered gradients, while training them without it leads to the vanishing gradient
problem. ResNets help ameliorate both problems, one of the arguments is
that they resemble an ensemble of shallow networks.

The authors tested a 152-layered NN for ImageNet classification. It is really
impressive that this was 8x bigger than VGG nets, but it does require less
computation according to the no of Flops.

Limitations of the Resnet concern a mathematical underpinning of the
empirical research. Moreover, a study [22] found out that Resnet and variants
of Resnet extremely vulnerable to adversarial examples (or attacks) [5] , which
are input examples slightly perturbed with an intention to fool the network to
make a wrong classification.

3.3. Densely connected neural networks.

Densely connected neural networks (Densenets) [9] extend on the idea of
shortcut connections present in Resnets, connecting all the layers directly with
each other. In this novel architecture, the input of each layer consists of the
feature maps of all earlier layer, and its output is passed to each subsequent
layer. The feature maps are aggregated with depth-concatenation and not
with summation using identity mappings like Resnets. These connections
form a dense circuit of pathways that allow better gradient-flow, thereby solv-
ing the vanishing gradient problem.

A key insight in this architecture is that each layer has direct access to the
gradients of the loss function and the original input signal, the model requires
fewer layers, as there is no need to learn redundant feature maps, allowing the
collective knowledge to be reused - feature reuse, making the network highly
parameter-efficient. Fewer and narrower layers means that the model has
fewer parameters to learn, making them easier to train. The authors also talk
about the importance of variation in input of layers as a result of concatenated
feature maps, which prevents the model from over-fitting the training data
which makes sense.

The full architecture proposed in the paper makes use of dense blocks and
transition blocks. The dense blocks, as we mentioned before, are composed of
interconnected dense layers (that here are 1x1 conv + 3x3 conv). A term that



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 13

is frequently brought up in the paper is the growth rate k that dictates how
many channel features are concatenated and fed as input to the next dense
layer. Transition blocks are used between dense blocks and use Convs and
average pooling for dimensionality reduction.

Densenet models without hyper-parameter tuning are compared to Resnet
with optimal hyper-parameters over the ImageNet dataset and it turns out
that the Densenet model has a significantly lower validation error than
the ResNet model with the same number of parameters. Moreover, an-
other experiment showed that a Densenet model with 20M parameters model
yields similar validation error as a 101-layer ResNet with more than 40M
parameters.

Therefore, it seems that Densenet is a clear improvement over the pre-
vious state-of-the-art Resnet, granted the two architectures have the main
concept of skipping layers in common, the execution being different. In
relationship with Batch Normalization, both of them do use it which shows
how important this technique still is.

4. Solution Overview

In order to solve the vanishing gradient problem, we have chosen Batch
Normalization as a first-hand solution. The motivation behind this is the
fact that all the solutions from the literature review section had this technique
in common, so it comes as natural to apply it.

Implementing BatchNorm is like applying pre-processing but for hidden
layers. The idea is to normalize the output coming from a previous hidden
layer (likely Conv), restricting the amount by what a hidden unit value can
shift around. An idea that we have brought up in the literature review as well
is the reduction of the internal covariate shift. Covariance shift is directly
linked to the different distributions that can appear in the data: if it changes
between training data (for example, we train the model on greyscale images)
and test data (we test it on RGB images), our algorithm would be, of course,
pretty poor; BN tries to solve that.

The algorithm can be seen below, note the two model parameters introduced
by BN (γ, β) that help the optimizer undo the normalization if it’s a way for it
to minimize the loss function. We add these two trainable parameters to each
layer, so the normalized output (that has 0 mean and 1 standard deviation)
is multiplied by a standard deviation parameter γ and add a mean parameter
β. In practice, restricting the activations of each layer to be strictly 0 mean
and unit variance can limit the expressive power of the network. Therefore, in
practice, batch normalization allows the network to learn parameters γ and β
that can convert the mean and variance to any value that the network desires.



14 TIDOR-VLAD PRICOPE

Algorithm 1 Batch Normalization

Input: Values of X over a mini-batch after a Conv Layer: xi, i ∈ 1, 2, ..., n.
Parameters to be learnt: γ, β.

µ← 1

n

∑n
i xi //mini-batch mean

σ2 ← 1

n

∑n
i (xi − µ)2 //mini-batch variance

x̂i ←
xi − µ√
σ2 + ε

, ∀i ∈ 1, 2, ..., n // normalization

yi ← γx̂i + β,∀i ∈ 1, 2, ..., n // scale and shift
Output: y

It comes as a natural question, though, if we should apply BN before and
after activations. We have researched this issue quite thoroughly and there
is not a clear definite answer to it. Although the proposed approach in the
original paper used BN before activations, many empirical experiments have
been conducted by the community [23] and great results are showed applying
BN after ReLu activations. However, our understanding is that BN helps
more by reducing the high-order realationships between parameters
of different layers than reducing the covariate shift, therefore the
order might not really matter. We will apply BN before activation and
possible pooling layer as described by the authors of the original paper.

It is said that BN also regularizes the model. The intuition for this is
that BN adds extra sources of noise so that every layer has to learn to be
robust to account for the variations in its inputs: because the data points
are randomly chosen to form a minibatch, the standard deviation randomly
fluctuates and BN multiplies each hidden unit by such randomly fluctuating
standard deviations and also subtracts the randomly fluctuating means of the
minibatch data points.

BatchNorm will likely solve the problem, however, to get even more improve-
ment in the performance of the model, we also chose to implement Residual
Blocks.

Implementing Resnet is straight-forward: to construct a skip connection
over a layer that applies transformation F to an input vector x, we modify
the output of the whole block to another map H(x) = F (x) + x.

The idea is that even if there is vanishing gradient for the weight layers,
we always still have the identity x to transfer back to earlier layers. The
weight layers have to learn this kind of residual mapping: F (x) = H(x) − x.
Intuitively, if we bypass the input to the first layer of the model to be the
output of the last layer of the model, the network should be able to predict
whatever function it was learning before with the input added to it.



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 15

However, this does not work if F (x) changes the dimensions of x, so we need
to be careful when implementing it. We have to find a linear projection g =
Wx such that we preserve the features in x but we reduce its dimensionality.
This is addressed in the original paper: if we have to increase the dimensions of
x to match F (x), then padding is recommended as it does not add any more
model parameters and is quite efficient. If we need to reduce it, we can apply
any pooling transformation or, a 1x1 convolution with an appropriate stride
- this is what the authors use in their experiments. We can view the pooling
reduction as a direct scaling without adding extra parameters, however, the
1x1 convolution approach would work better in theory because, intuitively,
this is like a learnt scaling.

5. Experiments

We base our experiments using the CIFAR100 dataset which contains 60k,
32x32 colored natural images. For all our experiments, we train on 100 epochs,
having 47.5k of the images as training data, 2.5k as validation data and the
rest (10k) as test data. Note that at each experiment we shuffle the samples
and apply some basic data augmentation: random crop, horizontal flip and
gaussian noise on all 3 RGB channels having the mean (0.4914, 0.4822, 0.4465)
and the std (0.2023, 0.1994, 0.2010) .

The architectures we are going to use are quite similar at a base level. We
have convolutional processing blocks that are repeated in the network.
Such a block is a cascade of 2 convolutional layers, each followed by a Leaky
ReLu activation function. We also have 1 to 3 reduction blocks that are
used to downgrade the units in terms of width and height through pooling.
Each such block is a cascade of 2 convolutional layers with an average pooling
layer in the middle. All these consecutive blocks and with a flatten and a
softmax layer. Denote VGG 08 being such a NN with 7 convolutional layers
+ 1 flatten layer and VGG 38 a NN with 37 convolutional layers + 1 flatten
layer.

The motivation behind using leaky ReLu is that it’s more unlikely to suf-
fer from vanishing gradients than other non-linear activation functions (sig-
moid/tanh). Plus, we use the leaky version because we want to better account
for the negative values that come through the layers. Average pooling was used
in image classification by previous state-of-the-art models like Densenets. By
default, we use Adam with lr=0.001 and a batch-size of 100.

The first experiment is to test the effectiveness of BatchNorm to solve
the vanishing gradient problem. To do that, we have applied BN directly
after every convolutional layer and let the VGG 38 train with the same hyper-
parameters as before. The mean absolute values of the gradients at each epoch



16 TIDOR-VLAD PRICOPE
.in

pu
t_

co
nv

..c
on

v_
0

.in
pu

t_
co

nv
..b

n_
0

.b
lo

ck
_0

_0
..c

on
v_

0
.b

lo
ck

_0
_0

..b
n_

0
.b

lo
ck

_0
_0

..c
on

v_
1

.b
lo

ck
_0

_0
..b

n_
1

.b
lo

ck
_0

_1
..c

on
v_

0
.b

lo
ck

_0
_1

..b
n_

0
.b

lo
ck

_0
_1

..c
on

v_
1

.b
lo

ck
_0

_1
..b

n_
1

.b
lo

ck
_0

_2
..c

on
v_

0
.b

lo
ck

_0
_2

..b
n_

0
.b

lo
ck

_0
_2

..c
on

v_
1

.b
lo

ck
_0

_2
..b

n_
1

.b
lo

ck
_0

_3
..c

on
v_

0
.b

lo
ck

_0
_3

..b
n_

0
.b

lo
ck

_0
_3

..c
on

v_
1

.b
lo

ck
_0

_3
..b

n_
1

.b
lo

ck
_0

_4
..c

on
v_

0
.b

lo
ck

_0
_4

..b
n_

0
.b

lo
ck

_0
_4

..c
on

v_
1

.b
lo

ck
_0

_4
..b

n_
1

.re
du

ct
_b

lo
ck

_0
..c

on
v_

0
.re

du
ct

_b
lo

ck
_0

..b
n_

0
.re

du
ct

_b
lo

ck
_0

..c
on

v_
1

.re
du

ct
_b

lo
ck

_0
..b

n_
1

.b
lo

ck
_1

_0
..c

on
v_

0
.b

lo
ck

_1
_0

..b
n_

0
.b

lo
ck

_1
_0

..c
on

v_
1

.b
lo

ck
_1

_0
..b

n_
1

.b
lo

ck
_1

_1
..c

on
v_

0
.b

lo
ck

_1
_1

..b
n_

0
.b

lo
ck

_1
_1

..c
on

v_
1

.b
lo

ck
_1

_1
..b

n_
1

.b
lo

ck
_1

_2
..c

on
v_

0
.b

lo
ck

_1
_2

..b
n_

0
.b

lo
ck

_1
_2

..c
on

v_
1

.b
lo

ck
_1

_2
..b

n_
1

.b
lo

ck
_1

_3
..c

on
v_

0
.b

lo
ck

_1
_3

..b
n_

0
.b

lo
ck

_1
_3

..c
on

v_
1

.b
lo

ck
_1

_3
..b

n_
1

.b
lo

ck
_1

_4
..c

on
v_

0
.b

lo
ck

_1
_4

..b
n_

0
.b

lo
ck

_1
_4

..c
on

v_
1

.b
lo

ck
_1

_4
..b

n_
1

.re
du

ct
_b

lo
ck

_1
..c

on
v_

0
.re

du
ct

_b
lo

ck
_1

..b
n_

0
.re

du
ct

_b
lo

ck
_1

..c
on

v_
1

.re
du

ct
_b

lo
ck

_1
..b

n_
1

.b
lo

ck
_2

_0
..c

on
v_

0
.b

lo
ck

_2
_0

..b
n_

0
.b

lo
ck

_2
_0

..c
on

v_
1

.b
lo

ck
_2

_0
..b

n_
1

.b
lo

ck
_2

_1
..c

on
v_

0
.b

lo
ck

_2
_1

..b
n_

0
.b

lo
ck

_2
_1

..c
on

v_
1

.b
lo

ck
_2

_1
..b

n_
1

.b
lo

ck
_2

_2
..c

on
v_

0
.b

lo
ck

_2
_2

..b
n_

0
.b

lo
ck

_2
_2

..c
on

v_
1

.b
lo

ck
_2

_2
..b

n_
1

.b
lo

ck
_2

_3
..c

on
v_

0
.b

lo
ck

_2
_3

..b
n_

0
.b

lo
ck

_2
_3

..c
on

v_
1

.b
lo

ck
_2

_3
..b

n_
1

.b
lo

ck
_2

_4
..c

on
v_

0
.b

lo
ck

_2
_4

..b
n_

0
.b

lo
ck

_2
_4

..c
on

v_
1

.b
lo

ck
_2

_4
..b

n_
1

.re
du

ct
_b

lo
ck

_2
..c

on
v_

0
.re

du
ct

_b
lo

ck
_2

..b
n_

0
.re

du
ct

_b
lo

ck
_2

..c
on

v_
1

.re
du

ct
_b

lo
ck

_2
..b

n_
1

lo
gi

t_
lin

ea
r_

la
ye

r

Layers

0.00

0.02

0.04

0.06

0.08

Av
er

ag
e 

Gr
ad

ie
nt

Gradient flow

Figure 3. Mean abosolute values of gradients w.r.t model pa-
rameters at each epoch for VGG 38 with BN.

are displayed in Figure 3. We have also applied BN to the VGG 08 model
to see if it improves the results even for more shallow networks and it did
(about 4%). All these results with the accuracy can be seen in Table 1. Note
that for all the experiments, we have conducted tests on different seeds (for
the initial random weights initialization) to check the robustness of the results
and solidy our claims. We used 5 different seeds (0, 100, 550, 1000, 40000)
and we recorded a standard deviation of the accuracy results of 0.499.

It is clear (Figure 3) that BN solves the main problem we are dealing with
in this paper. However, the performance at the moment of VGG 38 does not
justify its complexity as VGG 08 still has similar performance with less
number of model parameters. That’s why we now investigate if we can
improve the performance with an intuitive change in hyper-parameters.

As we noted multiple times in this paper, BN allows training with higher
learning rates, so this is the first thing we are going to try out. We try



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 17

0.01 and 0.1, however, the results are not that successful (Table 1), 0.001
still seems to be the appropriate learning rate to be used. We have chosen
these learning rates because successful models from the literature that use BN
typically choose higher learning rates [6] [9], however, they do use a decaying
factor, so that might explain why it doesn’t work that well in our case.

We have also tried different batch sizes, as we have stated in the literature
review that this is a factor that can influence BN in a big way. We choose
to experiment with 256 as it was used in other studies [6]. We have also
tried 512 because it is more time efficient to use large batch sizes and that
also approximates the gradient of the whole dataset a little bit better. The
computational time decreases by at least 41.66% when we change the batch
size from 100 to 256 or 512, which is impressive, that’s why we move on from
using 100 as batch size for the next experiments.

The original paper that introduces BatchNorm claims that it solves the
training issues even with sigmoid-like activation functions (which are noto-
rious for the vanishing gradient problem) and this seems to be universally
accepted by the community. We tested that out to confirm it (Table 1, Figure
4).

Results so far with BN still can’t yet justify the need of a deeper model
(the test accuracies are similar between VGG 38 and VGG 08), so we conduct
experiments with residual blocks added into the models. Firstly, we wanted
to try out a default version with skip connections but without BN just to
prove that residual blocks alone can solve the vanishing gradient problem and
indeed, our experiment was successful (Table 1 - VGG 38 Resnet).

Model Batchsize Lr Weightdecay Testacc Trainacc
VGG08 Baseline 100 0.001 0 49.95% 55.24%
VGG08 BN 100 0.001 0 53.89% 59.65%
VGG08 BN + Resnet 100 0.001 0 54.45% 60.74%
VGG38 baseline 100 0.001 0 1% 1%
VGG38 BN 100 0.001 0 46.78% 54.20%
VGG38 BN 100 0.01 0 44.14% 48.33%
VGG38 BN 100 0.1 0 22.46% 24.86%
VGG38 BN 256 0.001 0 47.22% 58.05%
VGG38 BN 512 0.001 0 46.49% 60.43%
VGG38 Sigmoid BN 512 0.001 0 26.88% 28.29%
VGG38 Resnet (only) 100 0.001 0 44.77% 52.20%
VGG38 BN + Resnet 512 0.001 0 58.84% 78.65%
VGG38 BN + Resnet 512 0.1 0.0001 30.22% 29.70%
VGG38 BN + Resnet 256 0.01 0.0006 57.67% 72.81%
VGG38 BN + Resnet 256 0.01 0.0001 58.25% 67.50%
VGG38 BN + Resnet 256 0.001 0.0001 61.81 % 85.21%

Table 1. VGG08, VGG38 models - varying hyper-parameters.
Statistical error: +/-0.49.



18 TIDOR-VLAD PRICOPE

0 20 40 60 80 100
Epoch number

2

4

6

8

10

Lo
ss

VGG08_baseline
VGG08_BN_Resnet_optim
VGG38_baseline
VGG38_BN_sigmoid
VGG38_BN_optim
VGG38_BN_Resnet_baseline
VGG38_BN_Resnet_optim

Figure 4. Validation loss during training for different models tested.

0 20 40 60 80 100
Epoch number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

VGG08_baseline
VGG08_BN_Resnet_optim
VGG38_baseline
VGG38_BN_sigmoid
VGG38_BN_optim
VGG38_BN_Resnet_baseline
VGG38_BN_Resnet_optim

Figure 5. Validation accuracy during training for different
models tested.

However, for the next experiments, we used Resnet + BN as it was rec-
ommended in the original paper [6]. We first tested it on VGG 08 to see if it
adds any improvement to the previous version and indeed, the test accuracy
is slightly higher. However, when training VGG 38 with BN and Residual
Blocks, we got much higher results. Nevertheless, it was clear (Table 1) that



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 19

these models were overfitting on the training data (huge generalization gap),
so we tried adding L2 regularization - varying weight penalty, which also used
in [6]. This has helped, the training evolution summaries can be observed in
Figure 4 and 5.

6. Discussion

Looking at Figure 3, the gradients seem healthy as they do not come
really close to 0 and the scale is big enough, BN solved the vanishing gradient
problem. Note that we expect small gradients for this problem, however, the
scale from Figure 2 was in the O(10−3) region and now it is in O(10−1). This
should mean that the network is indeed learning and the gradient flow provides
meaningful signal backwards to the input layers and indeed, it achieves an
accuracy of 46.78%, similar to what baseline VGG 08 got. Note that there
is a zig-zagg phenomenon that can be observed, this also happens when
training NNs with sigmoid activations (not zero-centered) - the data coming
into a neuron is always positive, then the gradient on the weights (during
backprop) will become either all be positive or all negative - this leads to zig-
zagg dynamics in the gradient updates for the weights. We suspect a similar
cause is in our case.

It seems 256 as batch size gives the best test accuracy, which is not sur-
prising as other studies like [6] for image classification also use that.

Sigmoid as activation function for the hidden units lead to a noisy be-
haviour in training (fig. 4&5), however, the model does somewhat learn and
achieves an accuracy of 26.88% on test, which is not great but proves the
hypothesis that BN makes even deep networks with sigmoid work.

Using Residual Blocks and BN for VGG 08 lead to an about 1% increase
in acc, which is not really justifiable. However, when training VGG 38 with
the same architecture, we can begin to see why deeper is better, the best
model achieving over 60% accuracy on test and 85% on train (Table 1),
granted it overfits much harder than VGG 08. The architecture of this best
model can be seen in Figure 6, note that we display the convolutional
processing and reduction blocks that we mentioned in the previous section,
there are such 5 processing blocks followed by 1 reduction block repeated 3
times in a VGG 38 model.

Note that we have chosen to implement the linear projection to make the
identity smaller as a 1x1 conv with appropriate stride. We have done this
because using max-pooling instead lead to less impressive results, moreover,
this was the recommended way in [6] and we personally believe this adaptive
learnt scaling is better than an absolute one.



20 TIDOR-VLAD PRICOPE

Figure 6. Building blocks for our best model VGG38 BN+Resnet

7. Conclusions and Further Work

Very deep CNNs are responsible for the recent quantum leaps in AI, not
only in computer vision but also in Reinforcement Learning, for example, Al-
phaGo [15]. Training such models is a serious problem and different techniques
need to be applied to get very good results. Simply stacking convolutional
layers does not work for VGG models as we have seen in Figure 2. How-
ever, this can be solved by either BatchNorm or Resnets. Combining these
two together is much better than using them separately. These methods can
also improve more shallow networks (VGG 08); however, the very deep mod-
els completely outperform shallower methods in this case (over 7% increase),
which is expected. However, there is still room for improvement regarding
the hyper-parameters, furthermore, we use only 3x3 convolutions which can
be very restrictive. Models similar to ours, like Wide ResNet, ResNeXt, [24]
achieve much higher accuracy: 79.5%, 82.3%, but they also have much more
trainable parameters, further experimentation on that can be beneficial.



VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 21

References

[1] Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. Understanding
batch normalization. In Advances in Neural Information Processing Systems (2018),
pp. 7694–7705.

[2] Ciregan, D., Meier, U., and Schmidhuber, J. Multi-column deep neural networks
for image classification. In 2012 IEEE conference on computer vision and pattern recog-
nition (2012), IEEE, pp. 3642–3649.

[3] Cybenko, G. Mathematics of control. Signals and Systems 2 (1989), 303.
[4] Eigen, D., Rolfe, J., Fergus, R., and LeCun, Y. Understanding deep architectures

using a recursive convolutional network. arXiv preprint arXiv:1312.1847 (2013).
[5] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adver-

sarial examples. arXiv preprint arXiv:1412.6572 (2014).
[6] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recogni-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition
(2016), pp. 770–778.

[7] Hochreiter, S. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Tech-
nische Universität München 91, 1 (1991).

[8] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation
9, 8 (1997), 1735–1780.

[9] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition (2017), pp. 4700–4708.

[10] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (2015), F. R. Bach and
D. M. Blei, Eds., vol. 37 of JMLR Workshop and Conference Proceedings, JMLR.org,
pp. 448–456.

[11] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny
images. University of Toronto (2009).

[12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with
deep convolutional neural networks. Communications of the ACM 60, 6 (2012), 84–90.

[13] Lian, X., and Liu, J. Revisit batch normalization: New understanding and refine-
ment via composition optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics (2019), pp. 3254–3263.

[14] Martens, J. Deep learning via hessian-free optimization. In ICML (2010), vol. 27,
pp. 735–742.

[15] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. Mastering the game of go
without human knowledge. nature 550, 7676 (2017), 354–359.

[16] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015),
Y. Bengio and Y. LeCun, Eds.

[17] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15, 1 (2014), 1929–1958.



22 TIDOR-VLAD PRICOPE

[18] Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway networks. CoRR
abs/1505.00387 (2015).

[19] Srivastava, R. K., Greff, K., and Schmidhuber, J. Training very deep networks.
In Advances in neural information processing systems (2015), pp. 2377–2385.

[20] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition (2015), pp. 1–9.

[21] Thacker, W. C. The role of the hessian matrix in fitting models to measurements.
Journal of Geophysical Research: Oceans 94, C5 (1989), 6177–6196.

[22] Wu, D., Wang, Y., Xia, S.-T., Bailey, J., and Ma, X. Skip connections matter: On
the transferability of adversarial examples generated with resnets. unpublished, 2020.

[23] XalosXandrez. Batch normalization before or after relu? https://www.reddit.
com/r/MachineLearning/comments/67gonq/dbatchnormalizationbeforeorafterrelu/.
Published: 2017-04-25.

[24] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregated residual transfor-
mations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2017), pp. 1492–1500.

[25] Yu, D., Seltzer, M. L., Li, J., Huang, J.-T., and Seide, F. Feature learning in deep
neural networks-studies on speech recognition tasks. arXiv preprint arXiv:1301.3605
(2013).

The University of Edinburgh, School of Informatics, 10 Crichton St, New-
ington, Edinburgh EH8 9AB, United Kingdom

Email address: T.V.Pricope@sms.ed.ac.uk

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/

	1. Introduction
	2. Identifying problems of a deep CNN
	3. Background Literature
	3.1. Batch Normalization
	3.2. Residual Neural Networks
	3.3. Densely connected neural networks

	4. Solution Overview
	5. Experiments
	6. Discussion
	7. Conclusions and Further Work
	References
	Bibliography

