
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.06

NOSQL DATABASE PERFORMANCE BENCHMARKING - A

CASE STUDY

CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Abstract. This paper describes an experimental study regarding NoSQL
database performance. Two NoSQL databases were considered (MongoDB
and Cassandra), two different workloads (update heavy and mostly read)
and several degrees of parallelism. The results refer to throughput perfor-
mance metric. Statistical analysis performed is referring to throughput re-
sults. Conclusions confirm that MongoDB performs better than Cassandra
in the context of a mostly read workload, while Cassandra outperformed
MongoDB in the context of an update heavy workload where the number
of operations was high.

1. Introduction

It is hard to figure out what kind of database fits best a certain application
nowadays. There are many NoSQL databases that are highly configurable and
flexible, but to determine the right choice for a given application is a tedious
task. NoSQL databases differ from one another on many levels, from data
model to distribution model and it is not easy to make a fair performance com-
parison between them. Just reading the documentation of a certain NoSQL
database is not enough to make sure you make the right decision for your
application, but performance benchmarking gives you the opportunity to see
that database in action, on your chosen hardware configuration.
In order to find out how NoSQL databases perform on a general performance
benchmark, we ran performance benchmarking tests using the YCSB client
against Cassandra and MongoDB database servers. We generated a dataset
that fits in memory using the YCSB client and then ran benchmarking tests

Received by the editors: February 9, 2018.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

80

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 81

using various combinations of workload, number of operations and number of
client threads on each database server.

2. Background

2.1. NoSQL models. NoSQL models appeared as a response for the need
of big companies like Google or Amazon to store and manage huge amounts
of data. The fact that the relational model was not built to offer horizontal
scalability and the difference between in-memory data structures that are used
in application programming and the relational model, known as impedance
mismatch[16] are the key factors that contributed to the emergence of the
NoSQL databases.

There are four main NoSQL data models: key-value, document, column-
family and graph. For this paper, two data models were chosen: the document
model and the column-family model. The document model and the column-
family model are based on the key-value model. In a key-value database, data
is stored as key-value pairs, with the key part of the pair as the unique identifier
for the value that is stored in the value part of the pair. Complex values like
objects or arrays can be stored as values for keys, but their structure remains
invisible to the database.

In a document database, data is stored as documents. A document is simi-
lar to a key-value pair, but the difference is that the value part has a structure
that is visible to the database. In a key-value database, the value part is not
visible to the database. What used to be a record in a relational table becomes
a document in a collection inside a document database. Still, there are some
key differences between them. In a relational table, all the records have the
same schema and every field can store only simple values. In a document col-
lection, documents can have different schemas and complex values like arrays
or embedded documents can be stored as values for a given field. The most
popular document format is JSON[12], but there are others, like XML[21] or
YAML[22]. Document databases simplify application development process. It
is a lot easier to store objects as documents than to create the relational rep-
resentation of an object and store it in more than one table. Also, document
databases have flexible schema, so it is easier to modify it as the application
evolves.
In column-family databases, data is stored as rows in column families. A col-
umn family is similar to a relational table, but it has a flexible schema. Rows
in the same column family can have different columns. Each column is com-
posed of a timestamp and a key-value pair, with the name of the column as
key and the value for that column as value. Complex values like collections or
arrays can be stored as values for a given column. Column-family databases

82 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

are generally optimized for writes. When designing applications for column-
family databases, it is a good practice to know in advance what kind of queries
are needed in order to optimize read operations.

2.2. NoSQL tools. For each selected NoSQL model, a NoSQL database was
chosen. In our benchmark, the document model is represented by MongoDB[14].
There are other document databases available on the market, like CouchDB[5]
or OrientDB[15]. The column-family model is represented in our benchmark
by Apache Cassandra[2]. Other column-family databases are Bigtable[3] and
HBase[10].
MongoDB is an open source distributed database that was built to offer schema
flexibility, horizontal scalability, replication and high availability. It has a rich
query language and a good support for ad hoc queries. It was developed by
10Gen, known today as MongoDB Inc. In a MongoDB cluster there are shards
or nodes that store data, config servers that store cluster metadata and query
routers that route queries to the shards.
Cassandra is an open source distributed database that offers high availabil-
ity, horizontal scalability and data replication, including multiple datacenter
replication. It was initially developed at Facebook[13] and its data model was
based on Bigtable and Dynamo[7]. In a Cassandra cluster every node is iden-
tical, which means that there is no master node and nodes can be added or
removed from the cluster with no downtime.
Cassandra 3.11.0 and MongoDB 3.4.4 were the database versions installed on
our servers.

2.3. NoSQL benchmarking. Benchmarking is very useful when evaluating
NoSQL systems because it reveals the actual performance of a database on a
given hardware configuration for a specific application use case. It is a diffi-
cult task to make a comparison between different NoSQL databases, and the
lack of benchmarking tools for this category makes this task even harder. As
a consequence of this fact, Yahoo! Cloud Serving Benchmark[4] (or YCSB

for short) emerged as an open source benchmarking framework for cloud or
NoSQL systems. YCSB was written in Java and it has two main components:
the YCSB client, which is a workload generator and the Core workloads that
represent a set of workload scenarios to be executed by the generator[23]. Both
components are extensible. New workloads can be defined, so that specific ap-
plication workloads can be run and database performance for those workloads
can be evaluated. Other benchmarking tools are cassandra-stress tool[19],
a tool for benchmarking Cassandra clusters and cbc-pillowfight[18], a tool
for benchmarking Couchbase. In [6], cbc-pillowfight was used as a tool for
workload generation, while the benchmarked database was MongoDB. Also,

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 83

in a more general context, we can mention BigBench[1] tool. These tools were
not used in our evaluation because (a) they cannot be used for all databases
considered, and/or (b) we cannot find straight Windows implementations for
them. There are benchmarking studies using YCSB discussed in the litera-
ture: [9], [8] and [11]. All these studies use a different testing environment,
more precisely they employ a cloud-based infrastructure. By using virtual ma-
chines, cloud solutions are easier to manage because all the resources needed
are available as Software-as-a-Service or Infrastructure-as-a-Service. Our solu-
tion, discussed in the next section, implied a big amount of work for installing
and configuring all software applications needed. For our performance bench-
mark, we chose to use YCSB version 0.12.0 as benchmarking framework, because
it is free, available, and can be used for evaluating Cassandra and MongoDB.

3. Case study

In database performance benchmarking, there are two important metrics:
the throughput, measured in operations per second and the latency, measured
in microseconds per operation. These two metrics are present in every test
output we obtained using YCSB, but from lack of space only the throughput
was analyzed in this paper.

3.1. Experimental setting. A total of three servers having the same hard-
ware configuration were used to run the experiment. The YCSB client ran on
the first server, Apache Cassandra ran on the second server and MongoDB ran
on the third server. Each server had the following hardware configuration:

• OS: Windows 7 Professional 64-bit
• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 logical

processors
• RAM: 16 GB
• HDD: 500 GB.

The data set used in our tests is composed of 4 million records and it
was generated by the YCSB client. Every record has 10 fields and each field
contains a random generated 100 byte string value. Because of its size, this
data set could fit within memory entirely. Two YCSB core workloads were
chosen: Workload A (50% update, 50% read), an update heavy workload[20]
and Workload B (5% update, 95% read), a read mostly workload[20]. The
number of operations parameter is in fact the number of operations performed
in a test run. Each workload was tested with the following values for the
number of operations: 1000, 10000, 100000 and 1000000. For every workload
and number of operations combination, tests were run on 1, 2, 4, 8, 16, 32,
64, 128, 256 and 512 client threads, with every test repeated three times for

84 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

every number of client threads.
MongoDB was installed with default settings and the default storage engine
for version 3.4.4, Wired Tiger.
Cassandra was installed with default settings, but in order to avoid write
timeouts, we followed the setting recommendation found in [8], which is:

• read request timeout in ms set to 50000
• write request timeout in ms set to 100000
• counter write request timeout in ms set to 100000
• range request timeout in ms set to 100000.

For both databases, the asynchronous Java driver was used.
A combination of workload, database and number of operations will be consid-
ered in this context a batch of tests. The database server was restarted before
each execution of a batch of tests, and database server status information was
captured before and after each run of batch of tests. When all combinations
of tests were run for a certain workload, the data set for that workload was
deleted and a data set with the same parameters corresponding to the next
workload was loaded.

3.2. Results. Each test was repeated three times for every combination of
database, workload, number of operations and number of client threads. In
order to create the following charts, a throughput average was computed for
every combination of database, workload, number of operations and number of
threads. The first eight graphics (Figures 1 to 8) show a comparison between
Cassandra and MongoDB for every combination of workload and number of
operations. The last four graphics (Figures 9 to 12) show the evolution of
throughput for every combination of workload and database considered in our
experimental study.

Figures 1, 2, 3, and 4 show that MongoDB outperforms Cassandra when
number of operations is small (1000 and 10000, respectively), for both work-
loads used.

Figure 5 shows that Cassandra’s performance is closer to MongoDB’s when
the number of operations is increased to 100000, in the case of a update-heavy
workload A. For the same number of operations, MongoDB still outperforms
Cassandra when we use a read-heavy workload B, as Figure 6 shows.

Cassandra outperforms MongoDB only when the number of operations is
1000000 and the workload is update-heavy, as in Figure 7. For read-heavy
workloads and the same number of operations, MongoDB’s performance is
better, as shown in Figure 8.

Figures 9 and 10 show the individual performance of the databases consid-
ered when using a heavy-update workload A, as function of the number of

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 85

Figure 1. 4 Million Records 1000 Operations Workload A

Figure 2. 4 Million Records 1000 Operations Workload B

threads used and number of operations involved. After the initial steep in-
crease (128 threads for Cassandra, 32 for MongoDB), the performance flattens
(with a very small decrease in the case of MongoDB). In the case of Cassandra,
the performance (Figure 9) depends on the number of operations in a quasi-
logarithmic fashion, while MongoDB’s (Figure 10) throughput is almost the
same when the number of operations is greater than or equal to 10000, with

86 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 3. 4 Million Records 10000 Operations Workload A

Figure 4. 4 Million Records 10000 Operations Workload B

the remark that it is slightly smaller when the number of operations increases
from 100000 to 1000000.

The same comparison was performed in the Figures 11 and 12 to show
the individual performance of the databases considered when using a heavy-
read workload B. A first remark is that the performance decreases in the case
of Cassandra (from 43000 to 30000, Figure 11) and increases in the case of
MongoDB (from 23000 to 75000, Figure 12). After the initial steep increase (64

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 87

Figure 5. 4 Million Records 100000 Operations Workload A

Figure 6. 4 Million Records 100000 Operations Workload B

threads for Cassandra, 32 for MongoDB), the performance flattens, following
the same patterns.

3.3. Statistical analysis. Statistical analysis of the experimental results was
performed using two-way ANOVA (Analysis of Variance) procedure from R
Statistics Package[17]. A synthesis of the results is given in Table 1. For

88 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 7. 4 Million Records 1000000 Operations Workload A

Figure 8. 4 Million Records 1000000 Operations Workload B

each experiment, two factors were considered: database (DB, with two levels:
Cassandra and MongoDB), and the number of threads (NT, with ten levels:
1, 2, 4, 8, 16, 32, 64, 128, 256, and 512). The interactions between DB and NT
were also considered. The column labeled ”Sgf” is referring to the P-value and
describes textually the level of significance, 0.1%, 1%, 5%, and 10%, according
to the following conventions: 0 ∗ ∗ ∗ 0.001 ∗ ∗ 0.01 ∗ 0.05 . 0.1 (blank) 1. In

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 89

Figure 9. 4 Million Records Cassandra Workload A

Figure 10. 4 Million Records MongoDB Workload A

90 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 11. 4 Million Records Cassandra Workload B

Figure 12. 4 Million Records MongoDB Workload B

other words, if P-value is ≤ 0.1% (i.e. ∗ ∗ ∗ according to the legend), it means
that the differences between means have a strongest statistical significance,
while a P-value greater than 10% (i.e. blank space) shows that the differences
between the means of the levels considered are within the experimental error.

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 91

Table 1. Analysis of variance - results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 162.4446 <2E-16 *** 1.1394 0.2904 0.9268 0.3398
A 10000 94.3802 1.29E-13 *** 12.521 0.0008174 *** 7.1367 0.0098707 **
A 100000 6.3535 0.01459 * 26.268 3.82E-06 *** 0.3309 0.56742
A 1000000 5.9014 0.018362 * 31.2701 6.94E-07 *** 8.7875 0.004449 **
B 1000 178.571 <2E-16 *** 0.75 0.3902 0.5777 0.4504
B 10000 96.271 9.06E-14 *** 11.05 0.001568 ** 7.963 0.006596 **
B 100000 56.322 5.07E-10 *** 22.632 1.42E-05 *** 7.61 0.007827 **
B 1000000 36.373 1.35E-07 *** 27.8642 2.19E-06 *** 3.4366 0.06904 .

4. Conclusions and further work

After the results were analyzed, it became obvious that for a read-mostly
workload (Workload B), MongoDB performed much better than Cassandra.
MongoDB outperformed Cassandra in every test combination where the work-
load parameter was set to Workload B.
For an update-heavy workload (Workload A), Cassandra outperformed Mon-
goDB when the number of operations was increased at 1000000 (Figure 7). In
this update-heavy context, MongoDB performed much better than Cassandra
in the first two test scenarios where the number of operations was set to 1000
(Figure 1), respectively 10000 (Figure 3). In the third test scenario, where the
number of operations was set to 100000 (Figure 5), Cassandra’s performance
was comparable to MongoDB’s, but not greater. After the number of op-
erations was set at 100000, MongoDB’s performance stopped growing, while
Cassandra’s one kept growing. Due to big differences in the infrastructure
(cloud-based versus on-premises) and tool and database management systems
versions used for benchmarking studies, the results of our work cannot be
compared with the results reported by other studies. However, it is important
to notice that the general trends are preserved, as they are mentioned by the
technical documentation issued by providers.
As further work, we intend to analyze the latency metric results for this exper-
iment, to perform post-hoc ANOVA tests and to run performance benchmark-
ing using data sets that don’t fit within memory on single server and cluster
configurations. We also plan to run performance benchmarking on servers
that use SSDs as disk storage and to enable replication for database servers
to see how it affects performance. Moreover, the other variable in our future
case studies will be the benchmarking tool, i.e. we’ll try to use benchmarking
tools available on Linux platforms.

92 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority
Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] M. H. F. R. M. P. A. C. H.-A. J. Ahmad Ghazal, Tilmann Rabl. Bigbench: towards
an industry standard benchmark for big data analytics. Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 1197–1208, 2013.

[2] Apache cassandra. http://cassandra.apache.org/. Accessed: 2017-09-25.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data.
OSDI ’06 Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, 7, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with ycsb. Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154, 2010.

[5] Couchdb. http://couchdb.apache.org/. Accessed: 2017-09-25.
[6] Datagres. Perfaccel performance benchmark:nosql database mongodb. Technical report,

Datagres Technologies Inc., 2015.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available
key-value store. Proceedings of twenty-first ACM SIGOPS symposium on Operating sys-
tems principles, oct 2007.

[8] Fixstars. Griddb and cassandra performance and scalability. a ycsb performance com-
parison on microsoft azure. Technical report, Fixstars Solutions, 2016.

[9] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
evaluation of nosql databases. EPEW 2014: Computer Performance Engineering, Lec-
ture Notes in Computer Science, 8721:16–29, 2014.

[10] Hbase. https://hbase.apache.org/. Accessed: 2017-09-25.
[11] N. E. P. D. K. P. C. M. John Klein, Ian Gorton. Performance evaluation of nosql

databases: A case study. Proceedings of the 1st Workshop on Performance Analysis of
Big Data Systems, pages 5–10, 2015.

[12] Json. https://www.json.org/. Accessed: 2018-03-16.
[13] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. ACM

SIGOPS Operating Systems Review, 44:35–40, 2010.
[14] Mongodb. https://www.mongodb.com/. Accessed: 2017-09-25.
[15] Orientdb. http://orientdb.com/. Accessed: 2017-09-25.
[16] M. F. Pramod J. Sadalage. NoSQL distilled : a brief guide to the emerging world of

polyglot persistence. Addison-Wesley Professional, 2012.
[17] R statistics package. https://www.r-project.org/. Accessed: 2017-09-25.

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 93

[18] Stress test for couchbase client and cluster. http://docs.couchbase.com/sdk-api/

couchbase-c-client-2.4.8/md_doc_cbc-pillowfight.html. Accessed: 2017-09-25.
[19] The cassandra-stress tool. https://docs.datastax.com/en/cassandra/2.1/

cassandra/tools/toolsCStress_t.html. Accessed: 2017-09-25.
[20] The ycsb core workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-09-25.
[21] Xml. https://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2018-03-16.
[22] Yaml. http://yaml.org/. Accessed: 2018-03-16.
[23] Ycsb github wiki. https://github.com/brianfrankcooper/YCSB/wiki. Accessed:

2017-09-25.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-
Napoca, Romania

Email address: {andorcamelia, bparv}@cs.ubbcluj.ro

