
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.05

PRELIMINARY MEASUREMENTS IN IDENTIFYING

DESIGN FLAWS

CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Abstract. Software metrics are of great importance in object-oriented
design assessment. They quantify various aspects of design entities and
play an important role in predicting design quality. Despite the fact that
software metrics have become increasingly useful, they raise several issues.
Among them, relevant to our research are the issue of setting threshold val-
ues and the problem of measurement results interpretation. Fuzzy cluster-
ing analysis is used to overcome the limitations of the existing approaches
that are using threshold values for metrics and to provide a better inter-
pretation of the obtained measurement results.

This paper focuses on metrics-based design flaw detection in object-
oriented design. A new metric, Design Flaw Entropy which measures the
distribution of design flaws into the analyzed system is introduced. To
validate the proposed approach, a case study was also proposed.

1. INTRODUCTION

Over an extended period of time software systems are often subject to a
process of evolution, applications becoming very large and complex. They
undergo repeated modifications in order to satisfy any requirement regarding
a business change. The result is that the code deviates from its original design
and the system becomes unmanageable. A minor change in one of its parts may
have unpredictable effects in completely other parts [1]. To avoid such risk
a high quality design should be preserved throughout the system life cycle.
This can be achieved by repeatedly assessing the system design, aiming to
identify in due course those design entities that do not comply with the rules,
principles and practices of a good design, and suggesting possible refactorings
or improvements to be performed.

Received by the editors: April 25, 2017.
2000 Mathematics Subject Classification. 68N30, 68T37.
1998 CR Categories and Descriptors. code D.2.8 [Software Enginnering]: Metrics

– Product metrics; code D.1.5 [Pattern recognition]: Clustering – Algorithms.
Key words and phrases. Software metrics, object oriented design, fuzzy clustering.

60



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 61

As a consequence of the above detailing, our previous work [10] was focused
on developing a methodology for quantitative evaluation of object-oriented
design. The proposed methodology is based on static analysis of the source
code and is described by a framework of four abstraction layers. A new method
for measurements results interpretation, based on fuzzy clustering technique,
is also contained in this framework.

The above mentioned proposed methodology for design assessment is com-
pleted in this paper with a new metric, Design Flaw Entropy (DFE), which
offers preliminary measurements in identifying those parts of the system design
that suffers from degradation. In other words, the DFE metric measures the
dispersion or the distribution of a specified design flaw among the analyzed
design entities. The proposed metric is based on fuzzy clustering analysis
method which aims to overcome the limitations of existing approaches that
use thresholds values for metrics used.

The rest of the paper is organized as follows. The description and relevance
of the problem of object-oriented design assessment briefly emphasizing the
main layers of the above mentioned framework is presented in Section 2. The
Design Flaw Entropy metrics is introduced in Section 3, by giving the def-
inition, representative examples and the properties. To validate this metric
in Section 4 a case study that aims to identify those classes from a software
system that are affected by ”God Class” design flaw is presented. Section 5
presents some metric-based related approaches for solving the object-oriented
assessment problem and also discuses their limitations. Finally, Section 6
summarizes the contributions of this work and outlines directions for further
research.

2. OBJECT-ORIENTED DESIGN ASSESSMENT PROCESS

In this section we aim at presenting the problem of object-oriented assess-
ment and its relevance, as well as the main steps of the software assessment
process.

The main steps needed to be performed in any software assessment process
require a clear specification of entities that are evaluated (the assessment do-
main) and of the assessment objectives, as well as the identification of methods
and techniques that offer a relevant interpretation of the assessment results
obtained (a thorny issue, insufficiently explored so far in the literature).

All the above mentioned elements are described in a formal manner in
our previous proposed methodology for object-oriented design assessment [10],
defining the contextual background for the proposed metric, metric that com-
pletes our previous work and adds more relevance to the interpretation of the
assessment results.



62 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Therefore, in what follows we briefly describe these steps of the software
assessment process:

(1) Domain Assessment identification.
(2) Setting the assessment objectives.
(3) Computing the metrics values. Fuzzy partition determination. As-

sessment results analysis.

2.1. Domain Assessment identification. The proposed methodology for
a quantitative assessment of object oriented design [10] uses static analysis of
the source code. Therefore, the assessed domain should capture only those
elements that define the structure of an object-oriented system: the design
entities (e.g. classes, packages) that are relevant for the analysis, together
with their properties (e.g. the visibility level of attributes) and the relation-
ships (e.g. methods access attributes) that exist between them. Marinescu [1]
gathers these elements into a model for object-oriented design.

Our previous work [10] has defined in a formal manner, using terms of
algebraic sets and relations, the above mentioned elements, introducing a new
background used to formally define metrics and to establish the assessment
objectives.

In what follows, the 3-tuple:

D(S) = (E,Prop(E), Rel(E))

represents the assessment domain corresponding to a software system S, where:
E represents the design entities set of S; Prop(E) defines the properties of
the elements from E, and Rel(E) represents the relations between the design
entities of the set E.

2.2. Setting the assessment objectives. The main objective of an object-
oriented software assessment is that of verifying whether the built system
meets quality factors such as maintainability, extensibility, scalability and
reusability. Fenton’s axiom [15] states that good internal structure should
provide good external quality. Consequently, the assessment objectives are
reduced to verifying if there is conformity between the software system inter-
nal structure and the principles and heuristics of good design. According to
Marinescu [1] these principles and heuristics of good design are related with
the internal quality attributes such as coupling, cohesion, complexity and data
abstraction.

A design feature that indicates deviations from good design principles is
named “design flaw” [1]. In recent years, the literature displays various forms
of descriptions for bad or flawed design such as bad-smells [12]. The commu-
nity of researchers [1, 12, 14, 5] was interested in setting a relation between
the principles of good design with the design flaws. They wanted to seek what



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 63

the violated principles or rules were for a certain design flaw or vice versa,
what were the design flaws that could propagate in code if a design principle
was violated. These design flaws or principles are than correlated with metrics
to quantify these aspects and to automate the assessment process. According
to these, the assessment objectives are reduced at identifying a list of design
entities, called “suspect” which are affected by a specified design flaw. More
detailed, being given a list of design entities AEp that are evaluated with re-
spect to a specified design flaw p, we have to establish its corresponding design
principles and for each of these principles some relevant software metrics Mp.
Based on the metrics values, computed on a given design entities set, we aim
to identify the suspect entities.

2.3. Computing the metrics values. Fuzzy partition determination.
After establishing the assessment objectives, the next step is metrics computa-
tion. In order to automatically compute these metric and to obtain the fuzzy
partition, we have developed a tool, called Metrics written in C#. Metrics is
divided in five components, Metrics Worker, Parser, Design Entities Model,
Metric Definitions and Fuzzy Analysis.

The results of the assessment, done in an automatically manner, are there-
fore, the values of selected metrics
Mp = {m1,m2, ...,mnoMp}, computed on each design entity from the assessed
design entities set AEp.

To overcome the limitation encountered when a metric based approach is
used, that of setting the thresholds for the metrics values, the fuzzy clustering
analysis is used. Thus, an entity may be placed in more that one group,
having different membership degree, obtaining a fuzzy partition defined as in
Definition 1:

Definition 1. ([10]) Fuzzy partition of the design entities.
A set UAEp,Mp = {U1, U2, ..., Uc} is called a fuzzy partition of the design entities
set AEp = {e1, e2, ..., en}, entities characterized by the values of metrics the
Mp = {m1,m2, ...,mnoMp} iff:

• Ui = (ui1, ui2, ..., uin), 1 ≤ i ≤ c;
• uij ∈ [0..1], 1 ≤ i ≤ c, 1 ≤ j ≤ n, uij – represents the membership

degree of the design entity ej to cluster i;

•
c∑

i=1
uij = 1, 1 ≤ j ≤ n – the sum of each column of U is constrained

to the value 1.

If c = 2 then U is called a binary fuzzy partition.
The fuzzy partition U best represents the cluster substructure of the data

set AEp, i.e. objects of the same class should be as similar as possible (the



64 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

difference between any two metrics values of these objects is very close to
0 value), and objects of different classes should be as dissimilar as possible.
The measure used for discriminating objects (classes) can be any metric or
semimetric function (d). In our approach we have used the Euclidian distance
metric.

Fuzzy Divisive Hierarchic Clustering (FDHC) algorithm [11] was applied
to determine a fuzzy partition. The FDHC algorithm produce a binary tree
hierarchy that provides an in-depth analysis of the data set, by deciding on
the optimal number of clusters and the optimal cluster substructure of the
data set. The leaves of the binary tree hierarchy determine an optimal fuzzy
partition of the assessed entities.

Based on previously obtained optimal fuzzy partition, we have to decide
which design clusters contain suspect entities and which of them require further
investigation. This decision is influenced by the distribution of entities per
clusters (how many entities have dominant membership degree in that cluster),
being also the distribution of the analyzed design flaw into the system. It is
obvious the fact that a uniform distribution of entities per cluster highlights
a difficult re-factorization. For example, if we have a system with sixty design
entities divided into two clusters with thirty entities on each of them, it will
be hard to make a decision to redesign thirty entities out of sixty. Conversely,
if the two clusters contain eight and fifty two entities, it is much easier to
take a decision. In the following, we’ll introduce a metric to provide us with
information on defect design entities distribution. This metric measures also
the effort needed in order to restructure the system design. A high value of
this metric suggesting that the system is compromised and would require a
redesign from scratch.

The next section introduces this metric, discusses some representative ex-
amples and identifies its main properties.

3. Design Flaw Entropy Metric

As we have mentioned before, our goal is to define a metric (Design Flaw
Entropy - DFE) which could provide an in-depth analysis regarding the distri-
bution of an analyzed design flaw (the degree of its spread into the system) in
order to converge through an optimal decision regarding the set of “suspect”
design entities.

DFE is defined considering the notion of entropy adapted from communi-
cation information theory of Shannon [23]. Starting from this concept many
researchers [19, 20, 21, 22] have developed new measures for the assessment of
software products.



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 65

3.1. Design Flaw Entropy metric definition. Let us consider a fuzzy par-
tition UAEp,Mp = {U1, U2, . . . , Uc} of design entities AEp = {e1, e2, ..., en},
entities characterized by the values of metrics Mp = {m1,m2, . . . , mnoMp},
metrics selected in order to quantify a specified design flaw p.

Definition 2. We say that an entity ej ∈ AEp, 1 ≤ j ≤ n, have dominant
membership degree to cluster Ui, 1 ≤ i ≤ c, if uij = max{urj |r = 1, c}.

Definition 3. The relative frequency of occurrence or the probability of a clus-
ter Ui ∈ UAEp,Mp, denoted by p(Ui), represents the ratio between the number
of entities from AEp that have dominant membership degree to cluster Ui and
the total number of entities from AEp.

We will denote by PUAEp,Mp
= {p(U1), p(U2), . . . , p(Uc)} the probability dis-

tribution per clusters of the partition UAEp,Mp .

Definition 4. A measure of the information (self-information) contained in
a cluster Ui ∈ UAEp,Mp is defined as I(Ui) = − log2 p(Ui).

In the context of the previous definitions and notations, we can now intro-
duce the definition of the proposed metric.

Definition 5. Design Flaw Entropy (DFE) corresponding to fuzzy partition
UAEp,Mp is defined as the average of the self-information associated to each
cluster Ui ∈ UAEp,Mp. Formally:

DFE : FP (AEp,Mp)→ [0..∞],

DFE(UAEp,Mp) =

c∑
i=1

p(Ui) · I(Ui)

where FP (AEp,Mp) is the set of all fuzzy partitions of the design entities
set AEp, entities characterized by the values of metrics Mp = {m1,m2, . . . ,
mnoMp}, metrics selected in order to quantify a specified design principle or
design flaw p.

The definition of this metric can be shortly described as follows: for each
cluster c of the analyzed fuzzy partition, we compute its probability distribu-
tion as a ratio between the number of entities that have dominant membership
degree to that cluster and the total number of analyzed entities. We also com-
pute a measure of the information (self-information) contained in that cluster
that is next used in the definition of the DEF metric: the average of the
self-information associated to each cluster.



66 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

3.2. Further analysis of DFE metric. Representative examples. For a
given set of entities, the value of DFE metric depends on the number of clusters
of the obtained fuzzy partition and on the entities distribution per clusters.
In order to identify the properties of this metric and to better emphasize its
meaning, several representative examples are discussed in what follows. We
compute the value of DFE metric for nine different fuzzy partitions on a set
of sixty design entities. The meaning of these values are also discussed.

The first considered partition U1 = {U1,1} has one cluster (c = 1) with the
probability distribution per clusters PU1 = (60/60), all design entities having
dominant membership degree on the same cluster. The DFE metric value
being in this case:

(1) DFE(U1) = −p(U1,1) · log2 p(U1,1) = −1 · 0 = 0.

The meaning of such a situation is that all entities are equally affected by
the analyzed design flaw, a case almost impossible to meet.

The second partition U2 = {U2,1, U2,2} has two clusters (c = 2) with the
probability distribution per clusters PU2 = (1/60, 59/60), one design entity
having dominant membership degree on the first cluster and 59 entities on the
second one. The DFE metric value being:

DFE(U2) = −(p(U2,1) · log2 p(U2,1) + p(U2,2) · log2 p(U2,2))

= −(1/60 · log2 1/60 + 59/60 · log2 59/60) = 0.12.
(2)

In this example one entity need to be reviewed.
The third partition U3 = {U3,1, U3,2} has two clusters (c = 2) with the

probability distribution per clusters PU3 = (2/60, 58/60), two design entities
having dominant membership degree on the first cluster and 58 entities on the
second one. The DFE metric value being in this case:

DFE(U3) = −(p(U2,1) · log2 p(U2,1) + p(U2,2) · log2 p(U2,2))

= −(2/60 · log2 2/60 + 58/60 · log2 58/60) = 0.21.
(3)

The U3 partition is very similar with U2, identifying two entities to be
reviewed.

The fourth partition U4 = {U4,1, U4,2} has two clusters (c = 2) with the
probability distribution per clusters PU4 = (10/60, 50/60), 10 design entities
having dominant membership degree on the first cluster and 50 entities on the
second one. The DFE metric value being in this case:

DFE(U4) = −(10/60 · log2 10/60 + 50/60 · log2 50/60) = 0.65.(4)



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 67

Now, we can observe that once the entities distribution per clusters tends
to be uniform, the DFE metric value increases. This means that the number
of entities that need to be reviewed is higher.

The fifth partition, U5 = {U5,1, U5,2} has two clusters (c = 2) with an
equiprobable distribution per clusters PU5 = (30/60, 30/60). The DFE metric
value being in this case:

(5) DFE(U5) = −(30/60 · log2 30/60 + 30/60 · log2 30/60) = 1.

In such a case the analyzed design flaw is spread on half of the system design
or even more, at least fifty percents of design entities are affected.

The sixth partition, U6 = {U6,1, U6,2, U6,3} has three clusters (c = 3) with
the probability distribution per clusters PU5 = (1/60, 1/60, 58/60), one design
entity having dominant membership degree on the first cluster, one have on
the second cluster and 58 entities on the third one. The DFE metric value
being in this case:

DFE(U6) = −(1/60 · log2 1/60 + 1/60 · log2 1/60,

58/60 · log2 58/60) = 0.45.
(6)

A case very similar with the second one, but with three clusters.
The seventh partition, U7 = {U7,1, U7,2, U7,3} has three clusters (c = 3) with

the probability distribution per clusters PU7 = (1/60, 2/60, 57/60), one design
entity having dominant membership degree on the first cluster, two have on
the second cluster and 57 entities on the third one. The DFE metric value
being in this case:

DFE(U7) = −(1/60 · log2 1/60 + 2/60 · log2 2/60,

57/60 · log2 57/60) = 0.53.
(7)

The eighth partition, U8 = {U8,1, U8,2, U8,3} has three clusters (c = 3) with
the probability distribution per clusters PU8 = (10/60, 20/60, 30/60), 10 design
entities having dominant membership degree on the first cluster, 20 have on
the second cluster and 30 entities on the third one. The DFE metric value
being in this case:

DFE(U8) = −(10/60 · log2 10/60 + 20/60 · log2 20/60,

30/60 · log2 30/60) = 1.45.
(8)

Here, we can observe again that, once the probability distribution per clus-
ters tends to be equiprobable (uniformity) the analyzed design flaw is spread
almost over the entire system.



68 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Table 1. Representative examples of DFE metric computed
on 9 partitions of 60 design entities

Uk c PUk
= (p(Uk,1), p(Uk,2), ..., p(Uk,c)) DFE(Uk)

U1 = {U1,1} 1 (60/60) 0
U2 = {U2,1, U2,2} 2 (1/60, 59/60) 0.12
U3 = {U3,1, U3,2} 2 (2/60, 58/60) 0.21
U4 = {U4,1, U4,2} 2 (10/60, 50/60) 0.65
U5 = {U5,1, U5,2} 2 (30/60, 30/60) 1
U6 = {U6,1, U6,2, U6,3} 3 (1/60, 1/60, 48/60) 0.45
U7 = {U7,1, U7,2, U7,3} 3 (1/60, 2/60, 47/60) 0.53
U8 = {U8,1, U8,2, U8,3} 3 (10/60, 20/60, 30/60) 1.45
U9 = {U9,1, U9,2, U9,3} 3 (20/60, 20/60, 20/60) 1.58

The ninth partition U9 = {U9,1, U9,2, U9,3} has three clusters, (c = 3) with
an equiprobable distribution per clusters PU9 = (20/60, 20/60, 20/60). The
DFE metric value being in this case:

DFE(U9) = −(20/60 · log2 20/60 + 20/60 · log2 20/60,

20/60 · log2 20/60) = 1.58.
(9)

Having all these representative examples into account, we can identify the
properties of the proposed metric. They are very important in order to draw
a conclusion regarding the meaning of DFE metric value. The next section
describes these properties.

3.3. Properties of the Design Flaw Entropy metric. Analyzing the in-
formation contained in Table 1 (that contains the above presented represen-
tative examples) we can conclude the following properties of DFE metric:

(1) DFE(UAEp,Mp) = 0⇔ c = 1, ∀UAEp,Mp ∈ FP (UAEp,Mp); This prop-
erty states that design flaw entropy is zero if and only if all entities
are placed on the same cluster. In this case the variety of the ana-
lyzed design flaw p is minimal, meaning that all entities are affected
on the same measure by the analyzed design flaw.

On the other hand, the possible maximum entropy occurs when
each entity is placed in a separate cluster. In such a case the number
of clusters equals to the number of entities:

DFE(UAE,M ) = − log2 1/n⇔ c = n ∧ p(Ui) = 1/n.



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 69

(2) Let us consider the set of all partitions from
FP (AEp,Mp) which have the number of clusters equals to c,

FPc(AEp,Mp) = {UAEp,Mp ∈ FP (AEp,Mp)

|UAEp,Mp = {U1, U2, ..., Uc}}.
In this case two values are important to be discussed: the mini-

mum and the maximum values of DFE metric:
• A minimum value of DFE metric is attained for the follow-

ing distribution of entities per clusters: (1/n, ..., 1/n, (n− c)/n),
where n is the number of entities. In what follows we denote
these values by MinDFE(n, c).
• On the other extreme, as the probabilities associated with each

cluster will have values closer together, the entropy will have a
higher value. At the limit, DFE reaches a maximum value for an
equiprobable distribution of elements per clusters: UAEp,Mp =

{U1, U2, ..., Uc}, p(Ui) = 1
c , 1 ≤ i ≤ c we have:

DFE(VAEp,Mp)) ≤ DFE(UAEp,Mp),
(∀)VAEp,Mp ∈ FP (AEp,Mp),
VAEp,Mp = {V1, V2, ..., Vc} we denote these values by MaxDFE(n, c).
In this case, the higher the entropy becomes, the more difficult
is to identify those design fragments that need to be reviewed.

(3) For an equiprobable distribution of elements per clusters, once the
number of clusters increases, the entropy will have a higher value:
(∀) UAEp,Mp , VAEp,Mp ∈ FP (AEp,Mp), UAEp,Mp = {U1, U2, ..., Uc},
VAEp,Mp = {V1, V2, ..., Vc, Vc+1} such that p(Ui) = 1

c , p(Vj) = 1
c+1 , (1 ≤

i ≤ c), (1 ≤ j ≤ c + 1) we have:

DFE(UAE,M ) ≤ DFE(VAE,M ).

4. Experimental evaluation

In this section we present an empirical validation of our proposed metric.
This validation is based on a case study which aims to evaluate the design of
an open source object-oriented software system, called log4net [13]. It consists
of 214 classes grouped in 10 packages.

4.1. God Class suspect identification - a fuzzy based approach. The
objective of the proposed assessment is to identify those design entities affected
by “God Class” [12] design flaw. An instance of God Class does most of the
operation tasks, leaving only minor details to a series of trivial classes; it



70 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Table 2. The distribution per clusters of the class design entities

Cluster No. of members with dominant membership degree

1.1.1 19
1.1.2 23
1.2.1 42
1.2.2 106
2.1 14
2.2 10
Total number of entities = 214

also uses the data from other classes. Briefly, God Class design flaw refers to
those classes “which tend to centralize the intelligence of the system” [1]. As a
consequence, the principle of manageable complexity is violated, as god classes
tend to capture more than one abstraction. Another shortcoming of these
pathological classes is their tendency towards non-cohesion. If we consider the
quality attributes, god classes also have a negative impact on the reusability
and understandability of that part of the system they belong to.

Marinescu [1] correlates this design flaw with the metrics: Weighted Meth-
ods per Class (WMC) [6], Tight Class Cohesion (TCC) [7], Access to Foreign
Data (ATFD) [1]. Analyzing the definitions of these metrics, we can conclude
that a possible “God Class” suspect will have high WMC and ATFD metric
values and low TCC metric values. As we mentioned earlier, due to the fact
that is hard to establish a threshold for metrics values, we have proposed a
new approach based on fuzzy clustering analysis.

The assessed entities, AEGodClass, are the set of classes from our “log4net”
application. After computing the metrics values for each class design entity,
we apply the FDHC algorithm in order to obtain the optimal fuzzy partition,
denoted as UAEGod Class,MGod Class

= {1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1, 2.2}. Table 2
contains the distribution of entities per clusters. This is a filtered information
needed for DFE metric computation. However, the complete data of this
partition is required for further analysis in order to establish the final list of
suspect entities.

An important aspect regarding this partition, is that of isolated data points.
These entities defined a new cluster for the partition denoted by UAEGod Class,MGod Class

.
In order to study the distribution of God Class design flaw into our system,

we compute the DFE metric, introduced in Section 3. The obtained value of
DFE metric, DFE(UAEGod Class,MGod Class

) = 2.22. is then compared with the
minimum (MinDFE(214,7)=0.32) and the maximum (MaxDFE(214,7)=2.81)
values of this metric, computed on a set of 214 entities distributed in 7 clusters.



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 71

The probability distribution of the corresponding partition for minimum and
maximum values of DFE metric being:

(1/214, 1/214, 1/214, 1/214, 1/214, 1/214, 198/214),

(30/214, 30/214, 30/214, 30/214, 30/214, 30/214, 34/214).

By analyzing the value of the DFE metric, we can observe that the values
are very close to the maximum value, “saying” that many parts of the software
systems must be revised. The computation of DFE metric gives us preliminary
information regarding the extent to which our system design is affected by God
Class flaw. Further analysis is needed in order to identify those classes that
need to be refactored.

5. Related approaches

This section presents the current state of art regarding the entropy metric
as a measure of object-oriented design quality and analyzes the differences
compared with our present approach.

Object-oriented design assessment are traditionally done in metrics-centric
manner. Using the notion of entropy from communication information theory,
new measures [19] were developed for the assessment of software designs. The
metric is computed using information available in class definitions. The new
complexity measure of classes is correlated with traditional complexity mea-
sures such as McCabe’s cyclomatic metric and the number-of-defects metric.
The defined entropy metric is shown to be a reliable measure in predicting the
implementation complexity of classes, given that the design of the classes does
not change substantially during implementation. In relation to this existing
approach, our proposal uses the same “initial” definition of entropy but applied
to measure design flaw in an already developed object-oriented system.

An approach was proposed in [9]. The authors propose the use of entropy as
defined in Information Theory [23], to evaluate the initial status of an object-
oriented design as well as its status after the addition of new functionality.
The difference between the entropy of the two systems provides insight to the
quality of the design in terms of how flexible it has been during the enhance-
ment of its functionality. Our approach aims to achieve goals similar to [9], to
differentiate “good”from “bad” designs by the use of an information theoretic
entropy metric. We argue that our model differs by the fact that DFE metric
can be applied for any design alteration type not only for the extension of the
system’s functionality.

Another type of metrics based assessment of an object-oriented system is
defined using only the class definition [20] and not information from the class
implementation. The proposed metric is a true design metric that can be



72 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

calculated during the design phase of the software maintenance or development
life cycles, before any code has been implemented. The metric could provide a
better early indication (in the design phase rather than in the implementation
phase) of the design complexity than has been available before. Our model
retrieves information for metric computation by parsing the source but also
it could be applied at the design phase, but the amount of information beeng
limited at this stage (ex. methods’ complexity).

By replicating and extending previous studies on the entropy of software
systems, in [24] the authors defined three entropies as global metrics at the
system level, in terms of three CK metrics computed at the class level. They
extended the empirical analysis also to RFC and CBO since these CK metrics
have been shown to be correlated with fault-proneness of OO class. With the
aim of finding a global metric for describing software quality in terms of code
degradation and reduced maintainability during time, they correlated such
metrics to the variation in time of the total number of defects of the system
a good measure of defect proneness. Our current approach considers a fuzzy
partition obtained starting from any object oriented metric that is selected to
quantify features related to asessed design entities.

As a conclusion, in relation to this existing approach, our also uses the no-
tion of entropy from communication information theory [23], but applied to
measure design flaw in an object-oriented system, either for an already devel-
oped object-oriented system or for an extension of the systems functionality.
The information for metric computation is obtained by parsing the source
code, and regarding the threshold criteria our approach overcomes the limita-
tion impose by it, using a fuzzy clustering method.

6. Conclusion and Future Work

Software metrics are considered of great importance in software quality
assurance. In spite of this fact, there is a gap between the things measured and
the ones really important in terms of quality characteristics. This discontinuity
is due mainly to the fact that the methods currently used for interpreting
metrics results are at a low level of abstraction, incomplete and sometimes
irrelevant. The current paper proposes a new metric - Design Flaw Entropy
(DFE) - which completes our previous framework for object oriented design
assessment, being very useful in measurements results interpretation.

To highlight the relevance of our proposed approach, a case-study has been
used which aims to identify those classes from a software system that are
affected by ”God Class” design flaw. The source code of the open source
object-oriented software system, called log4net [13] was used.

For future work, we intend to focus our research in the following directions:



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 73

• to apply the proposed evaluation framework on more case studies;
• to repeat the evaluation for a new version of the software system,

after some suggested refactorings were applied;
• to automate the task of establishing the list of suspect entities and

the list of refactorings that could be applied.

References

[1] R. Marinescu. Measurement and quality in object-oriented design, Ph.D. thesis, Faculty
of Automatics and Computer Science, Politehnica University of Timisoara, 2003.

[2] S. Mazeiar, Li. Shimin, and T. Ladan. A Metric-Based Heuristic Framework to Detect
Object-Oriented Design Flaws Proceedings of the 14th IEEE International Conference
on Program Comprehension (ICPC06), 2006.

[3] P.F. Mihancea, and R. Marinescu. Towards the optimization of automatic detection of
design flaws in object-oriented software systems, In Proc. of the 9th European Conf. on
Software Maintenance and Reengineering, 92-101, 2005.

[4] L. Tahvildari, and K. Kontogiannis. Improving design quality using meta-pattern trans-
formations: A metric-based approach, Journal of Software Maintenance and Evolution:
Research and Practice, 16, 331-361, 2004.

[5] A.J. Riel. Object-Oriented Design Heuristics, Addison-Wesley, 1996.
[6] S. Chidamber, and C. Kemerer. A metric suite for object-oriented design, IEEE Trans-

actions on Software Engineering, 20(6), 476–493, 1994.
[7] J.M. Bieman, and B.K. Kang. Cohesion and Reuse in an Object-Oriented System, ACM

Symposium on Software Reusability, 1995.

[8] M. O’Keeffe, and M.Ó. Cinnéide. Search-based refactoring: an empirical study, Journal
of Software Maintenance and Evolution: Research and Practice, 20, 345–364, 2008.

[9] A. Chatzigeorgiou, and G. Stephanides. Entropy as a Measure of Object-Oriented De-
sign Quality, 1st Balkan Conference on Informatics (BCI’2003), 21–23, 2003.

[10] C. Serban. A Conceptual Framework for Object-oriented Design Assessment. Computer
Modeling and Simulation, UKSim Fourth European Modelling Symposium on Computer
Modelling and Simulation, 90–95, 2010.

[11] D. Dumitrescu. Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145–162,
1988.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code, Addison-Wesley, 1999.

[13] Open source project: log4net, http://logging.apache.org/log4net.
[14] R. Martin. Design Principles and Patterns:

http://www.objectmentor.com/resources/articles/Principles and Patterns.pdf, 2006.
[15] N. Fenton. Software measurement: A necessary scientific base, IEEE Transactions on

Softw. Engineering, 20(3), 1994.
[16] J. Han, and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers, (2001).
[17] A. Jain, and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs,

New Jersey, 1998.
[18] A. Jain, M.N. Murty, and P. Flynn. Data clustering: A review. ACM Computing Sur-

veys, 31(3):264–323, (1999).



74 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

[19] J. Bansiyav, C. Davis, L. Etzkorn. An entropy-based complexity measure for object-
oriented designs. Theory an Practice of Object Systems. 5(2):111–118, 1999.

[20] L. Etzkorn, S. Gholston, and W.E. Hughes. A semantic entropy metric. Journal of
Software Maintenance: Research and Practice. 14(4):293–310, 2002.

[21] A. Marcus, M. Boxall, and S. Araban. Interface Metrics for Reusability Analysis of
Components. Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC’04), 2004.

[22] K. Kim, Y. Shin, and C. Wu. Complexity Measures for Object-Oriented Program Based
on the Entropy. In Proceedings of the Second Asia Pacific Software Engineering Con-
ference, 1995.

[23] C.E. Shannon, and W. Weaver. The Mathematical Theory of Communication. Urbana,
IL, University of Illinois Press, 1949.

[24] I. Turnu, G. Concas, M. Marchesi, and R. Tonelli. Entropy of some CK metrics to Assess
Object-Oriented Software Quality. International Journal of Software Engineering and
Knowledge Engineering, 23(3), 2013.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {camelia,avescan,hfpop}@cs.ubbcluj.ro


