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DETECTING BINARY INCOMPATIBLE SOFTWARE

COMPONENTS USING DYNAMIC LOADER

ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

Abstract. Modern programming languages support modular develop-
ment dividing the system into separate translation units and compile them
individually. A linker is used then to assemble together these units either
statically or dynamically. This process, however, introduces implicit de-
pendences between the translation units. When one or more units are
modified in inconsistent way binary incompatibility occurs and may result
in unexpected program behavior. Current mainstream programming lan-
guages neither specify what are the binary compatibility rules nor provide
tools to check them.

In this paper we discuss the details of various cases of binary incom-
patibility. We implemented a prototype solution in the Welltype program-
ming language to detect binary compatibility by dynamic loader.

1. Introduction

Most of the modern programming languages provide some way for modular
development. Program code is usually written into separate source files and
compiled individually. These are so called translation units [1] then organized
into higher abstraction packages, modules or libraries. The separation level of
the compilation of these translation units are vary in different programming
languages. The Java language [2] requires the proper setting of the CLASSPATH
environment variable to make connection between translation units. In C and
C++ languages [3, 4] usually the header files included to multiple translation
units provide the consistency.
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To create an executable code, the individually compiled translation units are
assembled into an executable program. For classical programming languages
like C, C++, Fortran, etc. where the compilation step results machine specific
binary code, some kind of linker [5, 6] connects the translated units. This can
happen either statically, where the assembled units form a unified entity, or
dynamically, when the necessary code is collected only in run-time. Modern
software systems tend to use the dynamic approach [7, 8] as it results smaller
binary code and faster compile/link time.

For programming languages using some virtual execution environment, e.g.
the virtual machine in Java, the run-time environment provides the proper
connection between the units.

There are a number of advantages of this code organization: programmers
can work on individual source files with minimal interference. Libraries cre-
ated from a set of translation unit form reusable subsystems. Compilers can
better localize the possible issues when translate the source code. On incre-
mental development only the modified code should be recompiled thus the
development time is shorter.

Although the translation units are compiled individually, in many cases
there are implicit dependences between them. One unit can use variables
or functions defined in some other unit. Objects are defined in one unit as
instances of types defined in an other unit. When one or more components are
changed most programming languages require full recompilation of the system
to ensure the complete consistency between the units. In practice, however,
the full recompilation of the system is rarely the case.

This paper is organized as follows. In Section 2 we overview how the current
mainstream languages support binary compatibility. In Section 3 we describe
a typical industrial scenario to point to the importance of the binary compat-
ibility and its verifiability. In Section 4 we introduce our prototype solution
for the problem in the Welltype experimental programming language. We
evaluate this approach in Section 5. We briefly discuss our future plans in
Section 6. Our paper concludes in Section 7.

2. Related work

Binary compatibility is an issue poorly recognized by language designers,
but can cause serious headache for maintainers of large software projects.
When already compiled clients are linked against different versions of libraries,
incompatible library versions can cause the client code to crash or even worse,
to running in undefined way. This problem frequently occurs with C/C++
programs using dynamic libraries, but the issue is not limited to C++, also
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happens in Java and other languages. Welltype deeply validates modules to
link and forbids incompatible usage.

A classical solution to create binary compatible versions for classes is using
the handle-body programming pattern [9]. In C++ this is frequently called
as the PIMLP pattern and implemented as a single private data member –
a smart or raw pointer – referring to an implementation class written in a
separate translation unit. As the evolution of the class is reflected in changes
only of the implementation, the object layout of the original class used by the
clients never changes. On the negative side of this solution we usually have
to allocate the implementation class on the heap which may result run-time
overhead.

In C and C++ the GNU compiler team developed a solution [10, 11, 12]
to append version number to symbols in the ELF (Executable and Linkable
Format) [13, 14] files. These informations later can be used by the static or
dynamic linker. This solution might be useful to detect some sort of binary
incompatible components.

Even the Java programmers must be aware binary compatibility, although,
the Java language is not known about program crashes due to binary incom-
patible components. The binary compatibility has an own chapter in the Java
Language Specification [15], suggesting the importance of this topic. The
chapter detailing what will produce a binary compatible output, and what
are the traps. To understand the importance of binary compatibility in Java
programs, we must take a closer look to the problems caused by library up-
grades [16]. Another example – which is related to library upgrades – is when
a refactoring is made [17].

Apart Welltype, other languages were developed to be aware of binary com-
patibility. ZL is a C++ compatible language in which high-level constructs,
such as classes are defined using macros over a C-like core language [18]. This
approach makes many parts of the language easily customizable, e.g. the pro-
grammer can have complete control over the memory layout of objects. Using
this capability, one can develop binary compatible new versions of ZL language
objects.

3. Motivation

Suppose, we have a large software system, implemented in an object-oriented
programming language, like C++. Here, many of the subcomponents of the
system, like networking, logging, database connections, etc. are implemented
as classes or a group of classes placed into libraries. Each of these subcom-
ponents have their own maintenance cycle: they evolves implementing new
features, are changed due to bug fixes or performance improvements. If the
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system is large enough, it is not realistic to recompile the whole system when
one or more subsystems have changed.

In the industry a typical solution is the following. Each subsystem is imple-
mented in separate translation units and compiled into dynamically loadable
libraries (e.g. DLLs in Windows, shared objects in UNIX systems). The pub-
lic interface of the subsystems are exposed in header files. Applications are
using this common header files via the #include preprocessor directive. The
applications also using the implementation of the subsystems picking the cor-
responding dynamically loadable libraries in run-time when the application
starts.

This scenario allows a relatively good opportunity to maintain even large
systems. When any of the subsystems requires changes for maintenance pur-
poses it is enough to change and recompile the one in question. Replacing the
old .DLL or .so with the new version the changes will be enabled for the ap-
plications on their next start. However, this upgrade scenario does not allows
changes on the interface of the subsystems. Any time the public interface of
a subsystem changes, applications using it should be recompiled.

Unfortunately, not changing the public interface does not guarantee the
binary compatibility of the system components. The C++ programming lan-
guage uses value semantic, i.e. objects are mapped into bytes in memory
directly instead of being represented by some reference which points to heap
allocated memory (like Java does it). Every time we declare a variable of a
type we allocate the corresponding number of bytes. Client code using that ob-
ject is directly compiled to utilize size, and offsets corresponding the object’s
known layout. Changing the layout, e.g. adding a new (non static) member
to a class or changing existing ones brakes these assumptions. To avoid in-
consistency between the object’s actual layout and the layout known by the
already compiled clients we should apply only binary compatible changes.

What is a binary compatible change is very hard to decide. Language
specifications, like the ISO C++ standard [19], do not even mention binary
compatibility. Subtle changes, like making an existing member function virtual
or adding a new exception may brake compatibility. Experts are collecting
traps and pitfalls [20, 21, 22], but those are specific to platform, compiler or
even compiler flags to set optimization level. At the moment there are no
reliable tool or method to check whether a new library is binary compatible
with its previous version.

Nowadays, the programs are stored in well-known binary formats, and the
used format varies through operating system. For example, modern Unix and
Linux systems use the ELF [13, 14] format (Executable and Linkable For-
mat) since the nineties. Windows systems use the PE [23] format (Portable
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Executable). The common in these formats that they provide symbol sharing
across dynamic libraries and other programs. The mechanism is unfortunately
is too simple to provide possibility to detect binary incompatibility. The C-
style linkage consists of basically just function names without any additional
information. The C++-style linkage, however, uses mangled names which en-
capsulates additional information about the function: encodes the type names
of the arguments, including namespaces and templates.

4. Welltype Dynamic Loader

As we seen above, binary compatibility is really an issue in long-term devel-
opment. The incompatibilities can cause the program to crash or, even worse,
miscalculations that break invariants. Thus, programmers must take actions
to avoid such incompatibilities. While in the current, mainstream program-
ming languages only conventions can get rid of binary incompatibilities, the
Welltype language explicitly and strictly specifies the binary compatibility.

The Welltype language [24, 25, 26] is an imperative programming language,
designed to be safe: strict syntax and strong type system. While the Welltype
language is safe, it is still feature rich – supports algebraic data types. Welltype
programs can be dynamically linked, performed by the dynamic loader.

The Welltype Dynamic Loader will validate whether the program to be
loaded meets the already loaded restrictions. If the loader finds a program is
binary incompatible, then it will be refused from loading.

In order for the dynamic loader to be capable to make decision like that,
programs must define their public interface: what elements they require and
what elements they publish into the environment. These elements can be
types, functions, operators, etc. Note that this is a notable difference from
the standard ELF or PE formats, where only the function symbol names are
stored, and everything else is assumed. However, this applies mainly to the
C language, because the C++ symbols contain more information, even type
names, since it is required to resolve function overloads.

The Welltype specification states that all external references must be ex-
plicitly indicated, the source code must contain what elements needs to be
imported. These references are used twice: First, during the compilation to let
the compiler know what undefined but declared elements can be used. Second,
during the dynamic linking to bind the externals to the program. After all
externals are bound, the program can be executed. Naturally, the indicated
externals will be part of the compiled program if they actually referenced –
the unreferenced externals will be ignored.

On the other hand, any program can export a set of elements into the
runtime environment. These exported elements later can be used by other
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programs. The one definition rule [27] – which is a basic concept of the Well-
type language – cannot be violated when exporting functions into the runtime
environment. This rule will specify a loading order among the programs, since
no program can actually import an undefined element.

The importance of the one-definition rule can be easily understood. It
is trivial to define two functions with the same signature while their imple-
mentation is different. In order to use the same implementation by all the
loaded programs, it is mandatory to enforce this rule. Note that, however,
it is not required to load one specific implementation into the environment.
This dynamic mechanism allows to load different implementations to the same
program – while the signatures are match.

The loading procedure will process all export and import sections, in the
order specified in the program binary. The algorithm used to export elements
is the following:

procedure export_element(environ, program, elem)

if not element_is_exported(environ, elem) then

if element_is_function(elem) then

error: one definition rule violated

end if

end if

rep := build_representation(program, elem)

register(environ, rep)

end procedure

The algorithm used to import elements is a bit more complicated but straight-
forward:

procedure import_element(environ, program, elem)

rep := find_element_by_primary_attr(environ, elem)

if rep is NIL then

error: unresolved external

end if

if not element_is_compatible(elem, rep) then

error: element is incompatible

end if

write_import_info(program, elem, rep)

add_reference(program, rep)

end procedure

The mentioned primary attributes are unique to all elements described in
Section 4.1.
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4.1. Elements in the binary interface. The concept of the binary interface
consists of the following elements: function signatures, operators, exceptions,
and the types.

The mentioned function signature – as expected – take part in the binary
interface. The function signature used in the binary consists of

• the name of the function, which is almost a custom zero-terminated
string with lesser exceptions;

• the number of argument;
• the exact types of all the arguments;
• the number of return values;
• the exact types of all return values;
• the pure attribute
• and (in case of export) the address of the entry point of the function.

If the signatures match, the loader assumes they functions are binary com-
patible. The current version of the Welltype language does not specify other
attributes to identify a function. This specification might looks inadequate,
but the strength of the dynamic loader (and the Welltype language itself) are
the types.

Primary attributes of the function signature are: name, number of argu-
ment, and the types of the arguments. This is similar to the C++ language,
because this is the minimal information required to resolve function overloads.

The mentioned exact types in the listing above refers to the in-depth type
matching. The binary interface must hold the specification of all types that
are involved in export or import mechanism. This applies recursively to other
types as well. This topic will be discussed later.

In addition to the already mentioned elements, operators are also take
part in the binary interface. The Welltype specification aimed the goal to load
programs that ,,speak the same interface”. Therefore, the used operators are
also matched, while it is somewhat unnecessary. The reason behind this design
decision is that two expressions are not the same if the operator precedences are
not compatible. For example, the expression a *+ b *- c can be interpreted
two ways depending on the precedences:

(1) (a *+ b) *- c

(2) a *+ (b *- c)

Moreover, the associativity of the operator is also important, because the
expression a *+ b *+ c also can be interpreted two ways:

(1) (a *+ b) *+ c

(2) a *+ (b *+ c)
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Therefore, the different precedence and associativity cause the source code
to be not the same with different settings. Thus the operator specification
consists of:

• operator symbol (we distinguish two varieties: the classic operator
form which consists of one or more operator symbol character with
lesser exceptions; and the identifier form which is any identifier that
accepted by the parser) – this is the only primary attribute;

• precedence ranging from 3 to 15;
• and the associativity (left or right).

The built-in operator set is fixed in the Welltype specification. Multi-defined
operators are also ignored. It is done because if all the three attributes match,
it defines exactly the same operator, and will be turn into a simple import.

The exceptions are also part of the binary interface. A Welltype program
can raise only exceptions that are defined in the program or imported into the
program. Note that the declared but not exported exceptions will be implicitly
exported, because the program needs a global exception identifier (that globals
to the runtime environment). This mechanism will not cause any problems,
because exceptions can be exported multiple times while not violating the
one-definition rule. Technically, the duplicate exception exports are ignored,
and the program will implicitly import it. This can be done because the only
informations about an exception is its name. Furthermore, the implicit export
is used to make reference to the original program that actually exported the
exception. Using the method, all program will know which exception to be
raised, and which exception to be caught. Since the exceptions are identified
in the binary only by its name, the name of the exception is the primary
attribute.

4.2. Types in the binary interface. In this section we discuss all the types
in details that are part of the binary interface.

Types that specified in the current version of the Welltype language are:
enumeration type, function type, data type, record, private record and limited
record. The primary attribute is common to all types listed here: the name
of the type.

The enumeration type consists of:

• name of the type;
• number of enumerators;
• identifier of all the enumerators.

Exact match of the enumeration type is important because the programs will
communicate with enumerator indices, and every index must refer to the same
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enumerator. Also, code might be generated on the imported side. Therefore,
the number and the identifier of the enumerators must match.

The primary attribute of the function type is only its name, because the
Welltype specification identifies all types by only their name. This is a little
bit contrary to the specification of the function signature, but the function
type is a type, not an actual function. However, the function type consists the
same attributes as the function signature:

• name of the type;
• the number of argument;
• the exact types of all the arguments;
• the number of return values;
• the exact types of all return values;
• and the pure attribute.

In order to import a function type, all attributes listed above must exactly
match.

The data type is the algebraic data type implementation in Welltype.
Therefore, the binary representation must reflect the complexity of this type.
The following attributes are stored:

• name of the type;
• number of constructors;
• index of the default constructor;
• for each constructor:

– name of the constructor;
– number of types in the constructor;
– list of the types.

The reason why the index of the default constructor is included in the binary
representation is similar to the explanation to the operators. This attribute
is somewhat unnecessary, but using different default constructor can result
totally different program from the same source code. Moreover, if the actual
data type does not have a default constructor, then an important attribute
will change. Without default constructor the type is not default constructible,
and this recursively affect other types. The dynamic loader takes actions to
avoid to alter such important attribute like the default constructible.

The record type is quite similar to the struct used in C programming lan-
guage with one major difference: the complete layout is stored in the compiled
binary, and validated by the dynamic loader. The stored layout consists of:

• the name of the type;
• the number of fields the record has;
• the list of the field types;
• and the names of all the fields.
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The number of the fields and the types of all the fields are very important,
because code will be generated on the importer side, which is specific to the
actual layout. For example, the size of the whole record depends on its fields.
The records passed through different programs must use the same layout,
otherwise crash or miscalculation will occur. The field names are stored only
in order to ensure that the records are the same. Example to the importance
of the field names can be seen in Figure 1. The layout is definitely the same
(two int in both cases), but with entirely different semantics. For example,
accessing the y field will use different memory slots. Therefore, the two records
are binary incompatible, but this scenario can be detected only if the record
fields are stored.

record vec

{

int x;

int y;

}

/* or */

record vec

{

int y; // NOTE: the fields are

int x; // swapped

}

Figure 1. Example code breaking the binary compatibility.

record my_record

{

int first;

bool second;

long third;

}

Figure 2. Example record to demonstrate the serialization.

For example, the record can be seen in Figure 2 will be compiled into the
following sequence:

"my_record", 3, 2, 1, 4, "first", "second", "third"

Where the type indices are int=2, bool=1 and long=4.
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The record type might not the best choice for all situations, because the
record may evolve, or the representation intended to be hidden. Since the
record type matches all fields, and the fields are free to access, this construct
is not optimal to these purposes. The private record is used instead. Only
the name of the type is stored (hence it is ,,private”), and the representa-
tion is entirely hidden. For the private record type additional functions are
required to be imported (or additional functions must be exported). Because
the fields are unknown, thus a constructor function is required to construct
them. Note that all private record are still default constructible despite of the
representation is unknown.

The non-default constructible version of the private record is the limited
record. The semantics is the same as the private record, but the construc-
tor function is not imported/exported. Apart from the default constructible
attribute, the limited record and the private record are the same construction.

5. Evaluation

Although the binary interface is quite strict, the mechanism is actually us-
able. A few large (over 20k sloc) Welltype programs are written that highly
uses the dynamic linking feature: this provides an ability to these programs
to replace the back-end implementation. With the help of the opaque types
(private record and limited record) the details can be hidden, and the
back-end can be reduced to a simple API (Application Programming Inter-
face) instead of a over-complicated and embedded implementation. Thus, this
organization makes the back-end implementation replaceable, not least easy
to understand.

Also, this supposed to be a motivating force to programmers design a com-
pact and clear API. Moreover, this approach forces not to leak implementa-
tion details, which in most of the cases is absolutely unnecessary. In C++,
the needlessly leaked implementation details are considered as bad practice, in
Welltype, however, they considered as never do that.

6. Future work

The current version of the Welltype language does not support classes. How-
ever, introducing the class construction brings issues into the strict syntax, and
the forced binary compatibility. As we seen, the Java language has problems
with binary compatibility. Thus, this language construction required to be
carefully designed to suit into the strict syntax, semantics and binary inter-
face.
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7. Conclusion

Binary compatibility is a serious but often underestimated issue in modern
programming languages. Current mainstream programming languages neither
specify nor provide tools to solve the problem. In this paper we discussed the
problem in details and suggested a set of rule to check avoiding inconsisten-
cies between binary components. The Welltype experimental programming
language is defined to avoid various traps and pitfalls of the current main-
stream languages. One of the improvements of Welltype is the application of
the dynamic loader with the capability to detect the possible binary incompat-
ible modules. We implemented a prototype tool-chain of Welltype. Practical
experiments show that the rules detecting the binary incompatibility in Well-
type are strict enough to filter out critical issues, but still allow maintenance
of evolving individual subsystems as binary components.
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