
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.01

COMPILER FRONT END FUSION: UNDO DESUGARING IN
LANGUAGE PROCESSING TOOLS

ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

Abstract. Compiler front ends often perform desugaring on the source
code while constructing the abstract syntax tree (AST). A programming
language processing tool (such as a refactoring tool) working with the
desugared AST perceives the code at this abstract level, and loses informa-
tion on the rich syntax used in the actual source code. This paper discusses
the concept of front end fusion, a technique which may help language pro-
cessing tools to retain the syntactic sugar information on the source code in
the presence of desugaring compiler front ends. We propose a hybrid front
end created from two separate front ends: one provided by the compiler,
which offers type information, and another one, which provides the details
of the concrete syntax used in the source code. Specifically, we show how
to construct a hybrid front end in a language processing tool for the Scala
programming language.

1. Introduction

Programming language processing tools provide invaluable help during soft-
ware development and maintenance. They can statically analyse source code
for debugging, code upgrade or grokking purposes, and they can perform
source code transformations and refactoring as well. These tools typically
need to be able to parse and pretty print source code, and may also require
semantic information, e.g. the type of expressions and the result of name
resolution.

There are two major approaches to implement language processing tools.
Firstly, the tool may have a custom lexer, parser, type checker, static semantic
analyser, and pretty printer built in, and tailored for, the tool (standalone

Received by the editors: April 17, 2018.
1991 Mathematics Subject Classification. 68N15, 68N20.
1998 CR Categories and Descriptors. D.3.4 [Programming languages]: Processors

– Compilers.
Key words and phrases. parser, abstract syntax tree, compiler front end, syntactic sugar,

desugaring, refactoring.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

5

6 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

approach). Secondly, the external approach relies on some existing, widely-
used compiler infrastructure for the given programming language. However,
as we shall see, both approaches have disadvantages.

Older compilers provide no convenient ways to access the output of the
compiler front end. For example, earlier versions of GCC (before v4.5) offer
intermediate files for observing available information between different compi-
lation phases – which is a rather inconvenient input to a language processing
tool. This is where the standalone approach may be needed: the tool needs to
re-implement (a part of) the compiler front end for the language. Obviously,
this is quite expensive from the tool developer’s point of view. Moreover, this
makes the tool more vulnerable against the evolution of the programming lan-
guage. Modern compilers such as Clang [10, p. 32], GHC [3] or Scalac [14]
provide APIs to access (annotated) abstract syntax trees (AST) at different
stages of the compilation process. Annotated ASTs may convey not only syn-
tactic information, but semantic information (e.g. types) as well. This turns
out to be a useful input for a language processing tool – a clear benefit of the
external approach.

Rich languages offer a great amount of syntactic sugar, so that program-
mers can write terse, expressive, and easy-to-read code. The syntactic sugar,
however, is typically eliminated from the AST. The compiler replaces certain
fancy programming language constructs with semantically equivalent simpler
constructs (often referred to as core language constructs). This desugaring
process results in loss of information, which can be a disadvantage of the ex-
ternal approach: the language processing tool will be unable to reproduce the
original, syntactically rich source code. Although syntactic sugar does not
affect the meaning of a program (with respect to core language constructs), it
does have a significant impact on readability and maintainability – i.e. code
quality. Therefore recovery of syntactic sugar in a language processing tool
is an essential issue. For instance, we would like to observe the original, rich
syntax, when the tool communicates analysis results back to the programmer,
or pretty prints the code.

As the main contribution, this paper proposes the concept of front end
fusion: a technique to preserve syntactic sugar for a programming language
processing tool, if the external compiler infrastructure used by the tool applies
desugaring during the construction of annotated abstract syntax trees. We
propose a hybrid front end, a language processing tool front end, which is
the result of front end fusion: it is hybrid because it combines external and
standalone front ends. The presented approach performs a fusion of a custom
standalone parser and an external compiler infrastructure when creating the
hybrid front end. The main advantage of the presented methodology is to

COMPILER FRONT END FUSION 7

rely on an external compiler front end, use the static semantic information
calculated by the compiler, and replace its parsed information with a “non-
desugared” syntax tree.

In the presentation below we show how to assemble a hybrid front end for
Scala. The concrete problem to solve is to obtain an AST representing the
rich, sugared syntax of a Scala source code, and annotate its nodes with type
information provided by the desugaring Scala compiler.

The rest of the paper is structured as follows: in Section 2 we present
desugaring in Scala, and provide a few examples. Section 4 describes some
difficulties in front end fusion, and Section 5 provides the fusing algorithm.
Section 6 presents a discussion about the presented methodology. Finally, in
Sections 7 and 8 we present related work and conclude the paper.

2. Desugaring

Scala is a particularly good language to study desugaring, since it heavily re-
lies on syntactic sugars. For example, in this language one-argument methods
can be invoked without dot and a pair of parentheses as well. This makes both
args contains "−−help" and args.contains("−−help") valid. Fur-
thermore, the anonymous (or lambda-) function that increases an integer by
one may be written as _ + 1, which will be expanded into x => x + 1. The
for-loop is also a syntactic sugar, and not part of the core language. The loop
that prints powers of two to the standard output is the following:

for (e <− List(0, 1, 2, 3, 4)) println(Math.pow(2, e))

This may as well be written using the foreach method:
List(0, 1, 2, 4).foreach{ e => println(Math.pow(2, e)) }

Lastly, the expression which overwrites an element of an array is as follows:
val xs : Array[String] = Array("zero", "one", "")
xs(2) = "two"

The second line may also be written as
xs.update(2, "two")

In all of these examples the compiler rewrites the former to the latter during
parsing. An important consequence of these and the many other syntactic
sugars is that Scala is especially well-suited for embedding languages (e.g.
creating embedded domain-specific languages, EDSLs). However, syntactic
sugars are rather ubiquitous, and can be found in other languages as well. In
Java, anonymous functions are syntactic sugars for instances of classes with
suitable “functional interface”. Anonymous functions have the benefit that
they are easier to construct and pass around, especially when working with

8 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

streams. Another nice example of syntactic sugar is the do-notation of Haskell,
which makes it possible to write imperative style code in a purely functional
language.

Syntactic sugar can be defined in terms of rewriting rules. A rewriting
rule specifies the equivalent language constructs of the core language, thus
it gives semantics to a syntactic sugar. The application of the rewrite rules
may take place at different phases of the compilation process. For exam-
ple, semicolon inference (e.g. in Scala and Eiffel) may be performed by the
lexer. Operator syntax in Scala is rewritten to method calls during parsing.
Finally, lambda-functions are rewritten to occurrences of PartialFunction
or Function objects after typing, in a separate phase. In the end, however,
the compiler front-end can output a desugared annotated abstract syntax tree
containing the constructs of the core language.

Desugaring is not an injective function, different source code may result in
the same desugared AST. On the one hand, the desugared AST is convenient
to work with in the compiler, which is only interested in whether the code is
semantically correct, and in the meaning of the code. On the other hand, the
desugared AST may be too abstract to work with in a static analyser, in a
refactoring tool, or in a pretty-printer, where the faithful reproduction of the
original source code is expected.

Another source of information loss about the syntax used in the source code
is demonstrated by the following example. Consider a simple Scala class, which
implements a counter. It has a hidden mutable variable count, an increment
procedure to increase count by one, and a get function to retrieve the current
value.

class Counter {
private var count : Int = 0
def increment() : Unit = count = count + 1
def get() : Int = count

}

The compilation technique used in the compiler turns the hidden mutable
variable into even more hidden (“object-private”), generates a getter (count)
and a setter (count_=) method, and rewrites every access to the count field
to an invocation of the getter, and every update to an invocation of the setter.
Shall we consider this as removal of syntactic sugar? Or is this Counter
example a counter-example to desugaring? In any case, when pretty-printing
the AST constructed by the compiler, the class looks quite different compared
to the original source code.

class Counter {
private[this] var count : Int = 0

COMPILER FRONT END FUSION 9

private def count : Int = count
private def count_=(newVal : Int) : Unit = count = newVal
def increment() : Unit = count_=(count.+(1)) // + is a
method in the Int class
def get() : Int = count

}

On a side note, this code may seem broken because of a name conflict between
the field and its getter method. If we investigate the AST directly, we discover
that the name of the field is not “count”, but “count ”. The extra space
character in the name of the field is not handled properly by the standard
pretty-printer, and this causes the confusion. The right way to pretty-print
the AST would be to use a so-called “literal identifier”, as follows.

private[this] var count : Int = 0
private def count : Int = count

All in all, this example also makes it clear that the abstract representation
of the code in the compiler-generated AST may lose too much syntactical
information about the source code.

3. Hybrid front end

In the presence of a desugaring compiler and an independent parser produc-
ing accurate, syntactically sugared ASTs, a hybrid front end can be assembled.
The hybrid front end produces an AST which is built from the AST of the
custom parser, which avoids desugaring, and preserves all the syntactical in-
formation available in the source code. Then, this AST is combined with the
desugared AST constructed by the desugaring compiler front end, which con-
tains collected and inferred static semantic information. In this approach only
a parser (and a lexer) may need to be developed, and the “hard part”, the
semantic analyses including name resolution and typing can be carried out
by an existing tool, the compiler. This combination of the standalone and
external approaches should be a good trade-off for many cases.

In this paper we investigate how to build such a hybrid front end for the
Scala language. Scala is selected as case study for its richness in syntactic
sugars, its desugaring compiler. Fortunately, there is no need to develop an
accurate parser for Scala: Scalameta, an open-source meta-programming li-
brary [13], suits our needs. The proposed hybrid front end relies on Scalameta
to parse source codes, and on the Scala compiler to resolve names and infer
types. In other words, the parser of the Scala compiler is “replaced” by the
parser of Scalameta, as illustrated on Figure 1.

10 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

Scala compiler

parser
namer

packageobjects
typer

parser

Scalameta

Figure 1. Phases of the hybrid front end for Scala.

4. Difficulties in front end fusion

Our main goal is to propose a hybrid front end for Scala producing syn-
tactically rich AST annotated with proper type information. The front-end
constructs the AST using Scalameta, and attaches type information computed
by the Scala compiler. This annotated AST is an excellent input for various
language processing tools.

In order to find the type of expressions represented by the nodes of the
Scalameta AST in the typed, desugared AST produced by the compiler, a
matching between the two ASTs must be established. The two ASTs have a
very similar structure, apart, of course, from the nodes representing a syn-
tactic sugar in the Scalameta AST and their desugared counterparts in the
compiler AST. However, the two tools use different names for the same syn-
tactic categories. Literals are represented with nodes of type Literal in the
Scala compiler, while Scalameta uses type-specific specializations of the Lit
type. Therefore, in the case of the selected two tools, a matching between the
two ASTs based on node types is cumbersome to define. The position infor-
mation attached to AST nodes proved to be a better basis for the matching.
The details of this typing technique will be discussed in Section 5.1. Before
that, we investigate two issues which can hamper our fusion approach.

4.1. Position consistency. Position based matching works when both ter-
minal and non-terminal nodes have information about their positions in the
source file. Position ranges of non-terminal nodes are synthesized from the
positions of their children.

We can say that a node from one of the ASTs and a node from the other
AST are in same-position relationship, if the position ranges defined by their
tokens are equal. The same-position relationship between the two tools is
position consistent if it is a one-to-one relationship. In this case, the fact that
two nodes from the two ASTs are in same-position relationship guarantees
that they are the roots of subtrees representing the same code fragment.

COMPILER FRONT END FUSION 11

Unfortunately, Scalameta and the Scala compiler are not position consistent.
Some of the desugaring transformations can result in position inconsistencies.
An example will be presented in Section 5 (Figure 3).

4.2. Preservation of types in desugaring. When we copy type informa-
tion from the typed AST to the sugared AST, we identify matching AST nodes
using the same-position relationship. If a node c in the compiler AST is in this
relationship with a node s in the sugared AST, we copy the type information
from c to s. This approach is correct, if c and s represent Scala expressions of
the same type.

In the case of desugaring, however, nodes in the same position in the two
ASTs may refer to Scala expressions of different types. Consider, for example,
the increment method of Counter in Section 2, where the assignment to the
count variable is desugared to the invocation of the setter method count_=.
Here, the count variable on the left-hand side of the assignment operator is
in same position relationship with the setter method. Note that the type of
count is Int, and the type of count_= is the function type (Int) : Unit.
Hence it is an error to copy the type information from the compiler AST to
the sugared one with respect to these two AST nodes.

Section 2 offers examples of type-preserving desugarings as well. When
desugaring args contains "−−help" to args.contains("−−help"), the
types for all pairs of nodes in same position relationship are identical. The
same holds for desugaring the anonymous function _ + 1 to x => x + 1.

Note that nodes inserted by the compiler during desugaring do not cause a
problem if they are inserted to “unused” positions.

The construction of the hybrid front end would be easy if position consis-
tency and type preservation held. In that case nodes in same-position rela-
tionship would represent the same expression, thus they would have the same
type. Unfortunately, these properties do not hold for the chosen front ends:
the Scalameta library and the Scala compiler. This may lead to annotating
with ambiguous and even incorrect types, as we shall see in Section 5.1.

5. Fusion of two compiler front ends

Now we need to investigate how to use Scalameta and the Scala compiler
together. The hybrid front end traverses the sugared and the desugared ASTs
from top to bottom. The output is an annotated AST, which includes all
terminal and non-terminal nodes of the sugared AST, as well as the semantic
information of the desugared AST, as presented in the rest of this section. We
conclude with challenges posed by Scala compiler desugarings.

12 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

5.1. Typing a sugared AST. Our type copying algorithm annotates the
sugared AST with semantic information from the desugared AST. The algo-
rithm is given in pseudo-code below. The procedure Type takes two nodes,
a sugared one and a desugared one, as parameters. The nodes need not be in
same-position relationship. The procedure searches for same-position counter-
parts in the desugared subtree. The procedure Annotate appends the type
of a match to a list of possible types for nodes. Then the typing algorithm for
children of nodes is done, this time the match is set as root of the desugared
AST. Note that this choice restricts the search for same-position counterpart
to the subtree of the match.

If there is no match found for nodes then there still may be matches for
children of nodes, so the typing continues.

TYPE(nodes, noded)
let nodes be the root of sugared and noded the root of the

desugared abstract syntax subtrees
matches = SAME-POSITION(nodes, noded)
for match in matches

ANNOTATE(nodes, TYPE(match))
for child in CHILDREN(nodes)

TYPE(child, match)
if EMPTY(matches)

for child in CHILDREN(nodes)
TYPE(child, noded)

The function Same-Position returns a set of desugared nodes that are
in same-position relationship with nodes. The function performs a recursive
depth-first traversal of the desugared subtree. The operator “includes” checks
whether a position range of a node is between the start and end of position
range of another node. The function Same-Position uses “includes” to skip
unrelated parts. In case of position consistency, the function Same-Position
always returns a singleton set.

SAME-POSITION(nodes, noded)
let matches be an empty set of desugared nodes
if POSITION(nodes) == POSITION(noded)

ADD(noded, matches)
for child in CHILDREN(noded)

if POSITION(child) includes POSITION(nodes)
UNION(SAME-POSITION(nodes, child), matches)

return matches

COMPILER FRONT END FUSION 13

We demonstrate the typing algorithm using the desugaring examples from
Section 2. We show how to type the anonymous function _ + 1 and the array
element overwrite xs(2) = "two".

For the anonymous function, we are required to use the following class
definition because the compiler accepts only complete compilation units.

class C {
val inc : Int => Int = _ + 1

}

The sugared and desugared ASTs of the expression _ + 1 is illustrated on
Figure 2. The nodes ApplyInfix and Function are the roots of the subtrees
in the two ASTs. They are in same-position relationship. For each of the
children of ApplyInfix, the algorithm searches for same-position counterparts
in the subtree of Function. It annotates Placeholder correctly with the Int
type. However, ApplyInfix has ambiguous type because it has two same-
position counterparts (a result of the violation of position consistency): the
algorithm annotates with Int and Int => Int. Also, the algorithm does not
annotate Name("+") since the node is not in same-position relationship with
any nodes.

For the array element overwrite, we use the following program:

object O {
def main(args : Array[String]) {

val xs : Array[String] = Array("zero", "one", "")
xs(2) = "two"

}
}

The sugared and desugared ASTs of the assignment xs(2) = "two" is shown
on Figure 3. Every node in the sugared can be annotated since each node is
in one or more same-position relationships. The types of Update, Int(2) and
String("two") are Unit, Int, String, respectively. However, Name("xs")
receives two distinct types: the correct type Array[String and the type of
the method update, which is (Int, String) : Unit. Again, this is a result
of violation of position consistency.

6. Evaluation

The problem to be solved is implementation of a suitable front end for a
variety of external language processing tools. Most common features that
these tools offer are static analysis and program code transformation. Many
tools statically analyse the code at hand, and even perform transformation

14 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

ApplyInfix

(sugared)
(pos: 35–40)

Placeholder
pos: 35–36

Name("+")

(pos: 37–38)
Int(1)

pos: 39–40

Function

(desugared)
pos: 35–40
Int => Int

ValDef(TermName("x$1"))
pos: 35
Int

Apply
pos: 35–40

Int

Select(TermName("+"))
pos: 35–38
(Int) : Int

Ident(TermName("x$1"))
pos: 35–36

Int

Literal(Constant(1))
pos: 39–40

Int

Figure 2. Sugared and desugared ASTs of _ + 1. Positions
are given in offsets.

based on information from static analysis, combining the two features. We
elaborate on the effect of hybrid front ends on these features in what follows.

6.1. Benefits in program code transformation. External tools which per-
form source code transformations would benefit from a front end that gener-
ates a more accurate source code representation. A typical workflow consists
of parsing, locating the code to be transformed in the AST, transformation
and pretty printing the AST.

A hybrid front end may improve locating the code in the AST in specific
cases. Depending on the compiler front end infrastructure and the order and
organisation of the compilation phases, the AST may become subject to opti-
mizations and compile time meta-programming. By the time the external tool

COMPILER FRONT END FUSION 15

Update (sugared)
pos: 104–117

Name("xs")
pos: 104–106

Int(2)
pos: 107–108

String("two")
pos: 112–117

Apply (desugared)
pos: 104–117

Unit

Select(TermName

("update"))
pos: 104–106

(Int, String) : Unit

Ident(TermName("xs"))
pos: 104–106

Array[String]

Literal(

Constant(2))
pos: 107–108

Int

Literal(Constant

("two"))
pos: 112–117

String

Figure 3. Sugared and desugared ASTs of xs(2) = "two".
Positions are given in offsets.

receives the AST, constant expressions may be folded, and meta-programming
constructs are expanded into generated code. It may happen that the program-
mer specifies a (part of a) meta-programming construct as the subject of a code
transformation, and the compiler front end replaces it with its expansion in
the AST, thus the search in the AST fails.

Benefit in pretty printing is clear. A hybrid front end retains lexical and
syntactical information on the code. The retained information, which includes
syntactic sugars, comments and whitespaces, helps the pretty printer to gen-
erate code that pleases the programmer. Without this information, as a side
effect, for-loops may become foreach functions, invaluable documentation
comments may be lost, and tabs may be replaced with spaces or vice versa,
throwing away careful indentation.

6.2. Effect on static analysis. The difference between ASTs in representa-
tion of the same statement, such as the assignment counter = counter + 1,

16 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

may cause ambiguity in interprocedural semantic analyses. This statement can
be regarded as an assignment, where the value from the right hand side flows
to the left hand side, or as an invocation of the setter method counter_= in
the class Counter.

We can resolve this ambiguity in the following way. When the user does
not define a setter for counter, the compiler will generate a trivial setter. In
that case, the analysis can treat the statement as an assignment. Otherwise,
the assignment regarded as an invocation of the setter method.

7. Related work

Several programming languages offer syntactic sugars to make software de-
velopment more convenient and efficient. At first, we present a resugaring
technique in Scala, then we investigate other languages as well.

7.1. Resugaring in Scala. An alternative approach to build a language pro-
cessing tool is to further enhance the annotated AST provided by an external
tool by undoing the desugaring and adding the sugared syntax tree to the rep-
resentation. In [12] we introduced a resugaring algorithm for Scala by linking
two ASTs, a sugared and a desugared, together. The output is a joint AST
which includes terminal and non-terminal nodes of both ASTs and the links
between them. Figure 4 illustrates the relevant fragment of the joint AST of
the Counter class, with a sugared AST constructed with Scalameta, and a
desugared AST provided by the scalac compiler.

Counter (sugared)

count

(18-46)
increment

(49-86)
get

(89-121)

Counter (desugared)

count

(18-30)
getter
(30)

setter
(30)

increment

(53)
get

(93)

Figure 4. Resugared AST of the Counter class. Positions are
given in offsets.

The links between the nodes of the two ASTs are established by an algorithm
that traverses the two ASTs simultaneously in level-order. The algorithm is
presented on Figure 5.

7.2. Scalameta. Our choice of parser library, Scalameta [13], comes with ca-
pability to annotate ASTs with types. The Scalameta compiler plugin collects
information from compiler into semantic database. During parsing, Scalameta

COMPILER FRONT END FUSION 17

RESUGAR(trees, treed)
let trees be the root of sugared and treed the root of the

desugared AST
edges = RESUGAR-CHILDREN(trees, treed)
if POSITION(trees) overlaps POSITION(treed)

ADD(edges, EDGE(trees, treed))
return edges

RESUGAR-CHILDREN(trees, treed)
let edges be an empty set of links between the nodes
let mapping be an empty mapping from positions to nodes
for i = 1 to NUM-CHILDREN(treed)

ADD(mapping,
POSITION(CHILDREN(treed, i)),
CHILDREN(treed, i))

for i = 1 to NUM-CHILDREN(trees)
if CHILDREN(trees, i) has a matching node in mapping

let match be the desugared node with overlapping
position in mapping

UNION(edges,
RESUGAR-CHILDREN(CHILDREN(trees, i), match))

return edges

Figure 5. Resugaring algorithm

consults the semantic database and exposes types in its Semantic API. Simi-
larly to our fused front end, Scalameta also uses position information.

So far, Semantic API is limited to symbol types and name resolution. An-
notating complex expressions is a work in progress.

7.3. Syntactic sugars in other languages. The records in Erlang are taken
as syntactic sugar, thus are translated to tuple expressions by the compiler.
A record of n fields is substituted with a tuple of n + 1 elements, where the
very first element is the name of the record and the following elements are the
values of the fields (listed in the defined field order).

There are two major refactoring tools for Erlang, RefactorErl [5] and Wran-
gler. These tools use different approaches in source code processing. Refac-
torErl follows a standalone approach: it uses its own analyser framework to
make every bit of information available. Even the layout, comment, prepro-
cessor constructs and record information are stored in the Semantic Program

18 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

Graph (SPG), thus the source code restoration with its context is straightfor-
ward. Opposed to RefactorErl, Wrangler [9] is closer to the external approach,
since it uses the standard syntax tools [1] library that comes with Erlang OTP.
Atop of the standard parser, however, the tool annotates ASTs with additional
information with macro, record and layout information.

The Glasgow Haskell Compiler [11] uses several well-separated phases in
compilation process. Type checking is performed right before desugaring
phase, thus extracting representation after type checking phase includes infor-
mation on syntactic sugar constructs. Haskell-tools [4] refactoring framework
uses this representation for further analysis and transformation – this is an
external approach.

7.4. Literate Programming. Donald Knuth’s literate programming [8] al-
lows us to generate documentation and code from a single WEB file. The weaving
process generates TEX document, which can be rendered in human-readable
format. The tangling process generates code (say, C), which can be compiled
and run.

It may be possible to reconstruct the original WEB file from TEX document
and code. This problem is similar to ours: assuming that front ends for TEX
and C can be fused, a hybrid front end could produce a WEB file from TEX
documentation and C code of the same program. The C code carries infor-
mation to restore section structure of the WEB file. The section names and
documentation in each section are part of the TEX file. Annotation comments
(e.g. /*8:*/ and /*:8*/) and TEX macros (e.g. \X8:) provide a way to es-
tablish connection between C code and TEX file. In contrast, we used position
information in our hybrid front end for Scala.

7.5. Preprocessor constructs. Preprocessor constructs, such as macros,
can also be considered as a special form of desugaring. In the original source
code a macro application is presented, but usually well before the static se-
mantic analysis a preprocessor substitutes the macro application with the
corresponding macro body, and the compiler builds the annotated AST from
the expanded macro body. This raises a similar problem as the desugaring in
a language processing tool. For example, the source code needs to be pretty
printed after a refactoring transformation with the original macro applications
kept.

For Erlang, the tool RefactorErl provides a custom parser to store both the
original code and the preprocessed one [7, 6]. This makes the pretty printing
after refactoring straightforward, and the static analysis more accurate on the
expanded AST.

COMPILER FRONT END FUSION 19

The C programming language also provides a powerful macro system. The
tool CRefactory [2] introduces a standalone approach to solve the same issue
by preserving the preprocessor directives during parsing.

8. Conclusion

In this paper, we elaborated on how to implement a programming language
processing tool in order to minimize the effort. We showed that building upon
modern compiler infrastructure helps, but it comes at the price of losing in-
formation, due to desugaring. We presented an approach, front end fusion,
to circumvent this. We proposed an algorithm to construct an annotated ab-
stract syntax tree by fusing the ASTs of the Scala compiler and the Scalameta
library.

The presented algorithm is based on the simultaneous traversing of the
ASTs to be fused while considering the position consistency of the desugared
nodes. We also discussed the need of type-preserving desugaring in terms of
the fusion, and presented the solution for the Scala-specific deviations.

We have implemented and evaluated our methodology by creating a lan-
guage processing tool for Scala with the aim of providing a refactoring frame-
work for parallelisation. Probably, the presented approach may be used for
other programming languages as well.

9. Acknowledgement

The research has been supported by the European Union, co-financed by
the European Social Fund (EFOP-3.6.2-16-2017-00013).

We would like to thank the anonymous reviewers for calling our attention
to literate programming.

References
[1] Ericsson AB. Erlang Syntax Tools User’s Guide.

http://erlang.org/doc/apps/syntax_tools/users_guide.html, 2018.
[2] Alejandra Garrido. Program Refactoring in the Presence of Preprocessor Directives.

PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2005.
AAI3199001.

[3] Adam Gundry. A Typechecker Plugin for Units of Measure. SIGPLAN Not., 50:11–22,
August 2015.

[4] Haskell-tools Refact. A GHC based toolset for Haskell programming.
http://haskelltools.org, 2018.

[5] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei, Melinda Tóth, István Bozó,
and Roland Király. Modeling semantic knowledge in erlang for refactoring. In Knowledge
Engineering: Principles and Techniques, Proceedings of the International Conference on
Knowledge Engineering, Principles and Techniques, KEPT, Sp. Issue, Studia Universi-
tatis Babeş-Bolyai, Series Informatica, volume 54, pages 7–16, 2009.

20 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

[6] Róbert Kitlei, I. Bozó, Tamás Kozsik, Máté Tejfel, and Melinda Tóth. Analysis of
preprocessor constructs in erlang. In Proceedings of the 9th ACM SIGPLAN Erlang
Workshop, pages 45–55, Baltimore, USA, September 2010.

[7] Róbert Kitlei, László Lövei, Tamás Nagy, Zoltán Horváth, and Tamás Kozsik. Layout
preserving parser for refactoring in Erlang. Acta Electrotechnica et Informatica, 9(3):54–
63, 2009.

[8] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
[9] Huiqing Li and Simon Thompson. Tool support for refactoring functional programs. In

Partial Evaluation and Program Manipulation, San Francisco, California, USA, January
2008. Assoc of Computing Machinery.

[10] Bruno Cardoso Lopes and Rafael Auler. Getting Started with LLVM Core Libraries.
Packt Publishing, 1st edition, 2014.

[11] Simon Marlow and Simon Peyton-Jones. The glasgow haskell compiler, 2012. in The
Architecture of Open Source Applications (Volume II: Structure, Scale, and a Few
More Fearless Hacks), http://aosabook.org/en/ghc.html.

[12] Artúr Poór and Tamás Kozsik. Resugaring: Undo desugaring in language processing
tools. Thessaloniki, Greece, 2017. To appear in the Proceedings of the Symphosium of
Computer Languages and Tools.

[13] Scalameta. Metaprogramming library for Scala. http://scalameta.org, 2018.
[14] Dean Wampler and Alex Payne. Programming Scala – Scalability = Functional Pro-

gramming + Objects. O’Reilly Media, 2nd edition, December 2014.

Eötvös Loránd University, Budapest, Hungary
Email address: {poor_a, kto, toth_m, bozo_i}@inf.elte.hu

