
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.03

A FILTER-BASED DYNAMIC RESOURCE MANAGEMENT

FRAMEWORK FOR VIRTUALIZED DATA CENTERS

CORA CRĂCIUN AND IOAN SALOMIE

Abstract. Data centers adapt their operation to changing run-time con-
ditions using energy-aware and SLA-compliant resource management tech-
niques. In this context, current paper presents a novel filter-based dynamic
resource management framework for virtualized data centers. By choos-
ing and combining properly software filters performing the scheduling and
resource management operations, the framework may be used in what-if
analysis. The framework is evaluated by simulation for deploying batch
best-effort jobs with time-varying CPU requirements.

1. Introduction

High energy consumption and low Quality of service (QoS) are the main
problems in data centers. Service providers aim to reduce the energy consump-
tion, while the users demand high performance at low cost. Moreover, data
centers are dynamic systems in which the users’ requests and resource avail-
ability are time-varying. Therefore, data centers must adapt their operation
to run-time conditions using appropriate scheduling and resource management
strategies [22].

In this context, we present a novel filter-based dynamic resource manage-
ment framework for virtualized data centers. The framework extends the
Haizea lease scheduler (version 1.1) [15, 24, 26] and may assess the energy
and performance efficiency of different resource management techniques. The
framework uses software filters to perform the job scheduling, resource allo-
cation, and virtual machines’ migration operations in data centers. A data

Received by the editors: February 1, 2017.
2010 Mathematics Subject Classification. 68M14, 68M20.
1998 CR Categories and Descriptors. C.2.4 [Computer-Communication Net-

works]: Distributed Systems – Network operating systems; C.4 [Computer Systems Or-
ganization]: Performance of Systems – Design studies.

Key words and phrases. Filter-based framework, Dynamic resource management,
Virtualization.

32

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 33

center may adapt to run-time conditions by properly replacing and combin-
ing the filters. Current work uses CPU-related filters, but similar software
components may be defined for other physical resources.

Presently, the framework has some limitations. For instance, it does not take
into account the performance degradation when more virtual machines (VMs)
are migrated simultaneously from or to the same physical machine. In addi-
tion, the framework considers the following simplified resource management
scenarios and data center configurations: resource allocation policies with job
queuing in which the jobs wait until they receive all required resources, single-
core processing units, overloaded but not underused host management, small
size homogeneous data centers, a single constraining physical resource (CPU),
simultaneously arrived jobs at the data center, periodic change of the VMs’
resource requirements, off-line VM migration as implemented in Haizea. The
framework, however, is extensible with other filters, algorithms, or resource
allocation policies.

The paper is structured as follows. Next section presents other investiga-
tions related to our dynamic resource management approach. Sect. 3 presents
the filter-based framework and the scheduling, resource allocation, and host
management filters. The framework is evaluated by simulation in Sect. 4, for
different resource allocation policies including First Fit (FF), Best Fit (BF)
and their decreasing forms, and the Gaussian-type policies defined in reference
[7]. Final section summarizes current work.

2. Related work

Different resource management frameworks for clusters, grids, or cloud en-
vironments have been developed in the last years. Many of them use virtu-
alization for dynamic resource provisioning. pMapper is a framework for vir-
tualized heterogeneous clusters, which minimizes the electrical power and the
VMs migration costs with performance guarantees [27]. The framework uses
different VM-to-host mapping algorithms based on variants of the FFD heuris-
tic. Unlike pMapper, our framework has been evaluated only for best-effort
VMs, and for this case, it does not offer performance guarantees. Entropy
consolidates the VMs in homogeneous clusters using constraint programming
[16]. Compared to our work, this framework considers both CPU and memory
as constraining resources, manages not only the overloaded but also the un-
derused hosts, and has been evaluated in real environments. The framework
presented in current paper, on the other hand, provides scheduling facilities,
by means of Haizea, and queuing options. The GREEN-NET framework re-
duces the energy consumption in large scale distributed systems by switching

34 CORA CRĂCIUN AND IOAN SALOMIE

off the unused physical resources, by aggregating the reservations, or by pre-
dicting next reservations based on history [6]. OpenNebula is an open-source
virtual infrastructure manager for private or public IaaS clouds [20, 24]. Two
extensions of this framework address issues such as energy consumption (the
Green Cloud Scheduler [14]) or advance reservation (the Haizea scheduler [15])
in data centers. Haizea is a resource manager used either as a simulator or as a
backend VM scheduler for OpenNebula [15, 23, 24, 25, 26]. Haizea defines dif-
ferent types of leases implemented as virtual machines [26], uses off-line VMs
migration, and considers the VM management time overheads. Our filter-
based framework extends Haizea with new VM scheduling, resource allocation,
and host management policies, and computes energy and performance-related
quantities for virtualized data centers. CloudSim is an event-based simulation
toolkit for private and hybrid virtualized cloud systems [4, 5]. The Cloudsim’s
core has been extended with a power package [1, 2, 3] and an interconnec-
tion network model of a cloud data center [11]. The power package contains
different energy-aware VM placement algorithms and uses power models for
specific server architectures. Our modular approach to solving the resource
management problem in data centers is close to the work presented in [2] using
CloudSim. OpenStack is a cloud operating system providing virtualized com-
puting resources to the users [21]. The resource allocation method presented in
current paper has similarities with the OpenStack’s filtering procedure. This
procedure selects the eligible hosts with the largest weighted cost scores for
allocating the VMs.

3. The filter-based framework

3.1. Framework design. The filter-based dynamic resource management
framework (Fig. 1) uses software filters to perform the VM scheduling, re-
source allocation, and host management activities. We assume that a virtual
machine has already been provisioned to each job arrived at the data center.
A job is a request addressed to a batch application or a workflow to a web
service. All jobs arrive at the data center simultaneously. The jobs’ CPU
requirements are time-varying and not known in advance. The job-to-VM
mapping is one-to-one and the resource requirements of the VM and the job
coincide. The virtualized jobs have been assimilated to the Haizea’s best-effort
leases. Henceforth, we mainly refer to the virtual machines instead of jobs.

A virtual machine is mapped on a physical machine if it receives all re-
sources required at mapping time. The CPU capacity needed for a specified
duration is the single constraining resource for the VM-to-host mapping. More
VMs may simultaneously share a physical machine if their cumulated resource

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 35

IV
(t

0)
S

V
(t

q
)

…
F

o
-V

M

S
V

(t
q
)

L
IS

T S
E

T

V
M

i

(V
M

i,H
u
)

V
M

 S
c

h
e

d
u

li
n

g
a

n
d

 R
e

s
o

u
rc

e
 A

ll
o

c
a

ti
o

n

S
V

1(t
q)

S
V

u
(t

q
)

…

S
us
pe
nd
ed
V
M
s

o
ve
rl
o
a
d
e
d

o
ve
rl
o
a
d
e
d

H
o

st
s

co
lle

ct
io

n

……

S
V

(t
1
)

F
sc
-V

M
F

1
(H

u,[V
M

i])
 -

 m
a

x

F
p
-H

F
2(H

v,V
M

j)
-

m
a

x

F
m
-V

M
-H (V

M
j,H

v)

V
M

i

Fsu-VM-Hu

… …

V
M

k

Fsu-VM-H1

……

V
M

j

Fsu-VM-Hv

… …

IV
(t

0)
S

V
(t

1)
S

V
(t

q)

…

S
V

(t
1)

…

IV
(t

0)
S

V
(t

q)

V
M

s
co

lle
ct

io
n

H
o

s
t

M
a

n
a

g
e

m
e

n
t

D

H
1

H
u

H
v

F
ig

u
r
e

1
.

T
h

e
fi

lt
er

-b
as

ed
d

y
n

am
ic

re
so

u
rc

e
m

an
ag

em
en

t
fr

am
ew

or
k
.

N
o
ta

ti
o
n

s:
I
V

(t
0
)

-
th

e
su

b
co

ll
ec

ti
o
n

of
in

it
ia

l
V

M
s;
S
V

(t
1
),

..
.,
S
V

(t
q
)

-
th

e
su

b
co

ll
ec

ti
o
n

s
o
f

su
sp

en
d

ed
V

M
s;
H

1
,

H
u
,
H

v
-

p
h
y
si

ca
l

m
ac

h
in

es
(h

os
ts

);
V

M
k
,

V
M

i,
V

M
j

-
v
ir

tu
al

m
ac

h
in

es
;

F
sc

-V
M

-
th

e
V

M
sc

h
ed

u
li

n
g

fi
lt

er
,
F
o
-V

M
-

th
e

V
M

or
d

er
in

g
fi

lt
er

,
F
p
-H

-
th

e
h

os
t

p
ro

v
is

io
n

in
g

fi
lt

er
,
F
m

-V
M

-
H

-
th

e
V

M
-t

o-
h

o
st

m
ap

p
in

g
fi

lt
er

,
F
su

-V
M

-H
u

-
th

e
V

M
su

sp
en

d
in

g
fi

lt
er

fo
r

h
o
st
H

u
;
F

1
an

d
F

2
-

re
so

u
rc

e
al

lo
ca

ti
on

fu
n

ct
io

n
s;

D
-

d
is

p
at

ch
er

36 CORA CRĂCIUN AND IOAN SALOMIE

requirements do not exceed the available resources. At run-time, selected VMs
from the overloaded hosts are suspended for rescheduling.

The framework gathers all virtual resources in a VMs collection,
{VMj}j=1,...,NV

, and the physical resources in a Hosts collection, {Hu}u=1,...,NH

(Fig. 1). The individual VMs and hosts have unique identifiers (ID). The VMs
collection is structured in time-labeled subcollections, which are scheduled in
the increasing order of their time label. The first subcollection, IV (t0), con-
tains the VMs provisioned to the jobs arrived at the data center at the initial
time t0. Next subcollections, SV (tq) (q = 1, 2, . . .), contain the VMs suspended
at times tq from all overloaded hosts.

The filters (Fig. 1) perform constraint or policy-based operations. The
VM scheduling filter, Fsc-VM, decides whether the VM subcollections are
represented as lists or as sets. The VM ordering filter, Fo-VM, optionally
sorts the VM lists by a specified criterion. The difference between the VM
lists and VM sets is that the VM lists are already ordered at scheduling time,
while the VM sets are not. The VMs from VM lists are scheduled, if possible,
in their queuing order. The VMs from VM sets, on the other hand, are mapped
on hosts in an order depending on the required and the available resources.
The host provisioning filter, Fp-H, allocates resources to the VMs from VM
lists, and the VM-to-host mapping filter, Fm-VM-H, allocates resources to
the VMs from VM sets. The Fp-H filter selects the destination host for an
already chosen VM, by maximizing a resource allocation function F1 depending
only on the host’s usage. The Fm-VM-H filter, on the other hand, selects
the (VM , host) pairs from a pool of VMs and a pool of hosts, such that to
maximize a resource allocation function F2. This two-dimensional function
depends both on the VMs’ required and the hosts’ available resources. Finally,
the VM suspending filter, Fsu-VM-Hu, suspends VMs from the overloaded
host Hu.

The framework executes the resource management activities in a repeated
way. The timing for framework operation is presented in Table 1. Next sections
describe the main activities of the filter-based framework.

3.2. VMs scheduling. At each scheduling time τs (Table 1), the framework
tries to schedule the virtual machines present in the VMs collection. The
scheduling policy is different for VM lists and VM sets.

3.2.1. Scheduling of VM lists. The VM lists are optionally sorted by the VM
ordering filter Fo-VM (Fig. 1). Examples of sorting the lists decreasingly by
the VMs’ CPU request are presented in the framework evaluation section. If
the initial VM list IV (t0) is ordered, then its VMs having the same property
according to the ordering criterion are sorted increasingly by their ID. If the

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 37

Table 1. The timing for framework operation

Time Description

t0 the arrival time for all jobs

{tp}p=1,2,... the times when the VMs’ CPU requirements are changed (pe-
riodic with time period T0: tp = t0 + pT0) and when the host
management is performed

td = nT0, n ∈ Z+ the CPU time required by each VM

{tq}q=1,2,... the times when overloaded hosts are detected; {tq}q=1,2,... is a
subset of {tp}p=1,2,...

{τs}s=1,2,... the VM scheduling times (periodic with time period T0/2 or
triggered by any event1 in data center); include {tp}p=1,2,...

1 Examples of events: VMs’ suspension, migration, resumption, completion

suspended VM lists are ordered, on the other hand, then the ties are broken
by sorting the VMs increasingly, first by their last host ID and then by the
VMs’ own ID value, in case of common host.

The framework uses two scheduling policies for VM lists, FLIST and NLIST.
These policies behave differently when the next VM in the VMs collection can
not be scheduled due to lack of physical resources. At each scheduling time τs,
the framework using the FLIST policy schedules the VMs one by one, until it
encounters a VM that can not be scheduled. In this case, the FLIST policy
postpones the entire scheduling process for the next scheduling time. FLIST
resembles the First-Come First-Served (FCFS) scheduling policy. However,
for FLIST, the VMs from the same subcollection have a common time label
and are optionally ordered, while FCFS considers the VMs in the order of
their arrival time. The FLIST policy is useful when strict ordering is com-
pulsory, for example when the VMs encapsulate the web services of a business
process. For unrelated VMs, FLIST has the same drawbacks as FCFS: (a)
the VMs with low resource requirements may be delayed by VMs with high
requirements and (b) the VMs that need more processors may cause resource
fragmentation [8, 18].

Unlike FLIST, when the next VM can not be scheduled, the NLIST policy
tries to schedule the other VMs from the same subcollection as the first one.
The process continues until the subcollection is completely scheduled and then
is repeated for the next subcollections. The NLIST policy uses a list scanning
procedure that resembles the List Scheduling algorithms for independent tasks,
with no imposed partial ordering [13]. Nevertheless, in case of NLIST, the

38 CORA CRĂCIUN AND IOAN SALOMIE

VMs’ ordering at subcollection level does not depend on time as it does for
List Scheduling.

3.2.2. Scheduling of VM sets. At scheduling level, no ordering is imposed on
VM sets. The VM-to-host mapping module presented in the next section
decides the VMs’ ordering in this case. As for VM lists, the VM sets are
scheduled completely in the increasing order of their time label. The VM sets
may model, for example, bag-of-tasks applications with independent tasks
executed in parallel.

3.3. Resource allocation. The framework uses different policies (presented
in Sect. 3.3.2) to provision physical resources to the virtual machines. For
VM lists, the scheduling and ordering filters have already decided the order
in which the VMs are mapped on hosts. On contrary, for VM sets, the order
depends both on the VMs’ requirements and the hosts’ available resources,
and is decided by the resource allocation filters.

3.3.1. Resource allocation filters. The host provisioning filter, Fp-H (Fig. 1),
allocates physical resources to the VMs from VM lists. This filter maximizes
a resource allocation function F1(Hv, [VMi]), v = 1, . . . , NH , to find the desti-
nation host Hv for an already selected virtual machine VMi. The VM-to-host
mapping filter, Fm-VM-H, on the other hand, provisions physical resources
to the VMs from VM sets. For each VM set, the mapping filter chooses
iteratively the (VM , host) pairs that maximize a resource allocation function
F2(Hv, V Mj), v = 1, . . . , NH and j = 1, . . . , n (n is the set size). The searching
process is exhaustive and finds a global solution to the optimization problem.

3.3.2. Resource allocation policies. This section presents the resource alloca-
tion policies currently used by the framework: (a) the reference First Fit and
Best Fit policies and their decreasing forms (FFD and BFD), and (b) the
Gaussian-type policies G1 and G2 defined in [7]. All policies may be used for
VM lists. A variant of the BFD policy is also defined for VM sets and the G2
policy is mainly used for this type of VM subcollections.

Let denote by RCPU a VM’s required CPU share and by TCPU, UCPU,
and ACPU a host’s total, used, and respectively available CPU resources
(TCPU = UCPU + ACPU). All hosts are identical and have a unique processor
with TCPU = 100% (the CPU quantities are considered in percents, which is
numerically more efficient). A VM may be assigned only to a feasible host (a
host with ACPU ≥ RCPU) and only if it receives all required resources. If no
such host exists, the VM remains in the waiting queue until a feasible host is
found.

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 39

The First Fit policy assigns each VM from a list to the lowest-indexed
feasible physical machine from the Hosts collection [12]. This policy uses an
F1-type resource allocation function, which takes the constant value 1 for any
feasible host and the value 0 for the other hosts. The FFD policy uses the same
resource allocation function as FF, but the VM lists are sorted decreasingly
by the VMs’ CPU request. The VM ordering filter, Fo-VM, performs this
sorting operation at scheduling level, by maximizing a function equal to RCPU.

The Best Fit policy maps each VM from a list to the host with the minimal
remained unused resources after allocation [12]. Since the current VM to be
mapped on hosts has been chosen at scheduling time (its RCPU value is known),
we define the F1-type BF resource allocation function as 1/ACPU for the fea-
sible hosts and 0 for the other hosts. The BFD and BF policies use the same
resource allocation function for VM lists, but the lists are additionally sorted
decreasingly for BFD. At its turn, the BFD policy for VM sets uses an F2-type
resource allocation function, which is RCPU/ACPU for the feasible hosts and 0
for the other hosts. This function resembles the weight factor defined for some
FFD and BFD-type heuristics proposed in the multi-dimensional Vector Bin
Packing context [10, 17].

Two Gaussian-type resource allocation policies, G1 and G2, have been de-
fined in reference [7]. These policies consolidate the VMs on physical resources
in a less greedy way than FF and BF, but more tightly than load balancing
methods. The G1 resource allocation policy is used by the host provisioning
filter Fp-H (Fig. 1) for VM lists. A given VM is assigned to the feasible
host which maximizes the G1(UCPU) Gaussian function. This function de-
pends only on the host usage and has adjustable location and width [7]. On
contrary, the G2 policy may be used either by the host provisioning filter Fp-
H, for VM lists, or by the VM-to-host mapping filter Fm-VM-H, for VM
sets. In case of VM lists, the G2 policy finds the destination host for already
selected VMs, by maximizing the F1-type function G2([RCPU], ACPU), with
fixed RCPU and variable ACPU. In case of VM sets, the G2 policy selects
the feasible (VM , host) pairs that maximize the F2-type two-variable function
G2(RCPU, ACPU) [7].

3.4. Host management. The resource requirements of the VMs deployed on
physical resources are time-varying. Therefore, at run-time, some physical ma-
chines may be underused and others overloaded. VMs migrations have proved
efficient for host management in both cases [2]. Currently, the framework con-
siders only the case of overloaded hosts; the case of underused hosts remains
as future work. A host is overloaded when the total CPU requirements of its
VMs exceed the host’s CPU resources (UCPU > TCPU). In real conditions,

40 CORA CRĂCIUN AND IOAN SALOMIE

however, the lower limit for hosts’ overloading may be some percent from the
total CPU capacity, such as 80%TCPU.

The framework performs the host management at each time tp (Table 1),
when the VMs’ CPU requirements are changed. The hosts are verified for
possible overloading in increasing order of their ID. Then, the VM suspending
filters (Fig. 1) select the VMs to be suspended from each identified overloaded
host. For example, if the host Hu is overloaded at time tq (Table 1), then
the Fsu-VM-Hu filter suspends a subset SVu(tq) from its VMs. The VMs
suspended from all overloaded hosts are collected into the SV (tq) subcollec-
tion. This subcollection is then appended to the VMs collection. When the
suspended VMs are rescheduled, they are either resumed on the same hosts or
are migrated to other hosts, depending on the result of the resource allocation
process.

Haizea, the underlying scheduler of the filter-based framework, uses “cold”
(off-line) VM migration. The VMs to be relocated are first suspended on
the initial hosts, then migrated, and finally resumed on the new hosts. The
applications encapsulated in the migrating VMs are completely stopped and
restarted at the new location. The migration time is calculated as the ratio
between the size of the VM’s memory image and the network bandwidth.

The VM suspending filters may use different policies. In our previous work
[7], we have evaluated the policy suspending the VMs with the lowest CPU
requests from the overloaded hosts. This policy was combined with the FF,
BF, and Gaussian-type resource allocation methods. Here we test two other
policies, denoted by H and L. The H -policy suspends the VMs of an overloaded
host in the decreasing order of their CPU required share. This policy reduces
the number of VMs migrations, but the migrated VMs have high resource
requirements at the destination hosts. Algorithms migrating VMs with high
resource requirements or with high values of some metrics have been presented
for example in references [2, 28, 29]. At its turn, the L-policy suspends some
VMs with low CPU requirements, but not necessarily the lowest. To our
knowledge, the L-policy has not been previously used in this form, but related
variants exist in the literature, for example the iFFD algorithm in [27] or the
HPG algorithm in [2].

The steps of the host management process at any time tp, p = 1, 2, . . .,
are presented in Algorithm 1. As in reference [2], for both VM suspending
policies, the algorithm tries first to suspend a single VM from each overloaded
host (Algorithm 1, line 5), in order to minimize the VM migration number.
Only the feasible VMs (the VMs not finishing their work in the next time
period T0) are potential candidates for suspension (line 4). The H -policy
selects the VM with the highest CPU request and the L-policy the VM with

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 41

the lowest one, but greater than the overload. In each case, the ties are broken
by selecting the VM with the smallest ID.

If a single VM is not able to eliminate the host overload (SV u at line 5 in
Algorithm 1 is the emptyset), then more VMs are suspended from that host.
The H -policy sorts the host’s VMs decreasingly by their CPU request (line
8, with SUSP = H) and selects as many VMs as necessary to eliminate the
overload. On contrary, the L-policy sorts the VMs increasingly by their CPU
request (line 8, with SUSP = L) and then uses two steps for VMs suspension.
First, the policy selects the VMs in order until their cumulated CPU request
exceeds the host’s overload (lines 9–16). This means that by removing the
selected VMs, ACPU becomes greater than or equal to zero. Second, the list of
selected VMs is scanned backwards and the VMs which are still not causing
the host overload are restored (lines 17–28). The VMs suspended from each
overloaded host are appended to the SV list (line 30). Finally, this list is
sorted (lines 33–37) as explained in Sect. 3.2.1.

3.5. Resource management compound filters. A compound filter is a
chain of filters able to perform all resource management operations for VMs
deployment on physical resources. The compound filters evaluated in this
paper are presented in Table 2. Their VM ordering, host provisioning, and
VM-to-host mapping filters maximize the indicated objective functions, while
the VM scheduling and VM suspending filters use the specified policies. The
FF, BF, G1, and G2 compound filters for VM lists assign the VMs to the hosts
by using the host provisioning filter Fp-H. The FFD and BFD compound
filters additionally sort the VM lists before resource allocation, with the VM
ordering filter Fo-VM. The BFD and G2 compound filters for VM sets allocate
physical resources using the VM-to-host mapping filter Fm-VM-H.

4. Framework evaluation

In this section, we present the results of evaluating the framework by simu-
lation, for a set of batch jobs arrived simultaneously at the data center. A vir-
tual machine was provisioned to each job. Simulation experiments consisted in
processing 40 VMs with time-varying CPU requirements in two environments:
one with sufficient physical resources (20 hosts) and the other with insuffi-
cient resources (8 hosts). In the (40VM,20H) case, the NLIST and FLIST
scheduling policies were equivalent.

A trace of CPU requests lasting for td = 500 min was generated for each VM.
The CPU requirements of the active VMs were changed periodically based on
their trace, at times tp = t0 + pT0, for p = 1, 2, . . . and T0 = 2 min (Table 1).
The active VMs were the ones deployed on physical machines and not waiting
in queue for free resources. The VMs’ CPU required shares (in percents) were

42 CORA CRĂCIUN AND IOAN SALOMIE

Algorithm 1 Management of overloaded hosts

Input: Hosts - the host collection, {Hu}u=1,...,NH

VMs - the VM collection, {VMj}j=1,...,NV

ORDER - ordering option (Decreasing, None) for Fo-VM
SUSP - suspending policy (L, H) for Fsu-VM-H

Output: SV - suspended VMs from all overloaded hosts

1: SV ← ∅
2: for all Hu ∈ Hosts do
3: if Hu.availableCPU < 0 then
4: AV u ← Hu.feasibleActiveVMs
5: SV u ← choseOneVM(AV u, SUSP)
6: if SV u = ∅ then
7: sortIncreasingByVmID(AV u)
8: sortBySuspensionOption(AV u,SUSP)
9: for all VM i ∈ AV u do

10: if Hu.availableCPU < 0 then
11: appendVM(SV u,VM i)
12: Hu.availableCPU ← Hu.availableCPU +VM i.requiredCPU
13: else
14: break
15: end if
16: end for
17: if SUSP = L then
18: i← SV u.size
19: while i ≥ 1 do
20: VM i ← getVmByIndex(SV u,i)
21: temp ← Hu.availableCPU −VM i.requiredCPU
22: if temp ≥ 0 then
23: Hu.availableCPU ← temp
24: removeVM(SV u,VM i)
25: end if
26: i← i− 1
27: end while
28: end if
29: end if
30: appendVmList(SV ,SV u)
31: end if
32: end for
33: sortIncreasingByVmID(SV)
34: sortIncreasingByHostID(SV)
35: if ORDER = Decreasing then
36: sortDecreasingByVmRequiredCPU(SV)
37: end if
38: return SV

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 43

Table 2. Resource management compound filters1

```````````Compound filter
Filter Scheduling Resource allocation Host management

Fsc-VM Fo-VM Fm-VM-H Fp-H Fsu-VM-H

FF-fZ FLIST - - 1 Z = L or H
FF-nZ NLIST - - 1 Z = L or H

FFD-fZ FLIST RCPU - 1 Z = L or H
FFD-nZ NLIST RCPU - 1 Z = L or H

BF-fZ FLIST - - 1/ACPU Z = L or H
BF-nZ NLIST - - 1/ACPU Z = L or H

BFD-fZ FLIST RCPU - 1/ACPU Z = L or H
BFD-nZ NLIST RCPU - 1/ACPU Z = L or H
BFD-sZ SET - RCPU/ACPU - Z = L or H

G1-fZ FLIST - - G1 Z = L or H
G1-nZ NLIST - - G1 Z = L or H

G2-fZ FLIST - - G2 Z = L or H
G2-nZ NLIST - - G2 Z = L or H
G2-sZ SET - G2 - Z = L or H

1 FF - First Fit, FFD - First Fit Decreasing, BF - Best Fit, BFD - Best Fit Decreasing, G1 and G2
- Gaussian-type filters (the G1 filter uses the G1 resource allocation function and G2 uses G2);

Fsc-VM - the VM scheduling filter (uses the FLIST, NLIST, or SET policy), Fo-VM - the VM

ordering filter (optionally orders the VMs decreasingly by their RCPU value), Fm-VM-H - the
VM-to-host mapping filter (uses an F2-type resource allocation function), Fp-H - the host

provisioning filter (uses an F1-type resource allocation function), Fsu-VM-H - the VM suspending

filter (uses the L or H policy); RCPU - the VM CPU request, ACPU - the host available CPU.

random numbers generated uniformly between 10 and 40 and then rounded up
to the closest integer value. This range of values ensured some variation among
the VMs’ CPU traces and favored the hosts’ overloading, of interest for our
study. In the migration process, the VM memory image was off-line migrated,
with no disk image transfer. The VMs were suspended by saving their memory
state on the filesystem at a rate of 32 MB/s [25, 15]. The VMs’ resumptions
were performed at the same rate. The suspension and resumption needed 4
s each and the copy of the VM memory image other 11 s. In simulations,
the same total delay of 19 s was considered for all suspended VMs, either
migrated or later resumed on the same hosts. The Haizea’s restrictions have
been relaxed, more VMs being allowed to migrate simultaneously from or
to the same physical machine, with no performance overhead. Simulation
experiments have been repeated 100 times. All compound filters used identical
environment conditions and CPU traces within the same experiment.



44 CORA CRĂCIUN AND IOAN SALOMIE

F
F

−
fL

F
F

−
n
L

F
F

D
−

fL
F

F
D

−
n
L

B
F

−
fL

B
F

−
n
L

B
F

D
−

fL
B

F
D

−
n
L

B
F

D
−

s
L

G
1
−

fL
G

1
−

n
L

G
2
−

fL
G

2
−

n
L

G
2
−

s
L

2
3
.0

2
3
.5

2
4
.0

2
4
.5

E
n
e
rg

y
 (

k
W

h
)

F
F

−
fL

F
F

−
n
L

F
F

D
−

fL
F

F
D

−
n
L

B
F

−
fL

B
F

−
n
L

B
F

D
−

fL
B

F
D

−
n
L

B
F

D
−

s
L

G
1
−

fL
G

1
−

n
L

G
2
−

fL
G

2
−

n
L

G
2
−

s
L

7
0
0

8
0
0

9
0
0

M
ig

ra
ti
o
n
s

a

Figure 2. Boxplot representation of the consumed energy and
the VM migration number for the (40VM,8H) configuration,
L-suspending policy, and FLIST, NLIST and SET scheduling
policies, in 100 simulation experiments.

The resource management policies presented in this paper were compared
using the following metrics: the energy consumed by the physical machines,
the VMs’ total flow time (the sum of all VMs’ processing times), the num-
ber of VMs migrations, and the mean number of active hosts for the entire
makespan. The VMs migrations and the VMs suspensions with resumption
on the same hosts were counted independently. We considered that the total
electrical power of each physical machine depended linearly on its CPU usage
[9]. Moreover, the idle power represented 70% of the total power of 250 W at
full CPU utilization [1]. We assumed that the hosts were switched off when
they became idle. In all experiments, the G1 resource allocation function used
the parameters ThrL = 40, ThrH = 80, and a = 0.8, as defined in reference
[7], and the G2 function used the parameters α = 0.5 and r = 0.001.

Simulation results are presented in Figures 2 and 3. The boxplots contain
boxes from the first to the third quartile of data, whiskers extending to the
most extreme data point, but not further than 1.5 times the interquartile range
[19], the data’s median value (the horizontal line), the mean value (the full
knot, possibly overlapped by the median’s line), and outliers (the open knots).
Based on these results, we made the following observations:

(a) VM scheduling policy. In the (40VM,8H) configuration, for the same
type of compound filter, the average energy consumption was slightly smaller
for the NLIST scheduling policy than for the FLIST policy, but with a slightly
higher average VM migration number (Fig. 2). The SET scheduling policy
was closer in outcome either to NLIST (for BFD) or to FLIST (for G2). For
example, the median energy consumption and VM migration number were



RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 45
E

n
e
rg

y
 (

k
W

h
)

M
ig

ra
ti
o
n
s

A
c
ti
v
e
 h

o
s
ts

F
lo

w
 t
im

e
 (

h
)

2
3
.0

2
4
.0

2
5
.0

5
0
0

7
0
0

9
0
0

6
.8

7
.2

7
.6

F
F

−
n
L

F
F

D
−

n
L

B
F

−
n
L

B
F

D
−

n
L

B
F

D
−

s
L

G
1
−

n
L

G
2
−

n
L

G
2
−

s
L

F
F

−
n
H

F
F

D
−

n
H

B
F

−
n
H

B
F

D
−

n
H

B
F

D
−

s
H

G
1
−

n
H

G
2
−

n
H

G
2
−

s
H

4
6
0

4
8
0

5
0
0

2
6

2
8

3
0

3
2

3
4

1
0
0

3
0
0

5
0
0

1
3

1
5

1
7

1
9

F
F

−
n
L

F
F

D
−

n
L

B
F

−
n
L

B
F

D
−

n
L

B
F

D
−

s
L

G
1
−

n
L

G
2
−

n
L

G
2
−

s
L

F
F

−
n
H

F
F

D
−

n
H

B
F

−
n
H

B
F

D
−

n
H

B
F

D
−

s
H

G
1
−

n
H

G
2
−

n
H

G
2
−

s
H

3
3
3
.5

3
3
4
.5

3
3
5
.5

3
3
6
.5

(a)                   (b)

E
n
e
rg

y
 (

k
W

h
)

M
ig

ra
ti
o
n
s

A
c
ti
v
e
 h

o
s
ts

F
lo

w
 t
im

e
 (

h
)

Figure 3. Boxplot representation of the energy and perfor-
mance metrics for the (a) (40VM,8H) and (b) (40VM,20H)
configurations, L and H suspending policies, and NLIST and
SET scheduling policies, in 100 simulation experiments.

23.54 kWh and 856 for BFD-fL, 23.27 kWh and 902 for BFD-nL, and 23.29
kWh and 905 for BFD-sL.



46 CORA CRĂCIUN AND IOAN SALOMIE

(b) Metrics. The average VM migration number and the average energy
consumption had opposite behavior. A more energy efficient compound filter
was less efficient regarding the number of VMs migrations. Moreover, the
relative average behavior of the compound filters was similar for the consumed
energy and flow time in the (40VM,8H) configuration (Fig. 3a), but similar
for the VM migration number and flow time in the (40VM,20H) configuration
(Fig. 3b).

(c) Compound filters. The Gaussian-type compound filters were less energy-
efficient than the FF, FFD, BF, and BFD compound filters, but generated a
lower number of VMs migrations (Fig. 3). For example, in the (40VM,20H)
configuration, the median energy consumption and VM migration number
were 26.35 kWh and 513 for BFD-nL, 26.74 kWh and 365 for G1-nL, and
28.90 kWh and 168 for G2-nL.

(d) Suspended VMs. In the (40VM,8H) configuration, 11–14% from the total
number of VMs suspensions were resumed later on the same hosts, without
relocation. However, the compound filters’ relative average behavior was not
much affected qualitatively when considering all suspended VMs instead of
only migrated ones.

(e) VM suspending policy. In both configurations and for all compound
filters, the H -suspending policy caused a higher energy consumption and fewer
VMs migrations than the L-suspending policy (Fig. 3). In the (40VM,20H)
configuration, for instance, the median energy consumption and VM migration
number were 26.35 kWh and 513 for BFD-nL, but 27.89 kWh and 267 for
BFD-nH.

5. Conclusions

This paper has presented a filter-based dynamic resource management frame-
work for virtualized environments. The framework uses resource management
filters to perform the VM scheduling, resource allocation, and host manage-
ment operations in data centers. The framework may be used to assess the en-
ergy and performance efficiency of different resource management techniques.
The framework has been evaluated by simulation, for deploying virtual ma-
chines with time-varying CPU requirements, in small size environments with
sufficient and insufficient physical resources. Since the resource management
filters may be combined in the desired way, the framework may be included
in autonomous systems and may be used in what-if analysis.

Acknowledgments

The authors would like to thank the anonymous reviewers for their sugges-
tions and comments, which improved the paper.



RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 47

References

[1] A. Beloglazov, R. Buyya, Adaptive threshold-based approach for energy-efficient consoli-
dation of virtual machines in cloud data centers, in Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science (MGC’10), 2010, pp. 4:1-4:6.

[2] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing, Future Gener. Comput. Syst.,
28 (2012), pp. 755-768.

[3] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers, Concurr. Comput.: Pract. Exper., 24 (2012), pp. 1397-1420.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms, Software: Practice and Experience, 41 (2011), pp.
23-50.

[5] CloudSim. http://www.cloudbus.org/cloudsim/
[6] G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J.-M. Pierson, O.

Richard, K. Sharma, The GREEN-NET framework: Energy efficiency in large scale
distributed systems, in Proceedings of the 2009 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS’09), 2009, pp. 1-8.

[7] C. Crăciun, I. Salomie, Gaussian-type resource allocation policies for virtualized data
centers, Studia Univ. Babeş-Bolyai, Informatica, LXI(2) (2016), pp. 94-109.

[8] L. Eyraud-Dubois, G. Mounié, D. Trystram, Analysis of scheduling algorithms with
reservations, in Proceedings of the IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’07), 2007, pp. 1-8.

[9] X. Fan, W.-D. Weber, L. A. Barroso, Power provisioning for a warehouse-sized com-
puter, in Proceedings of the 34th annual International Symposium on Computer archi-
tecture (ISCA’07), 2007, pp. 13–23.

[10] M. Gabay, S. Zaourar, Variable size vector bin packing heuristics - Application to the
machine reassignment problem, Inria, TechReport hal-00868016 (OSP. 2013). Available
online: http://hal.archives-ouvertes.fr/hal-00868016.

[11] S. K. Garg, R. Buyya, NetworkCloudSim: Modelling parallel applications in cloud sim-
ulations, in Proceedings of the 2011 4th IEEE International Conference on Utility and
Cloud Computing (UCC’11), 2011, pp. 105-113.

[12] M. R. Garey, R. L. Graham, J. D. Ullman, An analysis of some packing algorithms, R.
Rustin, ed., Combinatorial Algorithms, Algorithmics Press, New York, 1973, pp. 39-47.

[13] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical
Journal, 45 (1966), pp. 1563-1581.

[14] Green Cloud Scheduler. http://coned.utcluj.ro/GreenCloudScheduler/
[15] Haizea. http://haizea.cs.uchicago.edu/
[16] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, J. Lawall, Entropy: a consolidation

manager for clusters, in Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual execution environments (VEE’09), 2009, pp. 41-50.

[17] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda,
U. Wieder, Validating heuristics for virtual machines consolidation, Microsoft Re-
search, TechReport MSR-TR-2011-9, Jan 2011. Available online: http://research.

microsoft.com/pubs/144571/virtualization.pdf



48 CORA CRĂCIUN AND IOAN SALOMIE

[18] A. W. Mu’alem, D. G. Feitelson, Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with backfilling, IEEE Trans. Parallel Distrib. Syst.,
12 (2001), pp. 529-543.

[19] The R Project for Statistical Computing. http://www.r-project.org/
[20] OpenNebula. http://www.opennebula.org/
[21] OpenStack. http://www.openstack.org/
[22] I. Salomie, T. Cioara, I. Anghel, D. Moldovan, G. Copil, P. Plebani, An energy aware

context model for green IT service centers, Service-Oriented Computing. Lecture Notes
in Computer Science 6568, Springer, Berlin, 2011, pp. 169-180.

[23] B. Sotomayor, K. Keahey, I. Foster, Combining batch execution and leasing using virtual
machines, in Proceedings of the 17th International Symposium on High performance
distributed computing (HPDC’08), 2008, pp. 87-96.

[24] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, An open source solution for vir-
tual infrastructure management in private and hybrid clouds, IEEE Internet Computing,
Special Issue on Cloud Computing, 2009.

[25] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Resource leasing and the art of
suspending virtual machines, in Proceedings of the 11th IEEE International Conference
on High Performance Computing and Communications (HPCC-09), 2009, pp. 59-68.

[26] B. Sotomayor Basilio, Provisioning computational resources using virtual machines and
leases, PhD Dissertation, Univ. of Chicago, Illinois, USA, 2010.

[27] A. Verma, P. Ahuja, A. Neogi, pMapper: power and migration cost aware application
placement in virtualized systems, in Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware (Middleware’08), 2008, pp. 243-264.

[28] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, Sandpiper: Black-box and gray-box
resource management for virtual machines, Comput. Netw., 53 (2009), pp. 2923-2938.

[29] H. Zhang, K. Yoshihira, Y.-Y. Su, G. Jiang, M. Chen, X. Wang, iPOEM: A GPS tool for
integrated management in virtualized data centers, in Proceedings of the 8th IEEE/ACM
International Conference on Autonomic Computing (ICAC’11), 2011, pp. 41-50.

Department of Computer Science, Technical University of Cluj-Napoca, Ro-
mania; Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: cora.craciun@phys.ubbcluj.ro

Department of Computer Science, Technical University of Cluj-Napoca, Ro-
mania

E-mail address: Ioan.Salomie@cs.utcluj.ro


