
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.06

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT

SOLVING IN THE CLANG STATIC ANALYZER

RÉKA KOVÁCS AND GÁBOR HORVÁTH

Abstract. Static analysis is a widely used method for finding bugs in
large code bases. One of the most popular static analysis tools used for
software written in C/C++ languages is the Clang Static Analyzer [1].
During symbolic execution [2] of the source code, the analyzer models
path sensitivity by keeping track of constraints on symbolic variables. The
built-in constraint manager module, while granting excellent performance,
only handles constraints on certain types of integer expressions, which has
a detrimental effect on the quality of the analysis, as the infeasibility of
certain execution paths cannot be proved. This often leads to false positive
findings, i.e. error reports issued for code parts that are actually correct.

This paper records the first milestone in an effort to integrate the
state-of-the-art Z3 theorem prover [3] into the Clang Static Analyzer in
order to post-process bug reports. While full integration is hindered by
the burden Z3 places on the duration of the analysis, the refutation of
false positive reports using information collected by the default pass can
improve analysis quality substantially while introducing only a moderate
regression in performance. We present an initial prototype of the tiered
constraint solving solution that is already capable of filtering out some
bogus reports, evaluate it on real-world software projects, and explore
possible improvements we plan to accomplish in our future work.

1. Introduction

Static analysis is the analysis of software without actually executing pro-
grams, usually performed by an automated tool on the source code. Static
analysis tools are widely used in the continuous integration chains of produc-
tion software as their comprehensive checks can provide rapid feedback on the
code’s performance, reliability, and safety.

Received by the editors: April 2, 2018.
2010 Mathematics Subject Classification. 68N20.
1998 CR Categories and Descriptors. F.3.2 [Logics and meanings of programs]:

Semantics of Programming Languages – Program analysis.
Key words and phrases. Static analysis, symbolic execution, Clang, SMT solver.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

88

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 89

One of the main considerations behind the design decisions of static anal-
ysis tools is the number of false positive reports produced by the tool. False
positives are warnings issued incorrectly for code parts that do not contain
erroneous behavior. A high ratio of bogus reports is a much greater problem
for an industrial bug finding tool than some number of bugs missed (even so
as it is impossible to find all bugs using static analysis [5]). Bug reports need
to be reviewed by developers one-by-one in order to correct potential errors in
their software. If the tool presents an overwhelming amount of false warnings
to the developer, its usability suffers and developers lose their trust in the tool.

The Clang Static Analyzer is a symbolic execution engine built atop of
clang [4], a relatively recently developed LLVM compiler front-end for C-family
languages. The Static Analyzer is an increasingly popular choice of a static
analysis tool despite still being a work-in-progress, as it is free, open-source,
but its power already matches that of most closed-source tools widespread in
the industry.

Despite heavy developer effort, the Static Analyzer suffers from the prob-
lem of false positive reports much like other similar tools. One possible way
to improve the quality of the reports is to improve the constraint management
of symbolic expressions, which plays an important role in proving the infeasi-
bility of impossible execution paths during symbolic execution. An important
intermediary step in this direction is the refutation of false positive reports by
re-evaluating constraints by a more powerful constraint solver than the one
currently built into the engine.

In the following section, we give a brief overview of the inner workings
of the analyzer and explain the role of constraint management during the
symbolic execution of a program. In Section 3, we present the results of
an experiment highlighting the problem with a straightforward solution and
explain the motivation behind the choice of the method described in this paper.
In Section 4, we explore some aspects of the problem that need to be considered
while constructing the solution. Next, we evaluate our prototype on real-world
software projects and then raise some questions for future work in Section 6.

2. The Clang Static Analyzer

2.1. General overview. The Clang Static Analyzer is a symbolic execution
engine capable of analyzing C, C++, and Objective-C programs. Symbolic
execution is a form of abstract interpretation of the source code, where each
unknown value encountered is assigned a symbol, on which operations are per-
formed symbolically. Along this process, the analyzer attempts to enumerate
all possible execution paths by building a so-called exploded graph [6]. Each

90 RÉKA KOVÁCS AND GÁBOR HORVÁTH

void g (int b ,
int &x) {

i f (b)
x = b+1;

else
x = 42 ;

}

b: $b, x: $x

$b : [IMIN, IMAX]

$x : [IMIN, IMAX]

b: $b, x: $x

$b : [0, 0]

$x : [IMIN, IMAX]

b: $b, x: 42

$b : [0, 0]

b: $b, x: $x

$b : [IMIN, -1] ∪ [1, IMAX]

$x : [IMIN, IMAX]

b: $b, x: $b + 1

$b : [IMIN, -1] ∪ [1, IMAX]

Figure 1. An example depicting the representation of sym-
bolic execution in the exploded graph.

vertex of this graph is a (program state, program point) pair, where the pro-
gram point determines the current location in the program, and memory is
represented using a hierarchy of memory regions [7]. The program state holds
traits of the program such as the environment, which records symbolic val-
ues of active expressions, and a data structure holding range constraints, i.e.
ranges that symbolic values may take [8], among others.

During the execution of a path, the analyzer collects constraints on symbolic
expressions. The built-in constraint solver module can reason about simpler
pointer and integer expressions, by representing constraints on them using
closed ranges of integer values. One of the main roles of the constraint manager
is to determine whether these constraints become unsatisfiable, in which case
the analysis of the current path should be terminated. It is vital for the
analyzer to recognize such infeasible program paths in the exploded graph
mainly as not to issue error reports for paths that will never be executed.

An example analysis can be seen along with its simplified exploded graph
on Figure 1. Function g can lead to two execution paths. Since the value of
b and x is initially unknown, these values are represented with symbols $b

and $x, which can take on arbitrary values. As the analysis continues on the
execution path corresponding to the else branch, the value of b is known to
be zero, and later we discover that the value of x is the constant 42. Symbol
$x is no longer needed on this path. On the other path, the value of b can be
anything but zero. Later, we also discover that the value of x is one greater
than the original value of b. The symbol $x is no longer needed on any of the
paths, it can be garbage collected.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 91

2.2. Constraint management in the Static Analyzer. As mentioned pre-
viously, the analyzer collects constraints on symbolic variables encountered in
the program to be able to detect if they become unsatisfiable. Solving these
constraints is only one side of the coin: generating and managing them is
another. Support for constraint management is therefore scattered through-
out the analyzer engine. The current solution centers around a solver op-
erating on range-based constraints, which is only capable of handling some
common binary operations between symbolic values and concrete integers
(called SymIntExprs), and some relational operations between two symbols
(SymSymExprs). Although it is very fast, it lacks support for many other
commonly used arithmetic operations even on SymIntExprs, such as bitwise
operations, multiplication, division, etc.

In 2017, support for an alternative constraint solver backend, the Z3 Theo-
rem Prover, has been added to the engine [9]. Z3 is a state-of-the-art general
purpose SMT solver developed by Microsoft Research. Z3 is capable of han-
dling most arithmetic operations unsupported by the current solver, such as
those on floating-point values, and it also represents integers more realistically,
modeling them with fixed-width bitvectors, granting greater precision in its
results.

Unfortunately, the analyzer will not be able to harness the full power of
the Z3 Theorem Prover until symbolic expression support is improved in the
engine. Namely, the analyzer currently does not build up symbolic expressions
consisting of floating-point type values, and subsequently does not generate
constraints on them, meaning that information about such expressions never
arrives at the constraint manager. Still, without any further effort, Z3 should
already be able to improve analysis precision for expressions involving pointers
and integers.

Nevertheless, the analyzer still does not employ Z3 as the default constraint
solver backend. The reason behind this is its negative impact on the duration
of the analysis, with execution times soaring up to and above a factor of 20
times the usual. This slow-down stems from the nature of SMT solvers, which
follow complex inner heuristics, and often use up all of the allowed time as
limited by the timeout parameter for a single operation. For practical use, an
intermediary solution is needed.

One possible compromise is to use the Z3 Theorem Prover for false positive
refutation. This means to perform the analysis as usual, then post-process
the collected bug reports to find those that lie on paths that are found to be
infeasible by Z3. This could eliminate a large portion of false positive reports
while only introducing a moderate burden on the duration of the analysis.

92 RÉKA KOVÁCS AND GÁBOR HORVÁTH

3. Motivation: an experiment

In an effort to explore how each of the currently available constraint solv-
ing backends affect analysis performance and quality, we made the following
experiment. For 3 real-world open-source projects, we ran two analyses, each
with default settings but differing in the use of the constraint manager back-
end. We were concerned in the number of reports and execution times in each
case. In the table below, the RB keyword denotes the default range-based
solver built into the engine, while reports added and removed are meant for
the Z3 cases compared to the runs using the range-based solver. Analysis
duration is presented in the format hh:mm:ss.

Project
name

Reports
(RB)

Reports
(Z3)

Reports
removed

Reports
added

Duration
(RB)

Duration
(Z3)

tmux [10] 15 15 0 0 00:01:06 03:09:45
redis [11] 53 20 1 34 00:01:19 03:21:01

xerces-c [12] 69 2 0 67 00:05:40 03:06:22

Table 1. Information about default analyses run using differ-
ent constraint manager backends on some open-source projects.

It is interesting how the number of bugs seems to drop significantly when using
the Z3 backend in the case of redis and xerces-c. A study of the bug reports
could shed light on whether there are already some false positives eliminated,
but based on the analyzer statistics shown below for redis, it seems more likely
that Z3 is timing out and giving up on interesting paths.

Statistic Range-based Z3
The # of steps executed. 82 419 176 44 062 305
The # of functions at top level. 19 993 6 834
The # of paths explored by the analyzer. 65 627 33 382
The # of basic blocks in the analyzed functions. 215 656 70 679
The max # of basic blocks in a function. 3 152 1 575
The # of times we reached the max # of steps. 255 163

Table 2. Sample statistics collected by the analyzer about its
own operation during the analysis of the redis project.

Using the proposed bug post-processing method, the engine will call Z3 sig-
nificantly fewer times than it would in the case of an ordinary analysis with
the Z3 backend. Because of this, it might be reasonable to slightly increase
the timeout limit when refutation is switched on, as it could enable the an-
alyzer to explore more paths with Z3, prospectively improving the quality of
the analysis.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 93

4. A Prototype of Tiered Constraint Solving

Under tiered constraint solving, we really mean re-solving constraints for
paths that lead to bugs. To understand how this can be achieved inside the
analyzer technically, we first give a brief overview of the workings of its bug
reporting mechanism, and then explain the rationale behind some design de-
cisions of the prototype.

4.1. Bug reporting in the Static Analyzer. If the analyzer finds a critical
issue during building the exploded graph, such as a division by zero error,
it stops the analysis on that execution path, generates an error node, and
emits a bug report (less critical problems would generate a non-fatal error
node, in which case the analysis continues on that path, but the bug report
is still emitted). Bug reports are continuously collected during analysis, and
processed after the construction of the exploded graph is finished.

In order to generate a meaningful path diagnostic from a bug report, and
to suppress some reports which are likely to be false positives, the analyzer
executes bug reporter visitors at this late stage of the analysis. Starting from
the error node, visitors travel backwards on the bug path and perform arbitrary
operations needed to accomplish their task - usually place additional notes
to interesting locations along the path. The bug reporter visitor interface
therefore offers a convenient way to implement the tiered constraint solving
prototype.

4.2. Building the refutation visitor. Constraints on symbolic values are
collected in the program state during the analysis. Whenever a new con-
straint appears for a symbol, the constraint manager attempts to add it to
those already in the state, and if it can prove them to be unsatisfiable, then
the current state is said to be infeasible. While building the exploded graph,
the engine uses this information in order not to generate a new node for an im-
possible state. As branching statements are typical points in a program where
constraints are added to expressions, constraint management issues relevant
for bug report post-processing can be demonstrated on examples involving
branching.

Stage 1: Readily available constraints. Sometimes, the range-based con-
straint solver can reason about a branching condition, and even gets to the
point of generating constraints corresponding to a true and a false assumption
on the condition, but fails to prove that one of the created states is infeasible.
Consider the following example:

94 RÉKA KOVÁCS AND GÁBOR HORVÁTH

void g (int d) ;

void f (int ∗a , int ∗b) {
int c = 5 ;

i f ((a − b) == 0)

c = 0 ;

i f (a != b)

g (3 / c) ; // d i v i s i o n by zero : f a l s e p o s i t i v e

}

Arriving at the second if, both conditions are understood and translated to
ranged constraints, but the solver is not able to prove that they contradict
each other. This can be seen from the exploded graph as the current path
splits to two, meaning that the constraint manager found both new states to
be feasible. On the path assuming that both conditions are true, the exploded
node holds the following constraints:

Ranges o f symbol va lue s :

(reg $0<int ∗ a>) − (reg $1<int ∗ b>): { [0 , 0] }
(reg $1<int ∗ b>) − (reg $0<int ∗ a>): { [−9223372036854775808 , −1] ,

[1 , 9223372036854775807] }

Here, the (a != b) condition has been rearranged to ((b - a) != 0) by the
engine, and the constraint was generated by substracting zero from the full
range of possible pointer values, representing the result with a union of the
two intervals below and above zero. These constraints can be modeled by the
following small z3 program:

(dec la re−const a (BitVec 32))

(dec la re−const b (BitVec 32))

(a s s e r t (= (bvsub a b) #x00000000))

(a s s e r t (b v s l t (bvsub b a) #x00000000))

(a s s e r t (bvsgt (bvsub b a) #x00000000))

(check−sa t)

(get−model)

which, after execution, gives an unsat result, i.e. the problem is proved to be
unsatisfiable. This is the simplest case our bug reporter visitor should be able
to handle: ranged constraints are readily available in the program state, they
only need to be fed to a Z3 solver instance in the proper format. For this,
constraints on symbolic values need to be converted to the internal expression
type used by Z3, which involves the translation of integer relations into their
corresponding correct bitvector operations. If the translation succeeds and the
Z3 solver can prove the state to be infeasible, the report is marked invalid,
and never shown to the user.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 95

Stage 2: Constraints that need to be extracted. If the constraint man-
ager encounters a symbolic expression that it cannot reason about, it also
cannot generate a constraint for it. Consider the following example:

void g (int c) ;

void f (int a , int b) {
int c = 0 ;

i f (a > 3)

i f (b < 3)

i f (b > a)

g (5 / c) ; // d i v i s i o n by zero : f a l s e p o s i t i v e

}

As the constraint manager gives up while interpreting the third if condition,
it cannot prove that the state where all three conditions are true is not fea-
sible, hence the false positive report. This example is more problematic than
the previous one because whenever the constraint manager cannot generate a
constraint for an expression, the constraint will also not appear in the pro-
gram state. The data structure that comes to our aid is the control flow graph
(CFG), a representation of all paths that might be traversed during program
execution. The CFG is constructed by the compiler in an intermediary step of
the analysis, and the analyzer core relies on it heavily while building the ex-
ploded graph. While the unrecognized condition does not appear among the
constraints directly, it can still be extracted from CFG-related information
recorded in the exploded node (the terminator statement of the CFG block):

Terminator : i f b > a

l i n e =6, c o l=7

Condit ion : t rue

. . .

Ranges o f symbol va lue s :

reg $0<int a>: { [4 , 2147483647] }
reg $0<int b>: { [−2147483648 , 2] }

from where it could be extracted and fed to a Z3 solver instance with the
method outlined at the previous example. Z3 could prove that the path is
infeasible, as demonstrated by the program below, which gives an unsat result.

(dec la re−const a (BitVec 32))

(dec la re−const b (BitVec 32))

(a s s e r t (bvsgt a #x00000003))

(a s s e r t (b v s l t b #x00000003))

(a s s e r t (bvsgt b a))

(check−sa t)

(get−model)

96 RÉKA KOVÁCS AND GÁBOR HORVÁTH

Other examples where false positives can be eliminated with tricks like this
can be discovered through systematically designed experiments.

Stage 3: Constraints that need improved symbolic expression sup-
port. Symbolic values are the building blocks of symbolic expressions being
created by the symbolic value builder module during the analysis of a program.
Expressions not supported by the symbolic value builder become UnknownVals
and never get to the point of being handled by the constraint manager. Be-
cause of this, such constraints will never appear in the environment (the data
structure of the program state that maps expressions to their correspond-
ing symbolic values), meaning that they will also not appear in the exploded
graph, on which the visitor is meant to operate.

void g (int d) ;

void f (f loat c) {
int a = 2 ;

i f (c > 4 2 . 0)

return ;

i f (c > 0 . 0)

a = 0 ;

i f (− 3 .14 ∗ c ∗ c > 0)

g (3 / a) ; // d i v i d e by zero : f a l s e p o s i t i v e

}

In the above example, c is a floating-point value for which the symbolic valuei
builder cannot create a valid symbol at the present. As there is no information
in the graph that could help prove that the truthness of the third if condition
leads to an infeasible state, the path leading to the false positive report is
created.

This problem can be mitigated by adding support for currently unhandled
symbolic values to the symbolic value builder. After such improvements, infor-
mation needed for the false positive refutation visitor to work will be present
in the graph and the previously described methods can be used.

5. Evaluation

In its present state, the refutation visitor implementation is capable of han-
dling constraints that are understood by the default constraint manager and
saved into the range constraints data structure of the program state. It im-
plements a so-called bug reporter visitor, that is run for each bug report after
the construction of the exploded graph is completed. Starting from the error
node, the visitor traverses backwards on each buggy execution path, collecting
the appropriate ranged constraints from the visited nodes, and adding them

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 97

to a Z3 solver instance. At the end of the path, the solver is asked to solve the
constraints, and if it finds them unsatisfiable, the bug report gets invalidated.

Evaluation experiments were conducted by running the appropriate analysis
configurations on a collection of open-source software projects listed below, on
the same virtual machine and using 12 threads. An attempt was made to
select both smaller and larger projects written for different purposes in both
C and C++ (apart from the previously cited projects: [13], [14], and [15]).

5.1. Refutation vs. the Z3 constraint solving backend. The false pos-
itive refutation option was designed to provide a compromise between the
speed of the default analysis and the precision of an analysis using the Z3
constraint manager backend. We therefore ran analyses with the refutation
option switched on on the open-source projects studied in Section 3, in order
to compare their results to those using the Z3 backend.

We do not expect the same results for several reasons. First, analyzing
projects using the Z3 backend, the whole process uses the Z3 constraint man-
ager, and the resulting exploded graph may differ from the one built in default
mode. This means that constraints stored in the graph may be slightly more
realistic or precise than those generated in the default mode. However, its
working mechanism also differs from the case in which the default analysis is
merely enhanced by the refutation visitor. Because of its independent nature,
refutation may eliminate false reports that an analysis with the Z3 backend
cannot, e.g. those caused by weaknesses in the engine’s general operation.
And even though it operates on constraints generated by the default solver,
the table presented below shows that its advantage in speed may outweigh its
disadvantage in granting report quality.

Project
name

Reports
(default)

Reports
(FPR)

Reports
(Z3)

Duration
(default)

Duration
(FPR)

Duration
(Z3)

tmux 15 15 15 00:01:06 00:02:02 03:09:45
redis 53 49 20 00:01:19 00:01:22 03:21:01

xerces-c 69 29 2 00:05:40 00:05:50 03:06:22
libWebM 6 6 0 00:00:56 00:00:58 09:26:28

curl 17 14 10 00:01:16 00:01:15 01:34:04
memchached 17 14 1 00:00:37 00:00:38 00:48:32

Table 3. Comparison of analyses run with the default config-
uration, with refutation enabled and using the Z3 constraint
manager backend.

98 RÉKA KOVÁCS AND GÁBOR HORVÁTH

5.2. Refutation vs. default analysis. From an industry viewpoint, the
study of any performance regression refutation poses on the analysis is essen-
tial. The following table contains the number of bug reports for two analysis
runs for 6 open-source projects, one with a default configuration, and one with
the naive prototype of false positive refutation enabled.

As expected, the tiered constraint solving pass did not create any new re-
ports. Since it begins to operate after the exploded graph is completed, it does
not participate in the actual analysis process, and can only remove some of
the existing reports, but has no means to add new ones. The number of invali-
dated reports, on the other hand, depends heavily on the analyzed project. In
most cases, only a few bugs were removed by the visitor, which is reasonable
considering that it currently handles a narrow range of subtle false positive
cases. The xerces-c project stands out in this regard, with more than a half
of its bugs thrown away. After performing a manual inspection of some of the
removed reports, either the falseness of the reports was difficult to determine
(because of long bug paths), or we found that the report was truly a mistake
on the analyzer’s behalf and its removal increased the overall quality of the
analysis.

Project
name

Reports
(default)

Reports
(FPR)

Reports
removed

Duration
(default)

Duration
(FPR)

tmux 15 16 0 00:01:01 00:01:18
redis 53 161 4 00:02:15 00:04:01

xerces-c 69 40 40 00:03:22 01:01:22
libWebM 6 28 0 00:01:21 00:02:50

curl 17 36 3 00:01:01 00:01:00
memcached 17 14 3 00:29:30 00:40:17

Table 4. Report numbers for analyses with a default config-
uration and with false positive refutation (FPR) enabled for
some open-source projects.

6. Future Work

Although the tiered constraint solving protoytype is already capable of elim-
inating some false positive bug reports, its functionality can be extended and
its results greatly improved once further enhancements outlined below will be
introduced into the analyzer.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 99

6.1. Symbolic expression support. The main purpose of the initial intro-
duction of the Z3 backend was to enable the analyzer to reason about floating-
point values. For this to work fully, the analyzer needs to generate and han-
dle symbolic floating-point expressions (SymFloatExprs and FloatSymExprs).
Apart from floats, symbolic expression support should generally be improved
in the symbolic value builder module, including arithmetic operations involv-
ing values other than concrete integers. This could fundamentally improve the
precision of the analysis.

The analyzer sometimes makes assumptions about algebraic operations that
were written with the integer-based constraint manager in mind, and often do
not hold for other types of values (e.g. the x == x is true assumption does
not hold for special floating-point values like NaNs). Along with the introduc-
tion of new types, these assumptions could be revised and extended to support
operations defined for any new types, for example for floats. Additionally, as-
sumptions like these could also be checked for expressions involving an integer
and a symbol or two symbols.

Code parts responsible for dropping constraints that will not be digested by
the symbolic value builder are scattered around in its current form. This makes
it difficult to evaluate how changing the level of detail affects the performance
of the engine (and it is also more difficult to determine what is handled). This
logic could be collected to one place behind a flag, so that symbolic expression
handling could be controlled easily.

6.2. Packaging. Although the adoption of the tiered constraint solving solu-
tion in the Clang Static Analyzer is already in progress, its usage for a normal
user is hindered by packaging issues. Users typically use the analyzer as part
of their continuous integration toolchains and are reluctant to make modifi-
cations to their command scripts, so Z3 support should be granted just by
updating their clang to the latest version.

This is however not possible because of the project’s licensing policy. Al-
though Microsoft Research open-sourced their Z3 theorem prover, its license
is still not compatible with clang ’s liberal open-source license, and thus can-
not be included in the latest clang package. On the contrary, the Z3 sources
need to be downloaded and installed separately by each user and then clang
needs to be built with special flags that find the Z3 installation and enable
its support. Most of the users would probably abandon the refutation feature
because of such inconveniences.

One idea to solve this situation would be to find and integrate another SMT
solver like the Z3 theorem prover, but with a compatible license. Alternatively,
if no project is found that suits the analyzer’s needs, a small SMT solver could

100 RÉKA KOVÁCS AND GÁBOR HORVÁTH

be re-implemented inside the analyzer much like the range-based solver, but
a more powerful one.

To facilitate solver comparing experiments and to make solver backend
switching more flexible, a general SMT solver interface could be implemented
in the analyzer. The current constraint management framework relies heavily
on the built-in range-based solver, and only has been extended to support Z3
in a very special manner. Most of the duplicate work involved in adding a
new backend at the present could be avoided with a general interface.

7. Conclusion

Minimizing the number of false positive reports is a critical issue for most
static analysis tools in order to grant high-quality results to their users. A
method taking an important step towards this goal was presented for one of
the most widely used open-source static analysis tools for C family languages,
the Clang Static Analyzer. The solution works by introducing an additional
step towards the end of the analysis, when constraints on symbolic expres-
sions encountered on the buggy execution path are re-evaluated by a powerful
external constraint solver engine, invalidating a bogus bug report if the path
leading to it is found to be infeasible. This step is needed because the default
built-in constraint solver is designed to prefer speed over precision, while using
the precise external solver for the whole process would result in unacceptably
long execution times. In order for the analyzer to retain its industrial-strength
performance, a practical intermediary solution was needed.

The tiered constraint solving solution described in this paper is careful to
preserve close-to-usual execution times while eliminating many of the false
positive reports, as found by an evaluation on a set of real-world software
projects. Additionally, an agenda of possible enhancements was outlined that
might be useful to study and implement to further improve the results. The
prototype is currently under review by the open-source community.

8. Acknowledgement

We owe our special thanks to Artem Dergachev and George Karpenkov,
core developers of the Clang Static Analyzer, for the discussion and advice
regarding the proposed changes.

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 101

References

[1] Clang Static Analyzer. https://clang-analyzer.llvm.org
[2] HAMPAPURAM, Hari; YANG, Yue; DAS, Manuvir. Symbolic path simulation in path-

sensitive dataflow analysis. In: ACM SIGSOFT Software Engineering Notes. ACM, 2005.
p. 52-58.

[3] DE MOURA, Leonardo; BJØRNER, Nikolaj. Z3: An efficient SMT solver. In: Interna-
tional conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, Berlin, Heidelberg, 2008. p. 337-340.

[4] ”clang” C language family frontend for LLVM. https://clang.llvm.org/
[5] RICE, Henry Gordon. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society, 1953, 74.2: 358-366.
[6] REPS, Thomas; HORWITZ, Susan; SAGIV, Mooly. Precise interprocedural dataflow

analysis via graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 1995. p. 49-61.

[7] XU, Zhongxing; KREMENEK, Ted; ZHANG, Jian. A memory model for static analysis
of C programs. In: International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. Springer, Berlin, Heidelberg, 2010. p. 535-548.

[8] Artem Dergachev: Clang Static Analyzer - A Checker Developer’s Guide. 2016.
https://github.com/haoNoQ/clang-analyzer-guide

[9] Dominic Chen: Add new Z3 constraint manager backend. Differential Review. 2017.
https://reviews.llvm.org/D28952

[10] Tmux, a terminal multiplexer. https://github.com/tmux/tmux/
[11] Redis, an open source, in-memory data structure store. https://redis.io/
[12] Xerces-C++ XML Parser. https://xerces.apache.org/xerces-c/
[13] WebM, an open web media project. https://www.webmproject.org/
[14] Curl, a command line tool for transferring data with URLs. https://curl.haxx.se/
[15] Memcached, a distributed memory object caching system. https://memcached.org/

Email address: rekanikolett@caesar.elte.hu

Eötvös Loránd University, Department of Programming Languages and Com-
pilers, Pázmány Péter st. 1/C., Budapest, Hungary

Email address: xazax@caesar.elte.hu

Eötvös Loránd University, Department of Programming Languages and Com-
pilers, Pázmány Péter st. 1/C., Budapest, Hungary

