
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.03

APPLICATION FUNCTIONS PLACEMENT OPTIMIZATION

IN A MOBILE DISTRIBUTED CLOUD ENVIRONMENT

ANNA REALE, PÉTER KISS, CHARLES FERRARI, BENEDEK KOVÁCS,

LÁSZLÓ SZILÁGYI, AND MELINDA TÓTH

Abstract. Distributed Computing in 5G Mobile Networks is a poten-
tial requirement for certain applications that depends on low latency and
information sharing through or with data information sources. Such ap-
plications may be observed as a distributed application. We present a
tool and method to optimize the deployment of distributed applications,
dividing it into Modules, in a 5G Mobile Network environment. To do
so we apply an approximation algorithm for the Path Computation and
Function Placement Problem described in [1]. We show that under certain
circumstances it is beneficial to deploy parts of such applications in a Cloud
Computing environment with Distributed Cloud resources at the Mobile
Network Edge. We verify our findings with an example, an Augmented
Reality application.

1. Introduction

5G mobile networks promise high bandwidth and low latency on the radio
interface for both downlink and uplink data [2] which capability will enable
new type of applications and services. Such mobile applications include Aug-
mented Reality (AR), Virtual Reality, Gaming and many other bandwidth
heavy and latency sensitive applications, potentially applied for critical use
cases such as Intelligent Transportation Systems or Surveillance.

Deploying an application on a 5G network with distributed cloud capabil-
ities involves the choice of were to allocate what parts of the applications. It
depend both on the application itself and on the involved network. In this
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work we propose a method and tool to facilitate planning of refactoring of an
existing applications into modules. To do so we calculate the best placement
of the modules on the network compute servers, given user profile and con-
text conditions informations such as: typical user request, policy per type of
user (SLA), available bandwidth, network node types, available computation
power and cost of computation on the device, in the distributed edge and
central cloud.

We have chosen a resource demanding AR application for our test. We
assume that such applications can benefit both from involving low latency
external computation power and significant sized, but affordable, storage ca-
pabilities. To validate our assumptions we apply the mentioned tool and
measure the application properties under certain circumstances and network
constraints.

Main contributions of this work is the proposal of a method to automatize
application partitioning and placement in a 5G/Edge environment. We intro-
duce a possible tool-set implementing our method, its experimental setup and
evaluation.

Most works on this topic focuses only on the problem of task partitioning
and placement, while they seldom addresses issues of multiple users and load
balancing. For this purpose in our work we integrate an approach from network
service placements and apply a variation of the approximation algorithm for
the Path Computation and Function Placement Problem described in [1].

2. Background

In the following section we give an informal description of the problem we
address and contextualize it by referring to related works.

2.1. Problem Statement. To partition an application and to deploy its
modules in a 5G network with edge computing resources, we need to calculate
what is the (sub)optimal grouping of the components and their placement that
maximizes the usage of network capacities in a given instant. Giving a flexible
method to automate this process enables applications to adapt to environment
changes through dynamical reallocation of resources.

This task can be reduced in three main steps:

(1) Model the application through hybrid analysis (using both static
analysis and heuristics from dynamic profiling of the given applica-
tion);

(2) Calculate a partition to divide the application in modules minimiz-
ing their interactions and communication cost while maximizing the
responsiveness and perceived performances;

(3) Decide best placements of the modules in the given network;
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2.2. Related Works. State-of-the-art Application Partitioning Algorithms
(APAs), applied to distributed processing, still face many issues and chal-
lenges. An extensive summary concerning APAs in Mobile Cloud Computing
is proposed in [3]. Based on the model used as an input to the partition,
the authors identify three main categories of existing solution: graph-based,
Linear Programming (LP) or hybrid solutions between the two.

2.2.1. Application Partitioning. Solutions based on graph representations of
the applications may use data flow graph to represent data dependencies be-
tween operations [4, 5, 6],

while class dependency graphs can be used to describe the structure of an
application [7, 4].

The authors in[8] partition object-oriented programs by generating an Ob-
ject Relation Graph (ORG) to estimate the runtime objects and their inter-
actions, and then applying graph partitioning to this ORG. In [9] a two-layer
graph structure is used, in which a second graph, the Target Graph (TG)
accounts for the various target infrastructures and distribution objectives.

Graph-based APAs require efficient manual annotation techniques, it is up
to the programmer to balance the metrics and specify metrics function. In
addition, a greatresource overhead is generated in case of applications with a
large number of components. Finally the performance of graph-based solutions
depends on the application characteristics: the analysis is easily performed if
the applications is already modularized somehow. On the other hand, LP
based solutions always produce optimal results for a particular objective func-
tion [10, 11, 12]. LP APAs need dynamic scheduling techniques, extra profiling
and resource monitoring, thus they also cause high overheads.

Hybrid solutions extract the important features of graph-based APAs and
LP-based APAs in order to improve the performance and mitigate overheads
but, in most cases, at the expenses of generating only a sub-optimal parti-
tion [13, 14, 6, 15, 16].

In this work we plan to create a tool to help to define a set of candidates for
partitions according to different network conditions. Such partition database
could be used in the future to allow dynamic reallocation of the application,
based only on light dynamic profiling of the context it runs in.

2.2.2. Application Modeling and graph partitioning. The NP-hard graph par-
titioning problem is a fundamental issue in many other domains of computer
science, such as parallel processing [17] and load balancing [18]. In grid com-
puting the graph partitioning problem has been used to define parallel tasks
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to be deployed on heterogeneous infrastructures. As stated by [16] many pro-
posed algorithms, such as MiniMax, VHEM, QM, PaGrid, and MinEX, use a
multilevel paradigm, while others use simulated annealing [19].

In the literature, decomposition techniques based on graphs [20] involve
three macro steps: (1) Identify level of granularity for the partitions elements
or tasks; (2) Analyze the application with task dependency and interaction
graphs, (3) Map possible valid partitions.

Properties of tasks that affect the quality of mapping are: feasibility of task
generation, size of tasks and size of data handled by the task or passed between
two of them.

In fact, one needs to take in consideration the interaction between the par-
titioned task: they often share data and may have a precise sequential or-
der [21, 22].

In scheduling the interaction graph is used to represent the application
dividing it into tasks. Nodes in the graph are the tasks while their weights
denote the amount of work to be performed by the task. Edges represent the
interactions between tasks. Generally edges are undirected, when directed they
are used to show the direction of the flow of data (if the flow is unidirectional).
Weights on edges contain the cost of communication. Shared data may imply
synchronization protocols (mutual exclusion, etc) to ensure consistency.

In distributed systems theory, the interaction graph is also referred as the
Control Flow Graph (CFG). A CFG is a representation, using graph notation,
of all paths that might be traversed through a program during its execution.
The graph provides the structure of the program as a whole, among others,
making explicit all of the paths that are induced by a conditional branch. A
function dependency graph, for example, is a sub-graph of this graphs, having
has partition granularity the function. Dependency between functions implies
interaction (calls or data passing) between them.

A Call Graph (CG) is a dependency graph that represents calling rela-
tionships between functions in a computer program. Each node denotes a
procedure and each edge(f, g) indicates that procedure f calls g. Thus, a
cycle in the graph indicatesrecursive calls.

Call graphs are results of a basic program analysis, that can be used for
model programs, or as a basis for further analyses. Call graphs can be dynamic
or static. A dynamic call graph is a record of an execution of the program,
for example as output by a profiler. Thus, a dynamic call graph can be exact,
but only describes one execution of the program.

In object-oriented languages the potential target method(s) of many calls
cannot be precisely determined solely by an examination of the source code
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[23]. Thus, to build the call graph, it is necessary to have inter-procedural
data and control-flow analysis of the program.

Granularity. Program partitioning has been used in application offloading
for resource-constrained devices. Previous works propose computation offload-
ing at different levels of granularity: Module level [5], Method level [13], Object
level [8, 9], Thread level [14, 6], Component level [10, 16]. Various metrics can
help to decide a good level of granularity for the partition of a graph. For
instance, the critical path, being the longest directed path between any start
and finish nodes, indicates what is the shortest time needed to execute. The
time can be calculated from it’s length, computed by sum of the weights of the
traversed nodes. The average degree of concurrency, that is the total amount
of work divided by critical path length is also a common metric. Related to
the size of the partitions we consider important the size of the data associated
with tasks, because it helps to minimize volume of data-exchange and maxi-
mize data locality. Also the size of context is an indicator of how affordable
or expensive the communication between tasks can be.

2.2.3. Placement Models. Appropriate resource allocation is a very old issue
in different disciplines. In this section, we present two resource allocation
problems in computer networks: placement of Virtual Machines (VM) in cloud
computing and placement of Virtual Networks Function (VNF).

VM Placement. With the term VM placement we refer to the process of
selecting the most appropriate physical machines for VMs. According to [24],
objectives of VM placement are maximizing resource utilization, reliability and
availability. There are several approaches to VM placement in the literature
[25, 26, 27], some variants even consider dynamic placement and multi-clouds
placement. For instance, [25] uses traffic-aware VM placement to improve the
network scalability in data center, defining it as an hard optimization problem
solved by a two-tier approximation algorithm to overcome very large sizes.

Service Chain Placements in NFV. Service Function Chaining (SFC)
[28] aims to overcome the limitation of static deployment models applying
algorithms that can optimally map SFC to substrate network. This category
of algorithms is referred as “Virtual Network Functions Placement (VNFP)”
algorithms [29]. As explained in [30], in this category of placement problems,
we are given a physical network, VNF specifications, and a set of service
requests. The algorithm performs the three following steps:

(1) Calculate an optimal number of needed VNF types, all the VNFs
that should be instantiated compose a set.

(2) Place VNFs to physical nodes such that the demand of VNFs do not
exceed the capacity of physical nodes;
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(3) Assign service requests to VNFs such that the demand of service
requests do not exceed the capacity of VNFs.

However, the three steps are not independent, and their order depends from
the implementation of the algorithm and the problem statement. For example,
[31, 32] give an Integer Linear Programming(ILP) formulation; many others,
preferring fast heuristics to allow real time decisions [33], propose a dynamic
programming; [34] gives a Mixed ILP formulation and a heuristic algorithm
that solve the problem incrementally, which can solve the problem for incoming
flows without impacting existing flows. Among the meta-heuristic solutions,
[35] proposes a method based on genetic algorithms while [36] considers a
greedy algorithm and a tabu search-based algorithm.

Although in our example we will not work with VNF specific algorithms, we
claim that our methods may be applied to them as well. This is especially true
for network functions such as User Plane Function and special observability,
monitoring, tracing, logging and analytics VNFs.

3. A model for application partitioning and deployment

In the following sections we provide formal description of the models and
methods used to construct our simulation toolset, followed by a description of
the real application we used as first input for it.

3.1. Models. To map an application based on functions granularity we con-
struct a function dependency graph. In scheduling and load balancing, this
method is used when the application can be described from the static definition
of the dependency graph and the function sizes are known.

Determining an optimal mapping of the function dependency graph becomes
solvable if there are good heuristics available to estimate the data flow and a
structured call graph. In our case we use a static analyzer tool to generate the
function call graph from the source code. Then we run the application and
collect for each function, using a non-intrusive dynamic profiler, the percent-
age of runtime spent in it. In addition, for each link between two functions,
we collect the number of times the callers calls the callee. We normalize those
results and store them in the call graph as node and edge weights. The nor-
malized edge weights will define the dependency between the two connected
functions, thus to estimate how to separate the application to reduce such
interactions it will be enough to use a minimum edge-cut strategy. The node
weight is a useful information to estimate the complexity of the computations
handled by the function, this value can be used to balance the partitions or to
deploy different optimization strategies. For example if we want for the User
Equipment (UE) accessing the application to save energy, we could want to
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concentrate the computational load on the Edge or on the Cloud the UE can
connect to.

It is important to stress how we are deploying a context-insensitive construc-
tion of the application call graph. In fact, each node will represent exactly a
single contour: an analysis-time representation of a function.

3.2. Application Partitions. Having our weighted graph, we partition it
using Multilevel [37] version of the Kernighan - Lin [38] algorithm (MLKL).
We choose the multilevel strategy to be able to handle potentially large func-
tion call graphs. After running the algorithm, the application will be divided
into a number of Modules where the ceiling for the number of partitions can
be selected by the user, and the weight of each Module and the interaction
frequencies between them are derived from the original graph. The directed
graph resulting as an output of the partition steps represents the due interac-
tions between the modules. This new level of abstraction means that we lose
information like when and for how long two specific functions in two mod-
ules will interact at running time. Such information also depends on the user
interaction with the application itself and can vary from instance to instance.

We decided to adopt a pessimistic approach in the module deployment
phase, taking as the weight of the assumption making that we want to instan-
taneously run all the modules.

3.2.1. MLKL and METIS. MLKL is a Multilevel Version of the KL algorithm.
It means that the algorithm is applied in three repeated phases: Coarsen,
Partition and Uncoarsen.

First, the algorithm coarsen down the graph by merging connected vertices
until a small graph is obtained. Then this graph is partitioned and uncoarsened
again, while optimizing the partition in each uncoarsening step using KL as
refinement function.

The KL algorithm is iterative. It starts with an initial partition and in
each iteration it finds two subsets which guarantee a smaller edge-cut. If
such subsets exist, then it moves them to the other part and this becomes
the partition for the next iteration. The algorithm continues by repeating
the entire process. In the implementation proposed by [39] the KL algorithm
computes for each vertex v a quantity called gain which is the decrease (or
increase) in the edge-cut if v is moved to the other part. The algorithm
terminates when the edge-cut does not decrease after x number of vertex
moves and those last moves are undone to get the maximum edge cut.

3.3. Network Model. Now we test our partition behavior in our network to
see what configuration gets the maximum out of the same network conditions.
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Thus we deploy all tasks in all nodes and see what are used the most to satisfy
network demand considering network capacities.

The network is a fixed set of computational resources and communication
links. The network is represented by a graph N = (V,E), where V is the set
of nodes and E is the set of edges.

We classify nodes in three categories: UE, Edge Cloud Servers and Central
Cloud Servers. Note that the classes are disjoint and our proposed method
works with other types of disjoint classification of nodes as well.

Nodes and edges have capacities. The capacity of an edge e ∈ E is denoted
by c(e), and the capacity of a node v ∈ V is denoted by c(v). All capacities
are positive integers. c(e) represents the available bandwidth between the
two network nodes; c(v) depends on the amount of available computational
resources and the cost of accessing them. We suppose several UEs

that request services from the application. Each of these services may be
different on the Service type and the Location of the involved nodes. Examples
of such services can be a video upstream or augmented downlink video. Each
Module is a part of the application that, combined, can solve a certain service
request.

3.4. Service Request. A service request for user j is specified by a tuple
sj = (Gj , dj , bj , Uj), where the components are as follows:

Gj = (Mj , Yj) is a directed (acyclic) graph called the place-and-route graph
(pr-graph). There is a single source and a single sink, that corresponds to the
node requesting the service. We denote the source and sink nodes in Gj by
nsj ∈Mj and ntj ∈Mj , respectively. The other vertices correspond to services
or processing stages of a request. The edges of the pr-graph are directed and
indicate precedence relations between pr-vertices.

The demand of a request sj is dj and its benefit is bj . Demand is computed
from the cost of running a complete module. The benefit is the benefit of
serving that precise request of service. It should be calculated from the SLA,
but it depends on the network owner as well. By scaling, we may assume that
minj{bj} = 1.

We map the User Equipment service request sj as the realization of a path
trough the directed partition graph representing the application. In this case
the demand of a Module can be calculated over the cost of each function
composing the Module that composes the specific service request. The routing
cost from one Module to the other become than the overhead or transmission
cost brought by the selected Module interaction scheme. For example, the size
of the data to be transferred from one Virtual Machine to the other to keep
the state consistent trough all their network instances [40]. The impact of the
service request on the network thus can vary only based on the location of
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the Modules. To specify the possible realization of a pr-graph in the physical
network we use a function Uj : Mj ∪ Yj → 2V ∪ 2E where Uj(m) is a set
of “allowed” nodes in N that can perform module m, and Uj(y) is a set
of “allowed” edges of N that can implement the precedences and routing
requirement that corresponds to y. We now define for each service request sj
the product network pn(N, sj). The node set of pn(N, sj), denoted by Vj , is

defined as Vj , ∪y∈Yj (Uj(y) × y). We refer to the subset Uj(y) × y as the
y-layer in the product graph. The edge set of pn(N, sj), denoted Ej , consists
of two types of edges Ej = Ej,1 ∪ Ej,2 defined as follows:

(1) Routing edges connect vertices in the same layer, they represent the
physical links in the network.
Ej,1 = {((u, y), (v, y)) | y ∈ Yj , (u, v) ∈ Uj(y)}

(2) Processing edges connect two copies of the same network vertex in
different layers, representing the move from one Module to the con-
secutive one in the service chain specified in Y .
Ej,2 = {((v, y), (v, y′)) | y 6= y′ ∈ Yj edges with common endpoint m,
and v ∈ Uj(m)}

PCPF problem. The substrate network N = (V,E) and a set of service
requests {si}i∈I described as stated before, are the necessary input for the
solution we used for Path Computation and Function Placement Problem
(PCFP). The goal is to compute valid realizations P̃ = {p̃i}i∈I′ for a subset

of the requests I ′ ⊆ I so that P̃ satisfies the capacity constraint of N and
maximize the total benefit

∑
i∈I′ bi. For our work, we apply the fractional

relaxation of PCFP-problem described in [1]. This is a variation of Raghavan’s
randomized rounding algorithm for general packing problems [41].

3.4.1. Experiment Setup. We created a generic setup for Multi Access Edge
Computing partitioning and distribution. It is composed by four resource con-
strained devices connected with an edge server through redundant networks,
where different network setups can be tried. The application has initially all
the processing activities done in the server, which collects information from
the four connecting devices and performs the processing.

The connections used for the experiment explained in this article were car-
ried with wireless 5 GHz and Ethernet connections, where the client devices
were equipped with 100 megabits network shields.

The client devices were equipped with cameras using Sony IMX219 sensors,
streaming real-time video to the server. The camera was configured to create
frames of 640x480 pixels, 25 frames per second and 4:3 aspect ratio. The
connection between the clients and the server was an UDP connection.
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3.4.2. Measurement Tools. The measurements used to configure the tool are
grouped in three independent areas namely: (1) Network performance; (2)
Computational performance, and (3) Software processing cost. Each of them
composed as described below:

• Network Performance: available resources, Jitter between nodes (La-
tency variation), Locality UE-Edge-Cloud;
• Computational Performance: Machine capabilities, Network connec-

tion speed, Processor capabilities, Memory availability;
• Software processing cost : Dependency between two functions (num-

ber of calls), Resource usage from App (Average memory Usage Mb
per function), Cost of the software execution (processor cycles that
are required to execute each function of the software).

The software measurements were taken using instrumented profiling tools,
Valgrind [42] and our self-produced tools.

3.5. Modeling the example application. During our experiment, we chose
to start at a function level granularity for our applications, to be able to
partition it into Modules. A typical AR application has the following chain
of services: capture, preprocessing, detection, recognition, tracking, rendering.
Each of this service calls a sequence of Modules. Note that these Modules may
be different for different applications. Another example can be a partitioning
of a Linear Unicast service which may have the following modules: Streaming,
Origination, Manipulation, Encapsulation, Encryption, Encoding, according
to [43].

In our first example (Figure 1) we show the result of running the partitioning
only on the call graph of the capture service (involving camera calibration),
where different colors refers to different modules and the number of requested
partitions was 5. As second example (Figure 2), we show the Function Call
graph generated only by the camera calibration part of the application 2 on
the edges the calls between functions and on the nodes the CPU clocks.

The result of the whole AR application partition is shown in Figure 3a. The
Start node represents the interface with the User Equipment, the Main node
is the partition in which the known entry point of the program execution is
located.

The arrows are the interaction between Modules. For example, we know
that Main can receive data and be called by M1, but every call from the Main
goes either to M2 or to M4. In the construction of service requests we kept
the following interaction constraints: if the service needed by UE is contained
in M1 the shortest possible request path became {(Start,Main)(Main,M2)
(M2,M1)(M1,Main)}.
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Figure 1. Partitioned Call Graph for an Image Capture Service

The Simulation Network will represent the possible interactions between
nodes. In our simulation, we decided to allow both direct UE to Edge and UE
to Cloud communications (Figure 3b). We consider an average transmission
overhead in the range of few ms (1 or 2) between UE and Edge nodes, of 25
ms betweens Edge and Local Clouds and of the sum of the two (26 or 27)
between UE and Cloud. The resulting pr-graph

is shown in Figure 3c. We normalize the capacities of the network nodes
based on available memory. We experimented on a SLA scenario where we
want to reduce the computation time at a minimum overhead.

For the same computation demand we define the benefit of a chosen deploy-
ment path based on the computation cost (we estimated the Edge to be four
times more expensive than the cloud) and the average transmission overhead.
Both weights were calculated as the coefficient of variation of the relative
measures registered on the Experiment Setup.

In all the generated simulations a deployment was proposed for which 12
contemporary simulated user requests where served, respecting the capacity
constraints of different networks, obtaining maximal benefit flows like the one
shown in Figure 3d. On average, the benefit was higher than running every-
thing on the device: a complete run on the single device lasted on average
9444 ms, while the average run on our simulations saved from 667 ms up to
3904 ms with maximum average communication overhead per request being
1152 ms (Table 1).
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Figure 2. Camera calibration call graph

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8
Edges 4 2 5 5 5 3 4 4
UEs 3 6 3 3 3 5 4 4
Local Cloud 1 1 1 1 1 1 1 1
Average overhead per request (ms) 37 58 144 29 1152 583 84 148
Average benefit per request (ms) 3941 1348 3743 3348 1820 2841 3340 2395
Average final benefit (ms) 3904 1289 3598 3319 667 2258 3255 2246

Table 1. Experiment result: benefits of partitioning and de-
ployment of the same application on different networks topolo-
gies

4. Conclusions and Future Work

In this work we described the methods and the algorithms we used to de-
velop a first prototype of our tool to partition and deploy an application in a
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(a) AR Application after par-
tition

(b) Simulation Network
(c) Complete AR appli-
cation pr-graph

(d) Maximal benefit
flows satisfying all user
requests

Figure 3. Models of a real application

5G distributed network. We believe this is the minimum analysis to be per-
formed to, in the future, be able to implement a dynamic reallocation of the
applications based on variation of the context conditions. The problem was
divided in three steps. First selecting the application granularity and con-
struct a graph model. Than reduce it into Modules by solving the NP-hard
graph partitioning problem it represents; finally implement and apply a frac-
tional relaxation of the Path Computation and Function Placement Problem
as described by [1].

Simulation were run with various simultaneous request of service. For our
specific set up and our AR application, there is a possibility to implement a
distributed scenario with a reasonably low overhead.

The next step would be to implement the new application partition sug-
gested by the framework and locate them in the physical network to verify
how close our simulations are to reality. We hope by running the new deploy-
ment to be able to perfect the parameters we used to describe the network
capacities and the benefits of the distributed execution. Interesting measures
to validate the outcome on different AR applications could be quality and
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efficiency related measures: for example Video Quality as Average Bit rate
expressed in Kbps.
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