
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXV, Number 1, 2020
DOI: 10.24193/subbi.2020.1.05

PERFORMANCE EVALUATION OF BETWEENNESS

CENTRALITY USING CLUSTERING METHODS

BENCE SZABARI AND ATTILA KISS

Abstract. Betweenness centrality measure is used as a general measure
of centrality, which can be applied in many scientific fields like social net-
works, biological networks, telecommunication networks or even in any
area that can be well modelled using complex networks where it is impor-
tant to identify more influential nodes. In this paper, we propose using
different clustering algorithms to improve the computation of betweenness
centrality over large networks. The experiments show how to achieve faster
evaluation without altering the overall computational complexity.

1. Introduction

Nowadays, large networks play a vital role in many scientific areas like
computer science [17], social engineering [11], biology [13], chemistry [8], [9],
building sensor networks [1]. Over the years many centrality measures were
defined such as closeness centrality which is based on the average length of
the shortest path between a selected node and all other nodes in the graph.
[3] The eigenvector centrality where the score of a node is influenced by the
scores of its adjacents nodes. [19] Furthermore, betweenness centrality which
quantifies the number of times when a node behaves like a connecting bridge
along the shortest path between two vertices. [7].

All of these are used to identify the most important nodes within a graph,
based on different conditions and criteria. In this paper, we will focus on
betweenness centrality. This centrality measure is still quite popular since it
can be applied in many fields. A common example is, in a telecommunica-
tions network we can find those nodes which have the most influence over the
network since a node with higher betweenness centrality has more control and

Received by the editors: 17 May 2020.
2010 Mathematics Subject Classification. 68U99, 94C15.
1998 CR Categories and Descriptors. C.2.1 [Computer-Communication Net-

works]: Network Architecture and Design – Network communications; G.2.2 [Discrete
mathematics]: Graph Theory – Graph algorithms.

Key words and phrases. clustering, complex networks, centrality measures, community
detection, parallel computation.

59



60 BENCE SZABARI AND ATTILA KISS

more information can pass through. However, calculation of these values for
each node is an extremely time-consuming procedure even though, in the past
few years several more efficient algorithms have been developed. [6], [2], [14].

1.1. Related work. In this paper, we propose a novel cluster-based algo-
rithm which addresses the issue of identifying influential nodes in complex
networks using betweenness centrality. For clustering, we use the Louvain,
Markov and Paris algorithm, these algorithms were introduced in [4] [18] [5].
Afterwards, we assign a cluster to each of the nodes of the network, we can
calculate the centrality measure on these smaller sub-graphs thereby reducing
the calculation time. We also use a modified version of this algorithm, where
we introduce a parallel computation model.

The paper is organized as follows. Section 2.1 gives a brief overview of
the definition of a graph, essential graph theory concepts and the definition of
betweenness centrality. In this section, the examined clustering algorithms are
also explained and in 2.3 the proposed algorithm was described. In Section 3,
the implemented experiments are described in detail which is based on real-life
networks to highlight the difference in performance between the proposed and
the other methods. The conclusion and the possible future work about the
issue in question can be seen in Section 4.

2. Overview of clusterization algorithms

2.1. Preliminary and concepts.

Definition 2.1 Adjacency matrix
An adjacency matrix is a n× n square matrix A, in which:

(1) aij =

{
1 if there exists an edge from vi to vj

0 otherwise

Definition 2.2 Betweenness centrality
Betweenness centrality is defined as

g(v) =
∑
s 6=v 6=t

σst(v)

σst

where σst is the total number of shortest paths from node s to node t and
σst(v) is the number of those paths that pass through v.

2.2. Graph clustering. The goal of graph clustering is to divide nodes into
different clusters in a large graph based on specific criteria such as node con-
nectivity or neighbourhood similarity. Clustering techniques are useful for the



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 61

detection of densely connected groups in a large graph. In the following, we
examine the following clustering algorithms: Markov, Louvain and Paris.

2.2.1. Markov algorithm.

Definition 2.3 Markov matrix
A matrix A is a Markov matrix if its entries are greater than or equal to zero
and each column’s entries sum to one. Furthermore, each entry represents
transition probabilities from one state to another.

Definition 2.4 Random walk
Let G be a graph or a digraph (directed graph) with the additional assumption
that if G is a digraph, then deg+(v) > 0 for every vertex v. Now let’s have an
object placed at vertex vj . At each stage, the object must move to an adjacent
vertex. The probability that it moves to vertex vi is denoted as

(2)

mij =

{
1

deg(vj)
if (vj , vi) is an edge in G, in case of digraph it is 1

deg+(vj)

0 otherwise

where mij represents the probability that a random walk of length k starting
at vertex vj , ends at vertex vi, where the length is the number of edges.

Figure 1. Example of Markov matrix
1

2

3

4

5

M =


0 0.5 0.33 0 0

0.5 0 0 0 0.33
0.5 0 0 0.5 0.33
0 0 0.33 0 0.33
0 0.5 0.33 0.5 0



Random walk is a special case of the Markov chain, using the transition
probability matrices. By walking randomly on a graph, we can find out where
the flow tends to gather, and therefore where the clusters are located. This is
the concept what Markov clustering and other clustering algorithms are based
on.

Definition 2.5 Inflation
Given a matrix M ∈ Rk×l,M ≥ 0, and a real non-negative number r, the
matrix resulting from re-scaling each of the columns of M with the power



62 BENCE SZABARI AND ATTILA KISS

coefficient r is called τrM and τr is called the inflation operator with power
coefficient r.

τr : Rk×l −→ Rk×l

(τrM)pq = (Mpq)
r/
∑k

i=1 (Miq)
r

In this case, the inflation operator is responsible for both strengthening
and weakening of current while the parameter r controls the extent of this
strengthening or weakening. Expansion is when we take the powers of the
Markov Chain transition matrix, and it is responsible for allowing flow to
connect different regions of the graph.

The algorithm converges to a ”doubly idempotent” matrix which is at
steady-state and there is only one value in a single column. To be able to
identify clusters, the nodes are divided into two groups: attractors that at-
tract other nodes, and nodes influenced by the previous group. Attractors
always have at least one positive value within their row in the steady state-
matrix and they draw those nodes that having a positive value in the same
row. Nodes that have such a relationship can be classified in the same group.

Figure 2. Example of steady state matrix
1 − 1 − − −
− − − − − −
− 1 − 1 − −
− − − − 0.5 0.5


clusters: (1, 3), (2, 4), (5, 6)

The Markov clustering algorithm can be summarized as follows. Given
an undirected graph, power parameter denoted as e, and inflation parameter
denoted as r. First create the adjacency matrix, then add self loop to each
node. After we have to normalize the matrix and expand it by taking the
eth power of it then inflate by taking inflation of the result with parameter r.
Repeat steps until we reach the steady-state, finally we can obtain clusters.

2.2.2. Louvain algorithm.

Definition 2.6 Modularity
The modularity of a partition is a scalar value between -1/2 and 1 that mea-
sures the density of links inside communities as compared to links between
communities. In case of weighted networks, it is defined by Newman and
Girvan [15]



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 63

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where

• Aij represents the edge weight between nodes i and j
• ki and kj are the sum of the weights of the edges attached to nodes
i and j, respectively
• m is the sum of all of edge weights in the graph
• ci and cj are the communities of the nodes
• δ is Kronecker delta function (δx,y = 1 if x = y, 0 otherwise)

Modularity can be used to compare the nature of the partitions collected
by different methods. Louvain clustering can find high modularity partitions
of large graphs and also unfold a complete hierarchical community structure
for the network quite effectively.

To maximize modularity, the Louvain method uses two phases that are
repeated iteratively. The algorithm’s input is a weighted graph of n nodes. In
the first step, we assign different community to each node of the graph which
means we have n communities. After that, for each node i we calculate the
gain of modularity what we can achieve by deleting i from its community and
by putting into a community of j, where j is the neighbour of i. The gain in
modularity ∆Q, when node i is moved into community C, can be calculated
as:

∆Q =

[∑
in +ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2
]

where

•
∑

in is sum of the weights of the links inside C
•
∑

tot is the sum of the weights of the links incident to nodes in C
• ki is the sum of the weights of the links incident to node i
• ki,in is the sum of the weights of the links from i to nodes in C and
m is the sum of the weights of all the links in the network

After this value is calculated for all communities i is connected to, i is placed
into the community that resulted in the largest modularity increase, if there
is no such increase then node i stays its original community. This process is
applied to all nodes until no modularity increase can occur.

In the second step, it groups all nodes in the same community and creates
a new network where the nodes are the groups of the previous step. Links



64 BENCE SZABARI AND ATTILA KISS

between nodes of the same group are represented as self-loops while links be-
tween different communities defined as weighted edges between the community
nodes.

2.2.3. Paris algorithm.

Definition 2.7 Weighted adjacency matrix
A weighted adjacency matrix is an A symmetric, non-negative matrix that for
each pair of (i, j) ∈ V, aij > 0 iff there is an edge between node i and node j,
and in this case aij is the weight of the edge i, j ∈ E.

Definition 2.8 Weight of a node
The weight of a node i is the sum of the weights of its incident edges

wi =
∑
j∈V

Aij .

In the case of unit weights, wi is the degree of node i. The cumulative
weight of the nodes is

w =
∑
i∈V

wi =
∑
i,j∈V

Aij .

In the following, we will refer to C as a cluster which is a subset of V . The
weights introduce a probability distribution on node pairs

∀i, j ∈ V, p(i, j) =
Aij
w
,

and also a probability distribution on nodes,

∀i ∈ V, p(i) =
∑
j∈V

p(i, j) =
wi
w
.

The distance between node i, j is defined as the node pair sampling ratio.

d(i, j) =
p(i)p(j)

p(i, j)

The node distance can be also defined in a different way, which comes from
the following conditional probability.

∀i, j ∈ V, p(i, j) =
p(i, j)

p(j)
=
Aij
wj

Then the distance between i and j can be be written as



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 65

d(i, j) =
p(i)

p(i|j)
=

p(j)

p(j|i)
Accordingly, consider a cluster C of the graph G. The weights induce a

probability distribution on cluster pairs

∀a, b ∈ C, p(a, b) =
∑

i∈a,j∈b
p(i, j)

and also a probability distribution on clusters,

∀a ∈ C, p(a) =
∑
i∈a

p(i) =
∑
b∈C

p(a, b)

and then the cluster pair sampling ratio is the distance between two different
clusters a, b:

d(a, b) =
p(a)p(b)

p(a, b)

Defines a conditional probability

∀a, b ∈ C, p(a|b) =
p(a, b)

p(b)

which is the conditional probability of sampling a given that b is sampled,
we have

d(a, b) =
p(a)

p(a|b)
=

p(b)

p(b|a)

this distance will be used in Paris clustering algorithm to merge the closes
clusters.

As in the Louvain algorithmn it starts with unique cluster therefore, every
node is a cluster. In all phases, the two closest cluster will be merged. In
section 2.2.2 we defined cluster modularity which can be rewritten in terms of
probability distributions,

Q(C) =
∑
i,j∈V

p(i, j)− p(i)p(j)δC(i, j).

It can also be expressed from the probability distributions at the cluster
level,

Q(C) =
∑
a∈C

(p(a, a)− p(a)2).



66 BENCE SZABARI AND ATTILA KISS

As Fortunato et al presented, maximizing the modularity has a resolution
limit. Therefore Bonald and Charpentier [5] introduced a multiplicative factor
γ, called the resolution. Then the modularity becomes:

Qγ(C) =
∑
i,j∈V

(p(i, j)− γp(i)p(j))δC(i, j)

Thus, the Paris algorithm can be understood as the deeply modified version
of the Louvain algorithm, where the first phase is replaced by a simple merge.

2.3. Proposed algorithm. We now introduce our algorithm that can obtain
betweenness centrality of large networks in a short time. We assume that out
network G is undirected and consists of N nodes. The algorithm is divided into
two-phase. First of all, we have to create clusters from the given network by
using the introduced algorithms. Once the clusters are generated, we receive
a mapping

(3)

c1 −→ [node ids]

. . .

cn −→ [node ids]

where the keys are the cluster labels and the values are a list of nodes that
belong to that cluster. These partitions form the basis of the method, therefore
the mappings are saved in JSON format for later use. It is important to note
that in the case of Markov clustering, the final result is greatly influenced by
the value of the inflation parameter, therefore, the choice of this parameter
requires a pre-calculation for each graph. To optimize this parameter, we
selected numbers between [1.1, 2, 6] intervals and then determined the value
that produced the best modularity value.

In the second phase, we apply a concept similar to the divide and conquer
programming strategy to graphs, as follows: first we have our large network G,
then we load the previously generated cluster mapping and we create a list of
sub-graphs based on the mapping. Thus, we obtain significantly smaller slices
from the graph, on which the calculation of the centrality value is a much
less expensive subproblem. Thereafter, we have to iterate through this list of
sub-graphs defined by the clusters and execute the algorithm for calculating
the betweenness centrality as described in [6].

To determine the betweenness centrality value for node v, we have to sum
the pair-dependencies of all pairs on that node, where the pair-dependency
was introduced as the dependency of a node s ∈ V on a single node v ∈ V :

δs(v) =
∑
t∈V

δst(v).



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 67

The calculation of the betweenness centrality can be split in two steps.
First, we compute the length and the number of the shortest paths between
all pairs then finally sum all pair-dependencies.

After the algorithm has performed on a single sub-graph, the sub-results
are aggregated to obtain the centrality values for the whole graph.

Algorithm 1: Clusterized betweenness centrality

Input : graph
Output: centrality-dict
centrality dict← {};
cluster types← [’Markov’, ’Louvain’, ’Paris’];

for type in cluster types do
cluster mapping ← create clusters(type);

sub graphs← graph.subgraph(cluster mapping);

for sub graph in sub− graphs do
subresult← calculate bc();

update(centrality dict, subresult);

end

end

return centrality dict;

We also introduce a parallel version of the previous method which takes
advantage of the multi-core computing capacity of today’s modern processors.
It contains the following changes: when we pass a sub-graph ofG denoted asG

′

to calculate the betweenness centrality, the function that calculates centrality
will accept a bunch of nodes and computes the contribution of those nodes to
the centrality of the whole network.

Also, it divides the network into chunks of nodes, therefore those centrality
measures can be calculated on separate different CPU cores as described in.
[10] To determine the node of chunks, we take the particular sub-graph and
divide it into N/number of cpu cores pieces where N is the number of nodes
in the sub-graph.



68 BENCE SZABARI AND ATTILA KISS

Determine the
number of
cpu cores

Create
chunks from
the subgraph

core1 core2 core3

distribute the chunks
between cpu cores

Aggregated
centrality
values

reduce the partial
solutions

Figure 3. Parallelized betweenness centrality

3. Experiments

For our experiments, we used six actual networks to evaluate the perfor-
mance of the examined method in case of big networks. The datasets are
mostly from social sites, which served as an excellent basis for our observa-
tion, as they have many vertices and edges, and we also took into account road
networks, web-networks. These networks are fb-pages-food, which consist of
620 nodes and 2100 edges, facebook-combined that has 4039 nodes and 88234
and power-bcspwr10 with 5300 nodes and 8300 edges. The fb-pages-politician
includes 5900 nodes and 41700 edges. Also web-spam with 4800 nodes and
37400 edges, road-euroroad with 1200 nodes and 1400 edges. These networks
can be gathered from [16] [12].

To demonstrate the efficiency of the proposed method, we made several
measurements with different scenarios. As we mentioned earlier we chose be-
tweenness centrality at the heart of our research therefore we will compare
these calculated values with the values presented by the investigated method.
In the proposed method we use Louvain, Markov and Parov clustering to cal-
culate these centrality values. The experiments are divided into the following
three parts and explained below.



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 69

From the clustering algorithms, only Markov clustering is not a parameter-
free method, in which case the following inflation parameters were used: fb-
pages-food (1.23), fb-pages-politician (1.17), while in the other networks in-
flation parameter was set to 2.

Table 1. Clusterization of the network

network louvain markov paris
facebook-combined 16 (0.37) 10 (0.83) 6 (0.19)

fb-pages-food 19 (−12 · 10−4) 10 (0.65) 6 (−6 · 10−4)
fb-pages-politician 30 (−25 · 10−4) 23 (0.87) 8 (−17 · 10−4)
power-bcspwr10 50 (0.01) 30 (0.95) 4 (0.28)
road-euroroad 48 (0.41) 40 (0.88) 26 (0.09)

web-spam 2 (−13 · 10−4) 29 (0.50) 2 (−4 · 10−6)

Table 1 summarizes how the networks were split into clusters, the first num-
bers are the number of clusters while the values in brackets are the clusters’
modularity. From this, it can be seen that the Louvain and Markov methods
created order of magnitude a similar number of clusters while the Paris algo-
rithm was able to detect quite a few groups within the same graph. In terms
of modularity, it can be seen that the Louvain algorithm has performed best,
while the other two algorithms have detected the lower density of links inside
communities.

3.1. Experiment 1. In this experiment, we compared the centrality values
for each node (referred to as simple) with values extracted from the proposed
method.

Table 2. facebook-combined top 5 nodes

rank simple louvain markov paris

1. 107 (0.48) 437 (0.86) 0 (0.82) 0 (0.76)
2. 1684 (0.34) 0 (0.83) 107 (0.72) 107 (0.68)
3. 3437 (0.24) 3980 (0.80) 698 (0.32) 1684 (0.31)
4. 1912 (0.23) 1684 (0.66) 1085 (0.32) 1912 (0.29)
5. 1085 (0.15) 1912 (0.54) 862 (0.32) 1577 (0.22)

Table 3. fb-pages-food top 5 nodes

rank simple louvain markov paris

1. 265 (0.35) 483 (1.00) 265 (0.28) 265 (0.28)
2. 31 (0.16) 141 (0.90) 518 (0.16) 518 (0.16)
3. 518 (0.14) 96 (0.83) 31 (0.12) 31 (0.12)
4. 618 (0.09) 265 (0.80) 220 (0.09) 220 (0.09)
5. 35 (0.09) 49 (0.74) 217 (0.08) 340 (0.09)



70 BENCE SZABARI AND ATTILA KISS

Table 4. power-bcspwr10 top 5 nodes

rank simple louvain markov paris

1. 5268 (0.27) 5144 (0.58) 4774 (0.00) 5040 (9.8 · 10−6)
2. 3160 (0.26) 2645 (0.52) 2941 (0.00015) 4146 (15 · 10−5)
3. 5298 (0.26) 4074 (0.47) 1519 (0.00) 4898 (14 · 10−5)
4. 5040 (0.25) 4891 (0.47) 4671 (0.00) 5074 (13.8 · 10−5)
5. 4752 (0.23) 5232 (0.47) 5223 (0.00) 4870 (13.5 · 10−5)

Table 5. fb-pages-politician top 5 nodes

rank simple louvain markov paris

1. 5800 (0.27) 3008 (0.80) 5800 (0.16) 5800 (0.28)
2. 1864 (0.06) 5646 (0.74) 2900 (0.14) 3576 (0.07)
3. 3576 (0.05) 5699 (0.65) 4032 (0.09) 1864 (0.07)
4. 2900 (0.05) 5800 (0.64) 3094 (0.06) 1965 (0.06)
5. 1324 (0.05) 96 (0.56) 158 (0.05) 4032 (0.04)

Table 6. road-euroroad top 5 nodes

rank simple louvain markov paris

1. 401 (0.21) 58 (1.00) 111 (1.00) 111 (1.00)
2. 283 (0.21) 61 (1.00) 968 (0.17) 401 (0.20)
3. 276 (0.20) 646 (1.00) 1132 (0.17) 400 (0.20)
4. 452 (0.18) 18 (0.72) 1133 (0.17) 283 (0.18)
5. 451 (0.17) 917 (0.68) 1103 (0.13) 431 (0.17)

Table 7. web-spam top 5 nodes

rank simple louvain markov paris

1. 4044 (0.09) 3956 (1.00) 4044 (0.09) 4044 (0.09)
2. 981 (0.06) 327 (1.00) 981 (0.06) 981 (0.06)
3. 2561 (0.04) 709 (1.00) 2561 (0.05) 2561 (0.04)
4. 3114 (0.03) 1548 (1.00) 2916 (0.04) 3114 (0.03)
5. 3070 (0.03) 813 (0.95) 3070 (0.04) 3070 (0.03)

In the case of all networks, it can be seen that the investigated method
mostly retained the nodes that were ranked among the top 5 peaks in the
original calculation, only a few cases added new nodes to the top of the ranking.

3.2. Experiment 2. In this experiment, the efficiency and the performance
were considered, resulting in a comparison of the runtime of the original be-
tweenness centrality method and the proposed method.

It can be seen that the investigated method’s improved the performance of
the calculation of betweenness centrality. In this aspect, the Markov method



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 71

(a) facebook-combined (b) fb-pages-food

(c) fb-pages-politician (d) power-bcspwr10

(e) road-euroroad (f) web-spam

Figure 4. Performance with clustering

falls behind Louvain, while the Paris clustering outstandingly worse than the
others. The reason behind this is, that clustering algorithm, as shown in the
table above, has formed a fairly small number of groups, so it is not worthwhile
to perform the division with such a low cluster number.

3.3. Experiments 3. In this experiment also the efficiency and the perfor-
mance were considered as in the previous but in this case, we used parallel



72 BENCE SZABARI AND ATTILA KISS

computation of betweenness centrality which was compared with the original
betweenness centrality method.

(a) facebook-combined (b) fb-pages-food

(c) fb-pages-politician (d) power-bcspwr10

(e) road-euroroad (f) web-spam

Figure 5. Performance with clustering and parallel computation

From these results, it can be seen that the computation time can be sig-
nificantly reduced if we use clustering with parallel bc calculation. However,



PERFORMANCE EVALUATION OF BETWEENNESS CENTRALITY 73

in some cases, spikes are visible in terms of maximum runtime. We have ob-
served that if the graph fits in the memory the traditional calculation method
is more profitable, and this method only worth for larger graphs.

4. Conclusion and future work

In this paper, we examined the performance of the proposed method to
calculate betweenness centrality based on network clustering. This method
calculates the centrality value for each node in the sub-graphs determined
by different clustering methods. Our proposed solution is based on Louvain,
Markov and Paris clustering algorithms. We investigated the method in large
networks, to get a better picture of its performance. To determine the cor-
rectness of the method, we compared the values of the five most influential
nodes obtained by the basic bc method with the values and nodes obtained by
the method we proposed. The experimental results showed that the Louvain’s
performance was the best of all the investigated clustering methods since in
most of the cases it was able to create an optimal number of clusters.

We only investigated the proposed method with betweenness centrality how-
ever, it is possible to use the same procedure with different centrality measures,
which we intend to do in the future.

5. Acknowledgements

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] Aberer, K., Hauswirth, M., and Salehi, A. Infrastructure for data processing in
large-scale interconnected sensor networks. In 2007 International Conference on Mobile
Data Management (2007), IEEE, pp. 198–205.

[2] Bader, D. A., Kintali, S., Madduri, K., and Mihail, M. Approximating between-
ness centrality. In International Workshop on Algorithms and Models for the Web-Graph
(2007), Springer, pp. 124–137.

[3] Bavelas, A. Communication patterns in task-oriented groups. The journal of the acous-
tical society of America 22, 6 (1950), 725–730.

[4] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast un-
folding of communities in large networks. Journal of statistical mechanics: theory and
experiment 2008, 10 (2008), P10008.

[5] Bonald, T., Charpentier, B., Galland, A., and Hollocou, A. Hierarchical graph
clustering using node pair sampling. arXiv preprint arXiv:1806.01664 (2018).

[6] Brandes, U. A faster algorithm for betweenness centrality. Journal of mathematical
sociology 25, 2 (2001), 163–177.

[7] Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry
(1977), 35–41.



74 BENCE SZABARI AND ATTILA KISS

[8] Gasteiger, J., and Zupan, J. Neural networks in chemistry. Angewandte Chemie
International Edition in English 32, 4 (1993), 503–527.

[9] Gonzalez-Diaz, H., Vilar, S., Santana, L., and Uriarte, E. Medicinal chemistry
and bioinformatics-current trends in drugs discovery with networks topological indices.
Current Topics in Medicinal Chemistry 7, 10 (2007), 1015–1029.

[10] Hagberg, A., Swart, P., and S Chult, D. Exploring network structure, dynamics,
and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

[11] Irani, D., Balduzzi, M., Balzarotti, D., Kirda, E., and Pu, C. Reverse social
engineering attacks in online social networks. In International conference on detection
of intrusions and malware, and vulnerability assessment (2011), Springer, pp. 55–74.

[12] Leskovec, J., and Krevl, A. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[13] Mason, O., and Verwoerd, M. Graph theory and networks in biology. IET systems
biology 1, 2 (2007), 89–119.

[14] Newman, M. E. A measure of betweenness centrality based on random walks. Social
networks 27, 1 (2005), 39–54.

[15] Newman, M. E., and Girvan, M. Finding and evaluating community structure in
networks. Physical review E 69, 2 (2004), 026113.

[16] Rossi, R. A., and Ahmed, N. K. The network data repository with interactive graph
analytics and visualization. In AAAI (2015).

[17] Sen, S., and Wang, J. Analyzing peer-to-peer traffic across large networks. In Proceed-
ings of the 2nd ACM SIGCOMM Workshop on Internet measurment (2002), pp. 137–
150.

[18] van Dongen, S. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

[19] Zaki, M. J., and Meira, W. Data mining and analysis: fundamental concepts and
algorithms. Cambridge University Press, 2014.

Eötvös Loránd University, Budapest, Hungary
Email address: n0qsdc@inf.elte.hu

J. Selye University, Komárno, Slovakia
Email address: kissae@ujs.sk


