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AN ADAPTIVE GRADUAL RELATIONAL ASSOCIATION

RULES MINING APPROACH

DIANA-LUCIA MIHOLCA

Abstract. This paper focuses on adaptive Gradual Relational Associa-
tion Rules mining. Gradual Relational Association Rules capture gradual
generic relations among data features. We propose AGRARM , an al-
gorithm for mining the interesting Gradual Relational Association Rules
characterizing a data set that has been extended with a number of new
attributes, through adapting the set of interesting rules mined before ex-
tension, so as to preserve the completeness. We aim, through AGRARM ,
to make the mining process more efficient than resuming the mining algo-
rithm on the enlarged data. We have experimentally evaluated AGRARM
versus mining from scratch on three publicly available data sets. The ob-
tained reduction in mining time highlights AGRARM ’s efficiency, thus
confirming the potential of our proposal.

1. Introduction

Data mining is widely applied in various domains, such as medicine [5],
bioinformatics [6] or software engineering [10] [9] [14], to discover relevant
patterns in large data sets.

Association Rules (ARs) mining [4] is a data mining procedure for identify-
ing frequent associations in data. Classical association rules capture frequent
co-occurrences of attribute values, while ignoring any possible frequent relation
between attribute values.

Ordinal Association Rules (OARs) [3] customize Association Rules (ARs)
[1] so as to express ordinal relations among numeric attributes that character-
ize a data set. But different informative relations, that are not ordinal, may
exist between the attribute values. OARs fail to capture them.
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Consequently, Relational Association Rules (RARs) [18] [2] generalize Or-
dinal Association Rules so as to capture relations that may not be ordinal,
between not necessary numeric attributes. Compared to the classical Asso-
ciation Rules, RARs express more powerful rules which may lead to valuable
data mining results.

Subsequently, Adaptive Relational Association Rule Mining (ARARM) [8]
has been proposed as a method for adapting the set of all interesting RARs
discovered within a data set before extending its features set, so as to obtain
all interesting RARs within the extended data set.

There are situations when the degree to which a relation between two at-
tributes is satisfied is relevant. So, RARs have been further extended to Grad-
ual Relational Association Rules (or GRARs) [7] which, through the use of
fuzzy relations instead of boolean relations, are also aware of the degree to
which the relations are satisfied.

For discovering all the interesting Gradual Relational Association Rules that
describe a data set, Gradual Relational Association Rules Miner (GRANUM)
[7] has been proposed. GRANUM mines a known set of objects that are
measured against a known set of features and discovers all interesting GRARs
characterizing the data set. But there are also situations where the data is
horizontally dynamic, in the sense that the feature set characterizing its ob-
jects evolves (i.e. new attributes are added). Clearly, for obtaining, in such a
setting, the interesting GRARs, the mining algorithm can be re-applied, from
scratch, every time the feature set changes (i.e. one or more new attributes
are added). But this could be inefficient and unworthy especially if the at-
tribute set is only very slightly expanded, for instance by adding just one new
attribute.

Consequently, we propose, in the current paper, an alternative to resuming
the GRANUM mining algorithm when the data set is enlarged with a number
of new attributes. We propose, therefore, Adaptive Gradual Relational Asso-
ciation Rules Miner (AGRARM), which is an algorithm that adapts the set
of all interesting GRARs mined before extension so as to obtain all interesting
GRARs that characterize the extended data. AGRARM is the equivalent of
ARARM [8], but for mining GRARs instead of RARs, within a dynamic data
set.

The remaining of this paper is structured as follows. We start by giving,
in Section 2, a background on Gradual Relational Association Rules. The
proposed Adaptive Gradual Relational Association Rules Miner (AGRARM)
is presented in Section 3. In Section 4, we detail the experiments performed
in order to evaluate AGRARM against GRANUM applied from scratch and
we discuss the results obtained. A comparison to related approaches is also
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given in Section 4. Finally, the conclusions and directions for further work are
stated in Section 5.

2. Background on Gradual Relational Association Rules

We briefly present in the following the concept of Gradual Relational Asso-
ciation Rules [7].

Gradual Relational Association Rules (GRARs) generalize Relational As-
sociation Rules (RARs) [18] by using fuzzy relations instead of crisp relations
and thus enhancing them with gradualness. The gradual rules are able to
express additional semantically relevant characteristics of data and have been
proven to be more noise-tolerant [7].

Let E = {e1, e2, . . . , en} be a set of instances (entities, records or objects).
Each instance ei in E consists of a sequence of values for m attributes (or
features), A = (a1, . . . , am). Each attribute aj takes values from a non-empty
and non-fuzzy domain Di, which also contains a null (or empty) value. If we
denote by Φ(ei, aj) the value of the instance ei for the attribute aj , an instance
will be ei = (Φ(ei, a1),Φ(ei, a2),
Φ(ei, a3), ...Φ(ei, am)).

A fuzzy binary relation G between two attribute domains Di and Dj is
defined as follows:

G = {< (v1, v2), µR(v1, v2) >: v1 ∈ Di, v2 ∈ Dj}
µR : Di×Dj → [0, 1] is a membership function which associates to each pair

(v1, v2), v1 ∈ Di, v2 ∈ Dj the membership degree µR(v1, v2) which numerically
expresses the degree to which the relation G is satisfied.

We denote by F the set of all fuzzy binary relations which can be defined
between any two crisp attribute domains.

Definition 2.1. A Gradual Relational Association Rule, gRule, is a
sequence (ai1 G1 ai2 G2 ai3 . . .G`−1 ai`), where {ai1 , ai2 , ai3 , . . . , ai`} ⊆ A =
{a1, . . . , am}, aij 6= aik , j, k = 1..` and Gj ∈ F is a binary fuzzy relation over
Dij ×Dij+1 [7].

The membership degree of the gradual relational association rule gRule
for data instance e ∈ E is defined as µgRule(e) = min{µRj (Φ(e, aij ),Φ(e, aij+1)),
j = 1, 2, . . . , `− 1} and expresses the magnitude to which the rule is satisfied.

a) If ai1 , ai2 , ai3 , . . . , ai` are non-missing in p instances from the data
set then we call p

n the support of the rule.
b) If we denote by E ′ ⊆ E the set of instances where ai1 , ai2 , ai3 , . . . , ai`

are non-missing and µgRule(e) > 0 for each instance e from E ′, then

we call |E
′|
n the confidence of the rule.
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c) Using the notation from b), we call

∑
e∈E ′

µgRule(e)

n the rule’s mem-
bership.

The number l of attributes in a rule gives the rule length.
When introducing the concept of Gradual Relational Association Rules in

the literature [7], we kept the definition of interestingness previously proposed
for non-gradual Relational Association Rules. In accordance with this, a rule
is interesting if its support and confidence are greater or equal to given thresh-
olds. In a later work [14], we suggested that we could customize interestingness
by including an additional minimum threshold condition for membership. So,
the current work is in accordance with the definition for interestingness cus-
tomized as follows:

Definition 2.2. We call a GRAR interesting if its support s, confidence c
and membership m are greater than or equal to given thresholds, i.e. s ≥ smin,
c ≥ cmin and m ≥ mmin.

Definition 2.3. The inverse of binary fuzzy relation G = {< (x, y), µG(x, y) >:
x ∈ X, y ∈ Y } will be denoted in the following by G−1 and is defined as
G−1 = {< (x, y), 1− µG(x, y) >: x ∈ X, y ∈ Y }.

GRANUM [7] has been proposed as an Apriori mining algorithm for dis-
covering all interesting GRARs within a data set. For more details about
GRANUM and GRARs in general, we refer the reader to [7].

2.1. Example. We exemplify in the following the previously presented con-
cept of Gradual Relational Association Rules. Therefore, we mine a small real
data set taken from [12] and depicted in Figure 1. The data consist of the
results obtained by testing chemical pastes as described in the following. The
chemical paste product is delivered in batches of casks. Immediately after the
arrival of a batch, the material from three randomly selected casks is analyzed,
errors arising from both the sampling and the analysis. The data instances
correspond to ten delivery batches chosen at random, while the data attributes
are given by the average of the percentage paste strengths obtained by two
analyzes of the contents of the three selected casks.

We propose to compare the paste strengths obtained by analyzing the con-
tents of the three randomly selected casks. Since there are errors in data, we
opt for GRARs [7] instead of non-gradual RARs.

Having F = {≈ (approximately equal),. (fuzzy less)and & (fuzzy greater)}
as the set of gradual relations and setting the minimum support, confidence
and membership thresholds at smin = 1, cmin = 1 and mmin = 0.9, the
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Cask 1 Cask 2 Cask 3
62.70 61.20 61.95
60.70 57.20 58.95
58.10 63.50 60.80
56.75 57.75 57.25
55.10 54.45 54.78
64.15 58.70 61.43
62.55 59.85 61.20
59.30 65.60 62.45
54.80 64.00 59.40
58.80 59.20 59.00

Figure 1. Strength of chemical pastes data set

GRANUM mining algorithm will discover as interesting rules the rules given
in Table 1.

Rule Length Support Confidence Membership
Cask 1 ≈ Cask 2 2 1.0 1.0 0.935
Cask 1 ≈ Cask 3 2 1.0 1.0 0.982
Cask 2 ≈ Cask 3 2 1.0 1.0 0.983

Cask 1 ≈ Cask 2 ≈ Cask 3 3 1.0 1.0 0.935
Table 1. Interesting rules on data set from Table 1 for smin =
1, cmin = 1 and mmin = 0.9

Interpreting the obtained GRARs, we can conclude that the results of the
analyzes performed for the three selected casks are approximately equal (since
Cask 1 ≈ Cask 2 ≈ Cask 3 with a rather large membership degree of 0.935).
Furthermore, we deduce that the strengths of the material from the third
selected cask differ in almost equal extents from the strengths obtained for
the other two casks (since Cask 1 ≈ Cask 3 with membership 0.982 and Cask
2 ≈ Cask 3 with membership 0.983), while these two are not as close to each
other (since Cask 1 ≈ Cask 2 with a smaller membership of 0.935). These
conclusions are confirmed by analyzing the graphical data representation from
Figure 1.

3. Methodology

We introduce in the current section AGRARM , the Adaptive Gradual
Relational Association Rules Mining method we propose for mining all in-
teresting GRARs in a dynamic data set whose feature set is extended with
one or more new features.
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Let E = {e1, e2, . . . , en} be a data set. Each entity is initially defined by
the values for m features (attributes or characteristics), A = (a1, . . . , am),
thus being a m-dimensional sequence: ei = (e1i , . . . , e

m
i ). Subsequently, A is

extended with s ≥ 1 new features, thus obtaining an extended feature set
Aext = (a1, . . . , am, am+1, . . . ,
am+s) and an afferent extended data set Eext = {eext1 , eext2 , . . . , eextn }. Each
extended data instance eexti ∈ Eext is therefore given by the values for the

m + s attributes that describe the extended data set Eext: eexti = (eext, 1
i ,

eext, 2
i , . . . , eext, m+s

i ).
In this context, the problem we are approaching is to find the set GRulesext

of all interesting GRARs that occur in the extended data set Eext, starting
from the set GRules of all interesting GRARs in the non-extended data set
E . The motivation is that we expect a better time performance through com-
pleting the rules already mined on the data before extension than by applying
the mining process from scratch on the extended data.

So, we further presentAGRARM (Adaptive Gradual Relational Association
Rule Miner), a complete algorithm that, starting from GRules and consider-
ing the newly added features, adapts the rule set so as to obtain GRulesext.
Function AGRARM(E , Eext, F , GRules, cmin, smin, mmin)

Input: E - the initial non-extended set of m-dimensional entities,
Eext - the final extended set of m+s-dimensional entities,
F - the set of fuzzy binary relations used in the mining process,
GRules - the set of all interesting GRARs mined on the non-extended data

set E,
cmin, smin and mmin - the minimum thresholds for support, confidence

and membership, respectively
Output: GRulesext - the set of all interesting GRARs that characterize Eext, the

extended data set
AdaptiveRules← the binary (2− length) rules from GRules
Cand← { (ai1 G ai2) | ai1 , ai2 ∈ A, i1 = 1 . . .m+ s, i2 = m+ 1 . . .m+ s, i1 <
i2, G ∈ F }
Foreach gRule in Cand do

If IsInteresting(gRule, Eext, cmin, smin, mmin) then

AdaptiveRules ← AdaptiveRules ∪ {gRule}
EndIf

EndFor

GRulesext ← AdaptiveRules
l← 3
complete← false
While (¬complete) do

Cand← GenCandidates(AdaptiveRules)
AdaptiveRules← l − length rules from GRules
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Foreach gRule in Cand do

If IsInteresting(gRule, Eext, cmin, smin, mmin) then

AdaptiveRules ← AdaptiveRules ∪ {gRule}
EndIf

EndFor

If AdaptiveRules = ∅ then

complete← true
else

l ← l + 1
GRulesext ← GRulesext ∪AdaptiveRules

EndIf

EndWhile

AGRARM ← GRulesext
EndFunction

The AGRARM algorithm discovers all interesting GRARs through an iterative
process. At each iteration, the length-level generation of rules is followed by the
verification of their interestingness. As we mentioned in Section 2 , the interestingness
of a GRARs is a property that is tested in relation to given support, confidence and
membership minimum thresholds. We give in the following the function that checks
if a candidate GRAR is or is not interesting at the level of the extended data set Eext.
Function IsInteresting(gRule, Eext, cmin, smin, mmin)

Input: Eext - the final extended set of m+s-dimensional entities,
gRule - the gradual relational association rule whose interestingness on Eext

is verified
cmin, smin and mmin - the minimum thresholds for support, confidence

and membership, respectively
Output: true - if gRule is interesting on Eext (i.e. it satisfies cmin, smin, and

mmin minimum thresholds) or
false - otherwise

n← |Eext|
requiredSuppport←

⌈
n · smin

⌉
requiredConfidence←

⌈
n · cmin

⌉
requiredMembership←

⌈
n ·mmin

⌉
support← 0
confidence← 0
membership← 0
remainingEntities← n
Foreach instance in Eext do

UpdateSuppConfM(gRule, instance, support, confidence,membership)
remainingEntities← remainingEntities− 1
If (support+ remainingEntities < requiredSupport)
or (confidence+ remainingEntities < requiredConfidence)
or (membership+ remainingEntities < requiredMembership) then
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IsInteresting ← false
EndIf

If (support ≥ requiredSupport) and (confidence ≥ requiredConfidence)
and (membership ≥ requiredMembership) then

IsInteresting ← true
EndIf

EndFor

IsInteresting ← false
EndFunction

The method that follows presents the update of support, confidence and member-
ship of a GRAR when considering a current data instance.

Subalgorithm UpdateSuppConfM(gRule, instance, supp, conf,membership)
Input: gRule - the gradual relational association rule whose support, confidence

and membership will be updated considering the instance data entity
instance - the data instance on which the rule gRule is evaluated so as to

update the supp, conf and membership values
supp, conf and membership - the current support, confidence and mem-

bership for gRule which are required to be updated through also considering
instance.

Output: supp′, conf ′ and membership′ - the support, confidence and member-
ship of gRule are updated as a result of evaluating gRule on instance
If @instance has non−missing values for all attributes in gRule then

supp ← supp+ 1
m← min(@ the memberships of the fuzzy relations in gRule on the
instance data entity)
If m > 0 then

conf ← conf + 1
EndIf

membership← membership+m
EndIf

EndSubalgorithm

So, AGRARM , the proposed method, starts by performing an initial pass over the
extended data set Eext so as to identify the interesting binary rules in addition to the
2-length rules from GRules. In every subsequent iteration, the set of interesting rules
of length k > 2 will be mined. This set will obviously include the k-length rules from
the set GRules. But there is an alternative to obtain a k-length interesting rule. The
alternative consists in generating a new candidate rule by joining two (k − 1)-length
rules from GRulesext such that at least one of the two rules contains at least one
newly added attribute. The candidate rules generation is followed by the verification
of minimum support, confidence and membership compliance. At the end of each
iteration, all the k-length interesting rules will be included in the set GRulesext. The
mining process stops when no new interesting rules have been discovered in the latest
iteration.
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We present in the following the method of generating candidate rules.

Function GenCandidates(GRulesk)
Input: GRulesk - the interesting GRARs of length k
Output: GRulesk+1 - the candidate GRARs of length k + 1 which were obtained

through joining pairs of rules in GRulesk
GRulesk+1 ← ∅
n← |GRulesk|
For i← 1 to n− 1 do

For j ← i+ 1 to n do

gRulei ← the i− th rule from GRulesk
gRulej ← the j − th rule from GRulesk
If @gRulei or gRulej contain at least one newly added attribute (i.e.
in the set {am+1, am+2, ..., am+s}) then

If @gRulei matches for join with gRulej in one of the cases (1)
−(4) from Figure 2 then

resultingRule← @ the rule obtained by joining gRulei and gRulej
GRulesk+1 ← GRulesk+1 ∪ {resultingRule}

EndIf

EndIf

EndFor

EndFor

GenCandidates← GRulesk+1

EndFunction

In Figure 2, we present the four rules according to which GenCandidates proposes
new candidate rules.

4. Results and discussion

We present in the following the experiments we performed in order to comparatively
evaluate AGRARM against GRANUM applied from scratch, the comparison being
performed in the context in which the data of interest is extended with a number of
new attributes.

In these comparative experiments, we considered three different data sets, various
possibilities of extending their attribute sets and multiple values for the minimum
support, confidence and membership thresholds.

The three data sets we have considered in our experiments are publicly available
in tera− PROMISE repository [17]. They are Tomcat, Ar and JM1. The Tomcat
data set consists of the values for 20 Chidamber and Kemerer (CK) software metrics,
computed for the 858 classes in Apache Tomcat software, version 6.0. The Ar data
set is composed of 29 static code attributes (McCabe, Halstead and LOC software
measures), for 745 modules in Ar, which is an embedded software implemented in C.
The third data set, JM1, consists of 7782 instances, corresponding to modules in JM1
software, each being characterized by 21 attributes (5 different lines of code measures,
3 McCabe metrics, 4 base Halstead measures, 8 derived Halstead measures and a
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gRule1 ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2
),

gRule2 ≡ (ai1G1ai2 . . .Gk−3aik−2
G2a2), (1)

⇒ resultingRule ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2
G2a2),

or
gRule1 ≡ (ai1G1ai2 . . .Gk−3aik−2

G1a1),

gRule2 ≡ (a2G2ai1G1ai2 . . .Gk−3aik−2
), (2)

⇒ resultingRule ≡ (a2G2ai1G1ai2 . . .Gk−3aik−2
G1a1),

or
gRule1 ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2

),

gRule2 ≡ (a2G2aik−2
G−1
k−3 . . . ai2G

−1
1 ai1), (3)

⇒ resultingRule ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2
(G2)

−1
a2),

or
gRule1 ≡ (ai1G1ai2 . . .Gk−3aik−2

G1a1),

gRule2 ≡ (aik−2
G−1
k−3 . . . ai2G1

−1ai1G2a2), (4)

⇒ resultingRule ≡ (a2(G2)
−1
ai1G1ai2 . . .Gk−3aik−2

G1a1).

Figure 2. The joining rules considered by the candidate gen-
eration process in the AGRARM algorithm

branch-count). We mention that, prior to the mining phase, the data have been pre-
processed in the sense that the values have been scaled using the Min-Max scaling
method.

In each of the experiments, the interesting GRARs on the extended (m + s)-
dimensional instances have been mined in the following two ways: (1) by applying
GRANUM from scratch on the extended data and (2) by applying AGRARM so as
to adapt the rules mined before extension. Certainly, the interesting GRARs mined
were the same regardless of the mining method applied (i.e. (1) or (2)). But we will
compare the time required by the two methods in order to test our expectation that
AGRARM is faster than GRANUM applied from scratch, at least if the data set is
expanded with a relatively small number of attributes.

We considered, in the mining processes, the following set of fuzzy binary rela-
tions: F = {≈ (approximately equal), . (fuzzy less), & (fuzzy greater), ∼�
(fuzzy much
less), ∼� (fuzzy much greater)}. The ≈ relation has been defined using the
asymmetric Gaussian membership function, while the rest of the fuzzy relations have
been defined through S-shaped membership functions, which have been parameter-
ized, of course, so that the following inequalities occur: . (x, y) ≥ ∼� (x, y) and
& (x, y) ≥ ∼� (x, y).

We mention that the experiments have been carried out on a PC with an Intel
Core i7 Processor at 2.40 GHz, with 8 GB of RAM.

We depict in Table 2 the results obtained by applyingAGRARM versusGRANUM
from scratch on Tomcat data set, when considering the minimum support threshold
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m s
Rules
on E

Time
GRANUM

(ms)

Time
AGRARM

(ms)

Time
reduction

2 18 0 273.67 269.66 0.014
3 17 0 275.08 275 0.0002
4 16 0 274.14 273.8 0.001
5 15 0 274.55 272.58 0.007
6 14 9 275.42 264.03 0.041
7 13 9 274.68 261.28 0.048
8 12 9 274.49 259.55 0.054
9 11 32 274.12 237.93 0.132
10 10 32 274.04 232.9 0.150
11 9 32 274.99 230.38 0.162
12 8 32 273.77 226.75 0.172
13 7 32 273.97 223.12 0.186
14 6 32 273.83 219.78 0.197
15 5 99 274.87 119.13 0.567
16 4 100 275.9 115.27 0.582
17 3 117 275.52 88.92 0.677
18 2 171 276.52 14.29 0.948
19 1 171 275.5 8.22 0.970

Table 2. Experimental results obtained on Tomcat data set
for smin = 1, cmin = 0.97 and mmin = 0.5

smin = 1, the minimum confidence threshold cmin = 0.97 and the minimum member-
ship threshold mmin = 0.5. Here, m gives the number of initial attributes, while s
gives the number of newly added attributes.

In Table 2, we give, on the first column, the number m of initial attributes, on
the second column, the number s of newly added attributes, on the third column,
the number of interesting GRARs mined before extension, on the fourth and fifth
columns the mining time for GRANUM and AGRARM , respectively, and, on the
last column, the time reduction obtained by applying AGRARM to the detriment of
GRANUM applied from scratch. The reduction in mining time has been computed
as the ratio between the gained time (i.e. the difference between the time required by
GRANUM and the time required by AGRARM) and the time consumed through
resuming the mining process (i.e. applying GRANUM from scratch).

We observe from the table that the time reduction becomes significant when the
newly added attributes count no more than one third of the number of initial at-
tributes. For instance, when s

m = 1
3 (i.e. s = 5 and m = 15), the mining time is

reduced by more than 56%. The most substantial reduction, namely 97%, is obtained
when the data set is extended with only one attribute.
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Figures 3 and 4 illustrate how the time reduction evolves, depending on the number
s of new attributes, for additional case studies on the Tomcat data set.

Figure 3. The reduction in total mining time when applying
AGRARM on Tomcat and considering smin = 1, cmin = 0 and
mmin ∈ {0.99, 9.95, 0.9}

The results illustrated in Figure 3 have been obtained by imposing, besides the
condition of a minimum support threshold smin = 1, minimum membership thresh-
olds, thus renouncing at also using a minimum confidence threshold to condition the
interestingness of a GRAR (i.e. cmin has been set as 0). We successively initialized
the minimum membership threshold with the following values: 0.99, 0.95 and 0.9.

In Figure 4 we give the reductions obtained by considering the minimum support
threshold smin = 1 and by varying both the minimum confidence and membership
thresholds. We successively considered cmin = 0.99 and mmin = 0.95, cmin = 0.95
and mmin = 0.9 and, as a third setting, cmin = 0.97 and smin = 0.5.

From both figures we can deduce that the time required by AGRARM decreases
as the number s of newly added attributes decreases. Consequently, the adaptive
algorithm we propose proves to be significantly more efficient than GRANUM applied
from scratch when s is relatively small.

In order to strengthen the finding according to which AGRARM really makes the
mining process more efficient when data is enlarged with relatively few new attributes,
we comparatively tested it on two more data sets.

We present in Figure 5 the time reductions obtained on Ar data set when consid-
ering smin = 1 and various values for cmin and mmin.
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Figure 4. The reduction in total mining time when apply-
ing AGRARM on Tomcat and considering smin = 1 and
(cmin, smin) ∈ {(0.99, 0.95), (0.95, 0.9), (0.97, 0.5)}

Figure 5. The reduction in total mining time when applying
AGRARM on Ar and considering smin = 1 and (cmin, smin) ∈
{(0, 0.996), (0.996, 0), (0.99, 0.98), (1, 0.9)}

Figure 6 illustrates how the total mining time is reduced when applying, on JM1
data set, AGRARM instead of GRANUM from scratch. In the experiments per-
formed on JM1 we also set the minimum support threshold, smin, to 1, while varying
the values for the minimum confidence and membership.
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Figure 6. The reduction in total mining time when ap-
plying AGRARM on JM1 and considering smin = 1 and
(cmin, smin) ∈ {(1, 0), (0.995, 0.5), (0, 0.995), (0.999, 0.99)}

As we can see in Figures 5 and 6, the reduction in total mining time becomes
substantial when the newly added attributes are relatively few. Consequently, the
results of the experiments performed on Ar and JM1 also confirm the effectiveness
of AGRARM , the algorithm we propose for adapting the interesting GRARs mined
before extension, so as to avoid applying GRANUM from scratch on the extended
data.

4.1. Comparison to related work. AGRARM , the adaptive mining approach in-
troduced in Section 3, is new in the data mining literature. The existing approaches
consider non-relational Association Rules and their adaptability refers to other as-
pects, except for ARARM , which handles non-gradual Relational Association Rules.
AGRARM is an adaptation of ARARM [8] so as to additionally consider the de-

gree to which the rules are satisfied. This implies that the rules AGRARM discovers
as interesting are also filtered according to a given minimum membership threshold
(see Function isInteresting in Section 3) in addition to support and confidence mini-
mum thresholds.

Apart from ARARM , the perspectives of the other incremental mining approaches
are quite different. Still, we will briefly present several recent approaches that are
somehow related to our approach, since they focus on mining dynamic data. They
are incremental in the sense that the dynamics of data refers to adding new instances
and not new features to the existing instances.

Nath et al. [15] provides a survey on association rule mining, insisting on the situ-
ation in which the data set is not static. The authors have highlighted the important
issues and challenges of mining dynamic data, including: the multiple passes over the
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data set, the high number of generated candidates and the incremental behaviour of
the data set.

Dhanabhakyam and Punithavalli [11] have proposed an efficient Market Basket
Analysis mining method, called Adaptive Association Rule Mining with Faster Rule
Generation Algorithm (FRG − AARM). The adaptability of the method refers to
regulating the minimum support threshold during mining so as to attain a suitable
number of rules.

Ogunde et al. [16] have introduced an Adaptive Incremental Mining Algorithm
(AIMA). AIMA has been designed to adapt the existing rules to the changes in the
distributed databases, by mining, with the help of mobile agents, only the incremental
database updates, in order to improve the response time and communication overhead.

A different incremental data mining algorithm has been proposed by Chang et al.
[4]. The proposed method is based on FP-Growth and uses the concept of heap tree
for incrementally updating the frequent itemsets.

A similar approach has been proposed by Yu-Dong et al [19]. The incremental
association rule mining algorithm is called PV SIFP − Growth. The authors have
incorporated in their proposal the Improved FP-Growth (V SIFP−Growth) and par-
allel computing based on MapReduce. PV SIFP −Growth can discover association
rules when both database increase or decrease and minimum support changes.

Li et al. [13] have proposed a three-way decision update pattern approach (TDUP )
combined with a synchronization mechanism for efficiently updating and maintaining
the frequent itemsets. It is based on using an additional support-based measure, so
as to classify all possible itemsets into positive, boundary, and negative regions.

So, the existing adaptive approaches either rely on adapting the mining parameters
[11] so as the discovered rules to be relevant, or aim the adaptation of the rules in
the case of a dynamic data set, but which is extended vertically, not horizontally (i.e.
by adding new data instances to it rather than adding new attributes to the existing
instances) [19, 4, 13].

5. Conclusions and further work

We have proposed in the current paper AGRARM , a complete approach for adap-
tively uncovering the interesting Gradual Relational Association Rules within a dy-
namic data set that is extended by adding new features to it. Multiple experiments
have been performed in order to comparatively evaluate AGRARM ’s time perfor-
mance. The evaluation results confirm that AGRARM provided the interesting
GRARs within the enlarged data more rapidly than resuming the mining algorithm
GRANUM , i.e. applying it from scratch on the updated data set.

A first direction of further work is to further improve the efficiency of the adaptive
mining process. To this effect, we aim to study possible algorithmic improvements
of AGRARM (like trying to generate a new candidate rule only from relevant pairs
of rules, i.e. when at least one rule in the pair contains at least one newly added
attribute) and also to develop a distributed version of it. We also plan to apply
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AGRARM in concrete data mining tasks including incremental software defect pre-
diction.

As an additional direction for further work, we plan to propose an adaptive-
incremental approach for discovering interesting Gradual Relational Associations Rules
within a dynamic data set to which both new features and new objects are added.
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