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ANALYSING THE ACADEMIC PERFORMANCE OF

STUDENTS USING UNSUPERVISED DATA MINING

GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

Abstract. Educational Data Mining is an attractive interdisciplinary do-
main in which the main goal is to apply data mining techniques in educa-
tional environments in order to offer better insights into the educational
related tasks. This paper analyses the relevance of two unsupervised learn-
ing models, self-organizing maps and relational association rule mining in
the context of students’ performance prediction. The experimental results
obtained by applying the aforementioned unsupervised learning models on
a real data set collected from Babeş-Bolyai University emphasize their ef-
fectiveness in mining relevant relationships and rules from educational data
which may be useful for predicting the academic performance of students.

1. Introduction

Extracting relevant patterns from the educational processes is the main
topic in the Educational data mining (EDM) field, as it could provide effec-
tive methods for understanding students and their learning process and, sub-
sequently, improving the learning outcomes. EDM has lately been under great
consideration from the research community since extracting hidden valuable
knowledge from educational data is of major interest for the academic institu-
tions and also effective for reviewing and improving their teaching techniques
and learning procedures [13].

There is a continuous interest in applying machine learning (ML) techniques
in the educational field [3]. Within the ML domain, unsupervised learning
(UL) techniques are broadly applied nowadays in numerous domains includ-
ing software engineering, medicine, bioinformatics, the financial domain, in
order to extract relevant hidden knowledge from the data in the form of rules
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or patterns. Diverse applications using data mining and machine learning algo-
rithms have been implemented, so far, in the EDM domain. Machine learning
methods are applied, both from a supervised and unsupervised perspective, as
data mining techniques for developing systems for course planning, predicting
the students’ progress and academic performance, detecting students’ learn-
ing type, grouping students in similar classes, supporting instructors in the
educational process [8].

The study performed in this paper is aimed to highlight the potential of
applying two UL techniques (self-organizing maps (SOMs) and relational as-
sociation rule mining) (RARs) in analysing students’ academic performance.
The main research question we are investigating in this paper is regarding the
ability of unsupervised learning models (SOMs and RARs) to detect hidden
relationships between the grades received by the students during the semester
and their final examination grade category at a certain academic discipline.
In addition, we aim to analyse if the unsupervised learning models may reveal
some information regarding the quality of the educational processes.

A study on the EDM literature reveals various approaches using unsuper-
vised learning for mining student data in educational environments. Various
clustering algorithms, including partitional and hierarchical clustering were
applied by Ayers et al. [2] for determining groups of students who have sim-
lar skills. Dutt et al. [6] present a survey on applying unsupervised learning
techniques for various tasks from the educational setting. K-means cluster-
ing is applied by Parack et al. [14] for grouping students according to their
learning patterns. The identified groups are then used for determining the
cognitive styles for each cluster. SOMs were used by Kurdthongmee [11] to
group students in clusters according to their academic results. Khadir et
al. [10] performed a study based on clustering and SOMs for students’ aca-
demic performance prediction. Saxena et al. [15] have also applied SOMs for
classifying students in categories according to their academic performance. To
the best of our knowledge, a study similar to ours has not been performed in
the literature.

The rest of the paper is organized as follows. Section 2 presents the self-
organizing maps and relational association rule mining models used in our
study. Section 3 introduces our experimental methodology, while Section 4
discusses about the experimental results. The conclusions of our study to-
gether with several directions for future research are summarized in Section
5.
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2. Unsupervised machine learning models used

Unsupervised learning models are known in the ML literature as descriptive
models, due to their ability to detect how data are organized. Unsupervised
learning algorithms receive only unlabeled examples and learn to detect hidden
patterns from the input data based on their features. UL methods are useful
for discovering the underlying structure of the data.

2.1. Relational association rule mining. Relational association rules (RARs)
[4, 16] were introduced in the data mining literature as an extension of the
classical association rules with the goal of uncovering various types of rela-
tionships, both ordinal and non-ordinal, between data attributes.

The concept of RARs will be further presented. We considerO = {o1, o2, . . . ,
on} a set of instances (objects) and A = (at1, . . . , atm) a sequence of relevant
attributes characterizing the instances from O. Each attribute ati takes val-
ues from a non-empty domain Di. The value of attribute ati for instance oj
is denoted by η(oj , ati) and by T is denoted the set of all possible relations
which can be defined between the domains Di and Dj .

Definition 1. A relational association rule [16] is an expression (ati1 , ati2 , ati3 ,
. . . , atih) ⇒ (ati1τ1 ati2τ2 ati3 . . . τh−1 atih), where {ati1 , ati2 , ati3 , . . . , atih} ⊆
A, atik 6= atip, k, p = 1, . . . , h, k 6= p and τk ∈ T is a relation over Dik×Dik+1

,
Dik representing the domain of the attribute atik .

a) If ati1 , ati2 , . . . , atih are non-missing in l instances from O then we

call s = l
n the support of the rule.

b) If we denote by O′ ⊆ O the set of instances where ati1 , ati2 , ati3 , . . . , atih
are non-missing and all the relations η(oj , ati1) τ1 η(oj , ati2), η(oj , ati2)
τ2 η(oj , ati3), . . . , η(oj , atih−1

) τh−1 η(oj , atih) hold for each instance

oj ∈ O′ then we call c = |O′|
n the confidence of the rule.

The notion of interestingness was introduced in [16] as the property of
RARs to have their support and confidence greater than or equal to certain
thresholds. The algorithm DRAR (Discovery of Relational Association Rules)
for uncovering interesting RARs was introduced in [5]. DRAR is an Apriori-
like algorithm consisting of a RAR generation process that starts from the
2-length rules which are filtered such that to preserve only the interesting
rules. The iterative process continues with 3-length rules, then with 4-length
rules and so on. At a certain iteration, the RARs of length n are generated by
joining [16] interesting RARs of length n-1. The obtained set is then filtered
for preserving only the interesting n-length rules. When no new interesting
RARs are identified at a certain iteration, the generation process stops.
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2.2. Self-organizing maps. Self-organizing maps (SOMs), also known in the
literature as Kohonen maps, were introduced by Teuvo Kohonen and are unsu-
pervised learning models widely used as tools for visualizing high-dimensional
data. SOMs are connected to the artificial neural networks (ANNs) in litera-
ture and to competitive learning. In competitive learning, the output neurons
compete themselves to be activated. A self-organizing map [17] is trained us-
ing an unsupervised learning algorithm (Kohonen’s algorithm) to map, using a
non-linear mapping, the continuous input space of high-dimensional instances
into a discrete (usually two-dimensional) output space called a map [7]. The
topology preserving mapping is the main characteristic of the mapping pro-
vided by a SOM. This means that the input samples which are close to each
other in the input space will be also close to each other on the map (output
space). Thus, a SOM is able to provide clusters of similar data instances [12].

3. Methodology

As previously stated, our study aims at investigating the relevance of un-
supervised SOM and RAR models in analysing the academic performance of
students.

We are introducing the following theoretical model. We denote by Stud =
{stud1, stud2, . . . , studn} a data set in which the instances studi describe the
performance of students during an academic semester, at a given academic
discipline D. Each instance studi is characterized by a set of grades received
during the semester G = {g1, g2, . . . , gm} representing attributes for measuring
the performance of the student for the given discipline. Thus, each studi is
represented as an m-dimensional vector studi = (studi1, studi2, . . . , studim),
studij representing the value of attribute gj for student studi.

The goal of the current study is to investigate if two unsupervised data min-
ing models, self-organizing maps and relational association rule mining, are
able to discover some rules and relationships which would be useful for pre-
dicting the final performance for the students, based on their grades obtained
during the academic semester. Since predicting the exact final examination
grade for a student is a difficult task, considering the uncertainty in the learn-
ing and evaluation processes, we are considering in this paper four categories
of final grades: (1) excellent (denoted by E and representing the final grades
9 and 10); (2) good (denoted by G and representing the final grades 7 and 8);
(3) satisfactory (denoted by S and representing the final grades 5 and 6); and
(4) fail (denoted by F and representing the final grade 4). Let us denote by
C = {E,G, S, F}.

We note that our unsupervised analysis does not include the grades of the
students’ at the written exam (obtained in the examination session), which
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are also part of their final examination grade. Thus, we aim to analyse if
only the grades received by the students during the semester are enough to
discriminate their written exam grade and, accordingly, the students’ final
examination grade category.

The problem investigated in this paper, from an unsupervised learning per-
spective, is that of assigning to each student (characterized by its grades re-
ceived during an academic semester) the category corresponding to its final
grade. This assignment may be formalized by a mapping f : Rm → C.

3.1. Data set. In our experiment we are considering a real data set [1], de-
noted by D, containing the grades obtained by students at a Computer Science
undergraduate course offered at Babeş-Bolyai University collected during six
academic years (2011-2017) at the regular and retake examination sessions.
The data set consists of 905 students characterized by 4 attributes, denoted
by a1, a2, a3, a4. Attributes a1, a2, a3, a4 represent scores obtained by the stu-
dents at several evaluations during the academic semester: seminar score (a1),
project score (a2), project status score (a3) and written test score (a4). For
each student s ∈ D, its final examination grade (f(s)), received at the end
of the academic semester after the final examination is known. In our experi-
ments, the final examination grade of a student is transformed into a category
(E, G, S, F), as previously shown. However, in our unsupervised learning
based experiments, the students’ final grade will be used only for evaluating
the learning performance, without using it for building the SOM and RAR
models. Figure 1 depicts a histogram of grades (4-10) built on the data set D.

Figure 1. Histogram of grades from the data set D.
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The histogram from Figure 1 reveals a distribution of passing grades (grades
without 4) close to the normal one. For analysing how correlated are the
attributes a1, a2, a3, a4 with the target output (category corresponding to the
final examination grade), the Pearson correlation coefficients are computed.
The correlation values are shown in Table 1.

a1 a2 a3 a4

0.631 0.676 0.461 0.607

Table 1. The Pearson correlation coefficient between at-
tributes a1, a2, a3, a4 and the target output.

From Table 1 we observe that there is a good enough correlation between the
attributes a1, a2, a4 and the category corresponding to the final examination
grade. The project score (attribute a2) shows the maximum correlation with
the final category. The smallest correlation is observed for attribute a3.

3.2. Experiments. The experiments described in this section are aimed to
test the ability of SOMs and RARs, as unsupervised learning models, to detect
relevant relationships in the students’ grades (received during the semester)
which are well correlated with their final grade category. For a certain grade
category (class) c ∈ {E,G, S, F} we denote by Dc ⊂ D the subset of students

from D whose final grade category is c. We note that
⋃
c∈C

Dc = D.

The first experiment is conducted for obtaining, using a SOM, a two dimen-
sional representation of the data set. Two SOM visualizations will be provided:
one for the entire data set (characterized by all attributes a1, a2, a3, a4) and
the second for the data set without attribute a3 (i.e the data set characterized
only by the attributes a1, a2, a4). After the SOM was unsupervisedly built,
the U-Matrix method [9] will be used for visualization. For the SOM, a torus
topology is used, with the following parameters: 200000 training epochs and
a learning rate of 0.1. The Euclidian distance is used as a distance metric
between the input instances.

The goal of our second experiment is to uncover in each subset Dc, using
the DRAR algorithm, a set RARc of interesting RARs. We aim to verify the
hypothesis that the sets RARc are able to discriminate between the classes of
students having different final grades.

For the RAR mining experiment, five additional attributes were added to
the data sets Dc (ai = i,∀i, 5 ≤ i ≤ 9) and we used the following parameters
for the mining process: 1 for the minimum support threshold, 0.6 for the
minimum confidence threshold and two possible binary relations between the
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attributes (< and ≥). Attributes a5, a6, a7, a8, a9 represent some thresholds
for the grades (i.e. 5, 6, 7, 8, 9) and were added with the goal of enlarging the
set of uncovered RARs, allowing the discovery of binary RARs such as ai ≤ 5.

For evaluating how well the set RARc characterizes the set of students from
the set Dc we use the average confidence of all the subrules from the rules from

RARc, denoted by Precc =

∑
r∈RARc

∑
sr∈Sr

conf(sr)

|RARc| . By conf(r) we denote the

confidence of the rule r in the data set Dc and Sr represents the set of subrules
of r (including itself). We note that Precc ranges from 0 to 1, higher values
for Precc indicating that the set RARc better characterizes the data set Dc.

4. Results and discussion

This section presents the experimental results obtained following the ex-
perimental methodology introduced in Section 3.2 and discusses about the
patterns unsupervisedly discovered using the SOM and RAR models.

4.1. Experiments using SOMs. The left hand side image from Figure 2
illustrates the SOM obtained on the data set from Section 3.1 using attributes
a1, a2, a3, a4, while the right hand side image from Figure 2 depicts the SOM
trained on the instances characterized only by attributes a1, a2, a4. On both
images, the students with the same final class (final grade category which is
depicted on the map) are marked with the same colour: red for the E labels,
yellow for G, green for S and blue for F. As expected, Figure 2a depicts a good
enough mapping, but still there is no clear separation between the grades. It
seems that a slightly better mapping and separation between the grades is
provided by the map from Figure 2b when attribute a3 (the project status
score) has not been considered.

The SOMs from Figure 2 reveal the difficulty of the task for predicting the
final examination grade category for the students, based on the grades they
received during the semester. However, the unsupervisedly built SOMs are
able to uncover some patterns regarding the students’ final grade category.
We observe two main areas on both maps, a cluster of students with the final
categories F and S, which is well enough delimited and one containing the
categories G and E. Inside the first cluster, we observe a well distinguishable
subclass containing students with the final category F.

For evaluating the quality of the SOMs built, the average quantization error
(AQE) is computed during the unsupervised training process. The AQE [18]
is computed by averaging the mean Euclidean distance between the input
samples and their best-matching units. Figure 3 comparatively illustrates how
AQE decreases during the training of the maps built for the entire data set



ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 41

(a) SOM visualization considering
attributes a1, a2, a3, a4.

(b) SOM visualization considering at-
tributes a1, a2, a4.

Figure 2. U-Matrix visualization of the SOM built on the
data set D using attributes a1, a2, a3, a4 (left) and a1, a2, a4
(right).

(left side image) and for the data set without attribute a3 (right side image).
We note that the AQE reached after the training was completed is 0.997 for
the SOM from Figure 3a and 0.559 for the SOM from Figure 3b. The final
AQEs which are close to 0 confirm the accuracy of the trained SOMs. In
addition, the SOM built on the data set without attribute a3 has the smallest
AQE, indicating a better mapping.

(a) AQE visualization for the SOM built
using attributes a1, a2, a3, a4.

(b) AQE visualization for the SOM built
using attributes a1, a2, a4.

Figure 3. Evolution of AQE values during training the SOMs
built on the data set D using attributes a1, a2, a3, a4 (left) and
a1, a2, a4 (right).
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Figure 4 illustrates a detailed visualisation of the SOMs from Figure 2,
considering the torus topology used for building the SOMs. The left side im-
age from Figure 4 corresponds to the SOM from Figure 2a, while Figure 4a
corresponds to the visualization from Figure 2b. On both SOMs, the distin-
guishable classes of students are highlighted and coloured according to their
class label (E - red, G - yellow, S - green, F - blue).

(a) Detailed visualisation of the
SOM from Figure 2a.

(b) Detailed visualisation of the SOM
from Figure 2b.

Figure 4. Detailed visualisation of the SOMs from Figure 2.

A comparative analysis of the two images from Figure 4 and the highlighted
areas reveal the following. In Figure 4a we observe that the F labeled cluster
is well disgtinguishable. However, there are a few outliers that go beyond the
cluster’s border, entering in the S class zone. Moreover, the E labeled cluster
also interferes with the outer regions and creates noisy zones on the map. The
flaw with the image from Figure 4a is that, even though the centres of the E
and F labeled groups are compact and solid, the margins of each one tend to be
more fuzzy, exchanging different grades with neighbouring regions. As we can
see, there are overlapping grades, especially regarding the F labels, that incline
towards a defiance of the boundaries, which suggests that the unsupervised
classification model is not capable of clearly discriminating all the students
and, consequently, misinterprets some of the patterns of their performance.
Regardless these misclassifications that may be due to the small number of
attributes characterizing the instances and the presence of outliers, the SOM
model is confident enough to make correct prediction most of the time. In
Figure 4b there are two contrasting, well separated, areas of high/low grades
with a sharp gap between them. The regions corresponding to the average
grades surround tightly these two clusters. Few exceptions still occur when
separating the grades.
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On the other hand, the SOM from Figure 4b seems to provide a better
classification of the data. The two opposed areas (of students with high/low
grades) now are more compact and clearly separated. Their margins tend to
be smoother, especially for those labeled F that are now more compact than in
Figure 4a, with less perturbations from the other grades, as a virtual median
barrier keeps them apart. However, the class of average grades is still difficult
to be separated, and, there has been a trade-off between size and accuracy,
since the higher grades are now more compact, but less separated from each
other.Nonetheless, if we would combine the two previous interpretations, we
may analyse and classify the data better by using both of their strengths, as
in each model the data is more or less scattered across the map, which would
be of use in cases when we desire a greater confidence on a particular class of
grades. While the model from Figure 4a may offer us a better understand-
ing of the students with passing grades (as they belong to a rather compact
group), the SOM from Figure 4b may show us an antithetical approach of the
highest grades and the lowest ones. Moreover, the SOM model built without
using attribute a3 is particularly good at classifying lower grades with greater
accuracy, and, even if there still is noise in the data categorised as E or G, the
model can confidently predict the performance of a good student. What makes
it so difficult to classify all the students is the fact that there is a discrepancy
mainly among the F labeled class, as there is an inconsistent progress for each
one, that would result in a more scattered pattern that interferes with better
classified data.

Analysing both maps from Figure 2 we also note that most of the stu-
dents belonging to category F (i.e. having the final grade 4) are, on both
maps, well enough delimited from the students from other categories (S, G,
E). Overall, we observe as a main pattern that neighboring students belong
to near categories (F-S, G-E). But several outliers may be observed on the
map: neighboring students having very different categories (e.g. E and F).
A possible explanation for such incorrect mappings may be that the data set
includes the examination results not only for the normal session, but also for
the retake session. Thus, it is very likely to have the same instance but with
different final labels (i.e. the categories from the normal and retake session)
which may be very different (e.g. F and S). Besides the previously mentioned
cause for outliers, another possible one is given by the intrinsic uncertainty of
the educational processes. The data set includes instances for which there is
a visible uncorrelation between the grades received during the semester and
the final examination grade. Such discordances may appear due to a bias
evaluation or some unexpected events in the students learning process. To
avoid introducing noise in the data set which will affect the performance of
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the learning, we will further investigate preprocessing techniques for detecting
such outliers.

4.2. Experiments using RARs. The results of the RAR mining experi-
ment are further presented, with the aim of highlighting the relevance of the
relational association rules mining process in distinguishing between classes
of students having different final grade category. For each category c ∈ C we
present in Figure 5 the set RARc of maximal RARs mined from Dc using the
experimental methodology from Section 3.2. In addition, we indicate the value
of Precc which evaluates the quality of the set RARc.

c Length Rule Confidence Prec

2 a1 > 8 0.898
2 a2 > 9 0.713
2 a4 > 8 0.771

E 3 a1 ≤ a2 > 8 0.707 0.716
3 a1 ≤ a3 > 8 0.650
3 a1 ≤ a4 > 7 0.643
3 a2 ≤ a3 > 9 0.618

2 a1 > 5 0.87
2 a1 ≤ 8 0.675
2 a2 > 7 0.728
2 a2 ≤ 9 0.679

G 2 a3 > 7 0.683 0.689
2 a3 ≤ 9 0.630
2 a4 > 6 0.630
2 a4 ≤ 8 0.626
3 a1 ≤ a2 > 6 0.614
3 a1 ≤ a3 > 6 0.606

c Length Rule Confidence Prec

2 a1 ≤ a3 0.686
2 a1 ≤ 6 0.737
2 a2 ≤ 6 0.661
2 a3 > 5 0.623
2 a3 ≤ 7 0.619

S 3 a1 ≤ a2 ≤ 9 0.640 0.69
3 a1 ≤ a3 > a4 0.636
3 a1 > a4 ≤ 5 0.653
3 a2 > a4 ≤ 5 0.640
3 a3 > a4 ≤ 7 0.631
4 a1 ≤ a2 > a4≤ 7 0.619

2 a1 ≤ a3 0.643
2 a1 ≤ 5 0.624
2 a2 ≤ a3 0.654

F 2 a2 ≤ 5 0.680 0.695
2 a3 ≤ 6 0.661
3 a1 > a4 ≤ 5 0.628
3 a3 > a4 ≤ 8 0.617

Figure 5. The sets of maximal interesting RARs mined for
each category of grades: E,G, S, F .

From Figure 5 we observe that the sets of RARs characterizing the classes
of students with different final grade category are disjoint, in general. For
example, the fourth RAR of length three from the left side table indicate that
for 61.8% of the students who have received a final examination grade of 9
or 10 (category E), the project score is less than or equal to project status
score, which is greater than 9. We note that this RAR does not characterize the
other categories of students, thus it is very likely to be useful for discriminating
students according to their final category.

For facilitating the interpretation of the RARs, we decided to build a SOM
for having a visual representation of the rules and highlighting how well they
characterize the classes of students. Let us denote by Rules the sequence of all
distinct mined RARs given in Figure 5, including all their subrules. If a RAR
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of a certain length appears in more than one category, it will appear in Rules
only once (e.g. the RAR a1 ≤ a3 of length 2 appear as an interesting rule for
both categories S and F). Thus, an additional data set DRAR is created by
characterizing each student studi from the original data set D by a 48-length
binary vector Vi = (vi1, v

i
2, . . . , v

i
35), where 48 is the size of the sequence Rules,

i.e the number of distinct RARs mined. An element vij from Vi is set to 1 if
the j-th RAR from Rules is verified in studi and 0 otherwise. Figure 6 depicts
the SOMs built on the data set DRAR using all attributes a1, a2, a3, a4 (left)
and using only attributes a1, a2, a4 (right). On each SOMs, the instances are
labeled with their final grade category (E, G, S, F).

(a) SOM visualization considering at-
tributes a1, a2, a3, a4.

(b) SOM visualization considering at-
tributes a1, a2, a4.

Figure 6. U-Matrix visualization of the SOM built on the
data set DRAR using attributes a1, a2, a3, a4 (left) and a1, a2, a4
(right).

From the interesting RARs depicted in Figure 5 and visualized in Figure
6a we also observe that there is an overlapping, in general, between the set
of RARs characterizing near categories (F/S, G/E). This is expectable, as
previously shown in Section 4.1 where the SOM mapping highlighted that
there are instances, mainly from near categories, that are hard to discriminate.
For instance, the rule a1 ≤ a3 appears for both S and F categories with
highly similar confidences (0.686 for S and 0.643 for F). Another example
is the rule a2 > 7 from G and a2 > 9 from E which is also explainable
due to some instances that are on the border between the two categories.
Certainly, such overlapping rules are not useful for discriminating between
classes. A post-processing step would be useful for detecting and removing
such rules from the mining process and will be further investigated. However,
we observe interesting RARs, such as the 4-length rule from the S category,
which characterizes only this category of students. On the other hand, the
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RARs expressing the E category have the higher precision (0.716) and this
is also observable on the SOM, as this category is easily distinguishable from
other classes, sustaining the conclusions from Section 4.1.

Regarding the usefulness of attribute a3 in mining relevant RARs, the fol-
lowing were observed by analysing the RARs depicted in Figure 5 and visual-
ized in Figure 6b. On the one hand, a3 creates some misleading relationships
between the features, such as the rule a3 > a4, creating overlapping values with
other grades (i.e. it is interesting for both F and S categories). That would
cause some misclassifying when interpreting border cases, students that are in
between two classes. When removing the a3 feature, the RAR model is im-
proved, as there are less overlapping areas, even though there are not as many
relationships between the features (but the number of RARs may be increased
by reducing the minimum confidence threshold). This can also be seen in the
experiment from Section 4.1, when comparing the two SOMs (built with and
without attribute a3). On the SOM from Figure 6b built without considering
a3 feature, there is a tendency of the higher and lower grades to create distinct
clusters that have little or no noise. The class of F labeled instances is more
clearly distinguishable in Figure 6b than in Figure 6a.

The results previously presented highlight the potential of the sets RARc to
differentiate the students according to their final examination grade category,
based on their grades received during the academic semester. As previously
shown, RARs are able to express interesting patterns in academic data sets and
are useful for providing a better insight into the problem of students’ academic
performance prediction. However, we have a small number of attributes in our
case study. By increasing the number of relevant attributes, it is very likely
that more informative and meaningful RARs would be mined.

It is worth mentioning that the results obtained using both SOM and RAR
models conducted to similar conclusions, which were detailed in Section 4.1
and 4.2. For obtaining a more accurate representation of the input instances
(students) using both unsupervised learning models investigated in this paper
(SOMs and RARs), the attribute set characterizing the students must be en-
larged with other relevant characteristics. It would be useful to have multiple
attributes in the mining process and to extend the set of relations used in the
mining process in order to obtain much more informative and relevant RARs
as well as a better separation using the SOM model.

A more in depth analysis of the outlier instances provided by the SOM and
RAR models may provide valuable information regarding the improvement of
the educational processes. For instance, the results of the unsupervised learn-
ing processes may reveal the following: (1) the examination grades for some of
the evaluations received during the academic semester may be incorrect due to
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the variations within the instructors evaluation criteria or standards, as well
as possible cheating methods used by a few students; (2) some of the partial
examinations may be redundant; (3) a change of the computation method for
the partial grades may be required; (4) it could be necessary to increase the
number of the examinations performed during the academic semester.

5. Conclusions and future work

This paper examined two unsupervised learning models, self-organizing
maps and relational association rule mining, in the context of analysing data
sets related to students’ academic performance. Experiments performed on a
real data set collected from Babeş-Bolyai University, Romania highlighted the
potential of unsupervised learning based data mining tools to detect meaning-
ful patterns regarding the academic performance of students.

We may conclude that the grades received by the students during the se-
mester may be relevant in predicting their final performance. However, sev-
eral outliers were observed in the data set. Such anomalous instances may
be due to: (1) a small number of students’ evaluations during the semester
(attributes); (2) the students’ learning process which is not continuous during
the academic semester; (3) the difference between the evaluation standards of
the instructors from the laboratory and seminar activities. As a consequence,
an increased number of evaluations during the academic semester would be
useful, for stimulating students to study during the semester and not only for
the final examination.

Future work will be performed in order to extend the experiments and
the analysis of the obtained results. For increasing the performance of the
unsupervised learning process, methods for detecting anomalies and outliers
in data will be further investigated. In addition, a post-processing phase for
filtering the set of mined RARs will be analysed for removing rules which
overlap with multiple classes.
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