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EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU

SUPPORT: A STATE OF THE ART

ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

Abstract. In order to deal with extremely large quantities of informa-
tion, embedded systems need high capabilities in order to process the whole
amount of data in real time. Two trends are present in the field: the
usage of boards with Graphics Processing Units (GPUs) and the usage
of component-based development (CBD). Components with GPU capa-
bilities have the great advantage to be platform-independent. However,
developing embedded systems with GPUs by using CBD was considered
until very recently a problem with restricted availability and flexibility. By
introducing specific GPU support for CBD in the form of flexible compo-
nents and by improving their communication, a solution was identified and
checked. Present paper aims to present a state-of-the-art and highlights
the newest knowledge to date, articulating encountered confronted issues
and describing existing solution approaches.

1. INTRODUCTION

Many modern embedded systems deal with huge amounts of data originat-
ing from the interaction with the environment. For example, the autonomous
car developed by Google 1 processes up to 120 MB of data per second de-
livered through its sensors [1]. The data must be processed with a certain
performance in order to handle, in real-time, the environment changes.

A solution to process these data with adequate performance is the usage of
general-purpose Graphics Processing Units (GPUs), which, thanks to their ar-
chitecture, excel for highly data-parallel applications. Today, embedded-board
platforms contain GPUs and different platforms have different architectures.
Depending on their characteristics, like size, energy consumption or computa-
tion power, different platforms are suitable in different contexts. For example,
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there are platforms with high-computation GPU used in high-performance
computing solutions, but also low-computation with low energy consumption
such as GPU used in smart watches [3].

An alternative approach in the development of embedded systems is the
usage of component-based development (CBD). CBD is a software engineer-
ing methodology that promotes the efficient system development through the
composition of already existing software blocks called (software) components.
CBD advertises the use and reuse of the same component in different contexts,
which increases the development efficiency.

CBD is ineffective for embedded platforms that combine Central Processing
Units (CPUs) and GPUs. This is due to the lack of specific support for
GPUs. This overall challenge has several aspects. One of them refers to the
development of components with GPU capabilities, which is complex, time-
consuming and error-prone.

Another existing issue involves the reduced flexibility of the current way
in which component-based applications with GPU capabilities are designed.
The existing hardware-specific components have a reduced reusability between
different hardware contexts.

The aim of this paper is twofold: firstly, a state of the art is provided,
classifying the existing conducted research on CBD for GPU and augmented
it with additional newest published approaches in the last year, and secondly
to highlight the existing solutions for the encountered issues relating to usage
of GPUs.

The reminder of the paper is organized as follows. A review of current
contributions in the area of embedded systems with GPU is presented in Sec-
tion II, followed by a focused overview in Section III, where only mechanisms
to ease CBD for embedded systems with GPU capabilities are treated. The
end of Section III also contains the related work. Section IV extracts the
conclusions of the reviewing work.

2. EXISTING RESEARCH ON EMBEDDED SYSTEMS WITH
COMPONENT-BASED GPU

Campeanu [4] conducted a Systematic Literature Review (SLR) and inves-
tigated existing studies related to CBD and GPU aspects. In his study 49
papers were considered and, from those, only 17 were devoted to the area of
embedded systems. It was shown that the development of CBD for GPU-
capability applications was first approached/published in 2009, and even to-
day, this field is still poorly represented in the mainstream research for indus-
try. The directions in which research on CBD for GPU was conducted were
classified by Campeanu [4] to be: a) development improvement (33 papers);
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b) performance improvement (10 papers); c) software-to-hardware allocation
(5 papers); d) experience sharing knowledge (1 paper).

There resulted a number of gaps/needs to be approached in the future:

• generally, no specific component models were used to build the solu-
tions; in the studies that however approached the area in such a way,
the most used were PEPPHER, UML, CCA and Rubus;

• more than 10 mechanisms were implemented to support GPU devel-
opment, from which most applied were the programming and mod-
eling mechanisms;

• the memory addressing was approached by an artifact, manual- or
layer-based solutions;

• preferred programming languages were CUDA/OpenCL and C/Cpp
(CUDA – developed specifically for NVIDIA, while OpenCL – more
general and fits to platforms like AMD, Altera, IBM, Intel, NVIDIA,
Samsung and Xilinx).

Since the Systematic Literature Review provided in [4], several other pa-
pers investigated the GPU in connection with other perspectives as: parallel
applications, multiple streams and process variations.

In what follows, we present several other contributions not presented in [4].
With the aim of stream computing for real-time sensor correction, authors

of [5] proposed a flexible and expandable on-board real-time data processing
solution. The data coming from a high-resolution optical satellite was chosen
while the proposed solution was based on multi-threading optimization and a
CUDA collaborative strategy. The simulation prototype was implemented on
an NVIDIA embedded GPU platform and it consisted in a double-module data
parallel pipeline system. Programming, occupancy and data access improve-
ments were used and checked. The on-board results were at the end compared
against the same algorithms run on a Dell PowerEdge T630 Server, proving
a feasible stream performance and low power consumption. Due to the good
flexibility and expandability of the embedded GPU platform, the idea could
be shifted to cover different applications in which optimization strategies to be
adjusted accordingly while the number of pipeline modules should be redrafted
in function of the computational requirements. To improve the on-board intel-
ligent processing capability, authors of [5] also proposed the implementation of
other algorithms, eg.: fusion, geo-rectification, region of interest (ROI) extrac-
tion, cloud-cover detection, target recognition and change detection real-time
processing.

In order to simulate parallel applications running on GPUs, the authors of
[6], proposed the adaptation of the performance Volkov model and its imple-
mentation on a MERPSYS simulator. CUDA and NVIDIA GPUs are already
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available in the model, while extensions are expected soon, to include AMD
and the OpenCL frameworks. GPU modeling was very proficient with the
Volkov model implementation, from the extendibility and feasibility perspec-
tive. The advantages offered by using MERPSYS with this model was proved
in the directions: a) it provides possibility to assess the applications function-
ing for sizes of the data that exceed the hardware capabilities; b) hardware
setups can be evaluated prior to computations/applications running; c) costs
may be apriority predicted since it is possible to calculate the duration of the
computation; d) shortening of the simulation times than the real runs is ob-
vious. The model could be verified on different GPU hardware architectures
and could be improved further on, by using double precision units, SFUs and
shared memory. Also, an automation of the kernel analysis process is expected
for this solution.

To solve the complex problem of correct dissemination of multiple streams
coming from various sensors in a system, a recent solution based on an original
architecture was proposed: the Parallel Data Distribution Service (PDDS) [7],
published in 2018. It proposed solving the problem timely, reliable and scal-
able. PDDS centers its idea on parallelizing the model-related computation.
The state estimation of sensor streams was made by involving general-purpose
GPUs (GPGPUs) to obtain high efficiency in energy and good scalability.
Practically, an original data distribution algorithm has been implemented on
a modern embedded device using CUDA by extending the data distribution
service of the object management group. Three GPGPU kernels were involved:
prediction, compaction and update kernels. With PDDS, serial network stacks
could be bypassed and subscribers could have access to fresh sensor data by
using local sensor models and with no communication with its publishers. It
was proved that this algorithm consumes just 5% energy if compared to similar
algorithms in use.

An interesting and complementary approach was recently addressed by an-
alyzing the embedded GPU aging problem as a result of processes variations
[8], published in 2018. An aging-aware workload management technique was
used, in which the main actors were the warp scheduler and instruction dis-
patcher. The technique functions like this: before the launching of the kernel
function, the host configures the GPU, taking into account the results from a
running algorithm. This one refers to the formation of warp and to the work-
load division and generates information to reconfigure the cluster and scale the
heaviness of the embedded GPU. It was proved experimentally that by using
such a technique, GPU may excellently be reduced in (72-95) % of cases. Com-
pared to the complier-based-technique, the present aging-preventing technique
is less susceptible to soft-errors.
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Since CBD is ineffective for embedded platforms that combine central pro-
cessing units (CPUs) and GPUs, one solution is the development of compo-
nents with GPU capabilities/settings and GPU-specific environment informa-
tion. Encapsulating inside the components all the information results in spe-
cific hardware components destined to particular GPU architectures. There
are two possibilities: a) specialized components made to encapsulate GPU
functionality – but they cannot function without GPU hardware; b) introduc-
tion of special adapters to facilitate automatic data transfer between CPU and
GPU memory system. Practically solutions are encountered in case of Autosar,
Rubus and IEC 61131 [4]. The disadvantage is connected to the limitations
of the system developer due to the reduced reusability of hardware-specific
components in different hardware contexts.

In CBD, the components interact through interfaces: port-based and o-
peration-based. Eg.: the port-based interfaces comprise of access points for
sending/received data of different types between components. The white-
box components are readable source code changeable by the programmers.
The components’ functionality is accessed through the interface, and their
internals are visible from outside. The developer has access to their interface
and internals. A component is constructed by following the specifications of
a component model; it is well established how components interact with each
other when they are assembled into a system.

3. PROPOSED SOLUTIONS FOR GPU SPECIfiC SUPPORT: THE
PIPE-AND-fiLTER COMPONENT MODELS

This section emphasizes and presents the proposals to overcome the short-
comings identified in SLR [4].

The GPU, being the processing unit equipped with a parallel architecture,
cannot function without a CPU. CPU coordinates all the GPU-specific activ-
ities (data transfer/execution of GPU functionality). Embedded-board plat-
forms with different GPU architectures exist (2 types):

• discrete (dGPU) - has its own private memory (Condor GR23);
• integrated (iGPU) - on the same chip as the CPU, sharing the same

memory (AMD Kabini4).

Embedded-boards with iGPU architectures are the predominant platforms
in industry, low - priced, - sized and - energy usage. dGPUs have large physical
sizes, incorporate more (GPU) resources and used by systems requiring high
performance.

To develop an application, several hierarchical steps are taken: 1) a platform
is set with installed driver (contains one or several execution devices, eg. 1-
CPU and 2- GPU (iGPU and dGPU) devices); 2) the devices are selected so
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as to execute the functionality; the commands given by the host (CPU) to
the device (iGPU)/kernel are sent using a command queue mechanism; the
functionality should be defined before setting the platform; 3) allocation of
device memory (buffers), either as input or output for the kernel function; 4)
a program to hold the defined kernel is created and compiled (kernel arguments
are assigned by using the allocated In/Out buffers) + specify the number of
threads for the kernel execution; 5) the kernel is executed and its results
are transferred back to the host; 6) the resources (memory buffers, program,
context, command queue, kernel) are released.

The pipe-and-filter component models are based on [4]: a) flexible compo-
nents; b) optimization of the groups of flexible components; c) a support for
component communication is designed.

A flexible component, being a white-box with readable and modifiable
source code, its functionality is expressed in parallel using the OpenCL syn-
tax. It can be executed either on CPU or GPU. The component does not
contain any environment-specific information (it is not binded to a particular
processing unit). During system design, the system developer decides on which
hardware (CPU or GPU) the flexible components should be allocated onto.
In order to be executed on the specified hardware, the required environment
information is generated automatically.

The accomplishment of the solution is implemented on two levels: the
component- and the system-level. Using the core functionality and the in-
formation on the number and data types of the (In and Out) data ports
provided by the flexible component, a full component was generated, ready
to be executed on the hardware. The resulting generated component con-
tains constructor + behavior function + destructor. At system level, based
on the component connections and component-to-hardware allocation, arti-
facts/adapters were generated where needed. The adapters take data from
one component and provide it to the connected component in the appropriate
memory location

The use of flexible components having functionalities that may be executed
either on CPU or GPU has the next advantages: 1) component-level mech-
anisms automatically generate environment-specific information that allows
the component to be executed on different hardware; 2) system developer has
a larger design-space to choose from; 3) the adapters automatically transfer
data between components.

3.1. Flexible Component-based Applications with GPU Capabili-
ties.

The approach presented in [9] aims at enhancing the flexibility in designing
component-based applications with GPU capabilities by introducing flexible



EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU SUPPORT 73

components that owe functionalities that may be executed either on CPU or
GPU. In this way the developer may focus only on implementing the func-
tionality while having a larger design-space to choose from. Component-level
mechanisms automatically generate environment-specific information so that
the component may be executed on different hardware. The adapters au-
tomatically transfer data between components, taking in consideration the
platform specifications. The benefits of employing flexible components re-
fer to: canceling the developer’s responsibility of handling the component
environment-specific information; providing a higher system feasibility due to
a larger design-space; increasing the component communication efficiency by
the generated adapters.

Supplementary to the solution proposed in [9], the authors of [10] under-
line the fact that the flexibility offered by component-based applications com-
plicates the allocation process; it adds additional complexity (due to unde-
cided CPU or GPU execution) and constraints to be considered (CPUs and
GPUs properties). Therefore an optimization of the flexibility offered by the
component-based embedded systems is necessary. Practically in [10] it is pro-
posed a model to optimize the memory usage, the energy usage and the execu-
tion time. The novelty is provided in the formal description of the optimization
model, which supports the usage of mixed integer nonlinear programming to
compute optimal allocation schemes.

3.2. Boosting the Resource Utilization.
In order to mitigate the ever-increasing computational demands of modern

embedded systems platforms equipped with GPU processors, an alternative
solution is proposed in paper [11] by the boosting of the resource utilization
of embedded systems with GPUs. Practically the idea is that the non-critical
functions can benefit from the resources of the critical functions during the
intervals when they are not used. The method provided in [10] allows the
automatic computation of the unused resources in the critical part of the
system followed by the distribution of the computed resources to the non-
critical parts. The method makes use of a run-time monitoring engine that
monitors the critical part of the system to detect any changes in its resource
requirements. The considered run-time resources are the system memory and
GPU computation threads. By calculating the unused memory based on the
actual resource usage by the critical part of the system and by having the
information regarding the amount of available memory, the non-critical part
of the system can benefit from the available extra resource.

3.3. Practical Demonstrations of Flexible Components Versatility.
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It was demonstrated that the pipe-and-filter style implemented by Rubus
component model is suitable for streaming of events-type of applications and
allows an easy mapping between the interaction model and the control spec-
ifications required by embedded and real-time systems [4]. The Rubus com-
ponent consisted of 3 parts: constructor (executed once, before the system
execution and allocates the component resource requirements), behavior func-
tion (functionality of the component, executed each time when the component
is triggered) and destructor (execution when the system is switched off and
releases the allocated resources).

In case of the vision system of an underwater robot [2], the hardware plat-
form was an electronic board with a GPU, connected to various sensors (two
cameras) and actuators (thrusters) [4]. The continuous flow of data produced
by the cameras is processed by the robot’s vision system using the GPU. Two
camera components were connected to the physical camera sensors. The re-
ceived data was converted into readable frames and forwarded to the Merge
and Enhance component that merged and reduced the noise of the two received
frames. The resulting frame was converted to grayscale. Due to the nature
of computations (image processing), a set of flexible components were used:
Merge And Enhance, Convert Grayscale, Edge Detection, Compress RGB and
Compress Grayscale. The frames were of m-elem type, where the maximum
size (RGB and grayscale) varied from component to component, depending on
the functionality. To evaluate the approach, 4 allocation scenarios were used:
1) all flexible components are allocated to the GPU; 2) all flexible compo-
nents are allocated to the CPU; 3) and 4) alternate in allocating the flexible
components to CPU and GPU. For each scenario, there were used 3 differ-
ent hardware platforms that contain GPUs. As an output, three produced
frames were compared (the input to Object Detection and Logger) from all 12
combinations of scenarios and platforms; all combinations generated identi-
cal output frames. For scenario 1 (all flexible components allocated on GPU),
for platforms with dGPU architecture, there were generated two CPU-to-GPU
adapters and three GPU-to-CPU adapters. When all flexible components were
allocated to CPU, there was no need for adapters. For shared virtual memory
architectures, there were generated only CPU-to-GPU adapters; there was no
need for GPU-to-CPU adapters because all components (regular and flexible)
had direct access to the same shared virtual memory system.

Even if up until very recently CBD presented a very reduced attractive-
ness and solvability in the area of embedded systems with GPU, yet notably
progress has been made in the last couple of years. For a compact overview
of novelties in the field, Table 1 synthesizes the advancement in the field.
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Issue / GPU mechanism New solution References
Flexible and

expandable on-board
GPU real-time data processing

Multi-threading optimization/
CUDA collaborative strategy

[5]

Prediction of application
performance on various GPUs

Theoretical models embedded in
MERPSYS

[6]

Parallel Data Distribution
Service architecture

Parallelizing the model-related computation/
general-purpose kernels of GPUs/
extending the data distribution

service of the object management group

[7]

Improving GPU
aging process

Aging-aware workload management technique/
reconfigure the cluster and scale the

heaviness of theembedded GPU
[8]

CBD: Platform
independent components

Flexible component/executed on GPU or CPU
/grouping/communication via adapters/

adapters generated automatically
[4], [9]

CBD: Rubus component
model - extended

Implemented with flexible components/
groups/adapters

[4], [10]

CBD: GPU platforms with
components application

optimization

Method providing different allocation schemes
for flexible components/

in function of optimization criteria
[4], [11]

Table 1. Development of embedded systems with GPU

4. CONCLUSIONS

Facilitation of component-based development of embedded systems with
GPUs is a need in alternative finding of solutions for high-demand processing of
huge data streams resulted from real-time environment sensor-systems. Even if
considered until very recently as a limited/abandoned track, CBD contribution
proves its high potential in specific contexts.

By starting with a review of state-of-the-art of embedded systems with
GPUs, we initially classified the papers in the field - based on categories,
mostly using the collected data presented in a doctoral thesis from 2018 [4]
which extracted information from internationally recognized databases. Then
we emphasized the newest ones, which have not been reviewed to date.

The main focus was however devoted to reviewing solutions in the area of
CBD, where, when preparing the component with GPU capability one needs
to take into account: on one hand, the component functionality, the required
environment information and GPU settings, and on the other hand the sepa-
ration between component and the system development.

By analyzing the concepts recently introduced of flexible components, then
flexible groups and then optimized groups, a feasible solution was showed to
emerge. The component communication was facilitated by using specialized
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artifacts/adapters that automatically transfer data between CPU- and GPU-
allocated flexible components.

In view of recent solutions which were already implemented and tested, the
component-based GPU support proves its power and advantages, as compared
to other solutions analyzed above.
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