
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXI, Number 2, 2016

A STUDY ON SOFTWARE DEFECT PREDICTION USING

FUZZY DECISION TREES

ZSUZSANNA MARIAN, ISTVÁN-GERGELY CZIBULA, IOAN-GABRIEL MIRCEA
AND VLAD-SEBASTIAN IONESCU

Abstract. In this paper we conduct a study on applying fuzzy decision
trees for software defect prediction, investigating the results of varying
different parameters, for the FuzzyDT method, introduced in a previous
paper. The proposed method uses software metrics and fuzzy decision trees
to identify potentially faulty software entities like components, modules,
methods, etc. Experiments are performed on five open-source case studies
in order to analyze the effect of using different thresholds for the software
metrics used to define the fuzzy membership functions as well as using
different impurity functions in building the fuzzy decision tree. We also
analyse whether using only certain selected software metrics leads to a
better performance than using all the software metrics from the data sets.
The obtained results confirm that the fuzzy approach outperforms the crisp
one and the results are better than most of the results already reported in
the literature for the data sets considered in our evaluation.

1. Introduction

Software defect prediction represents the activity of identifying software
modules which are likely to develop errors in a forthcoming version of a soft-
ware system, being of major importance for software testing and for assuring
the software quality as well. The methods for detecting faulty software entities
are useful for suggesting to developers the software modules that should be rig-
orously tested. These software entities can be software components, modules,
packages, classes, methods, functions or other software artifacts.

The software maintenance process represents a major part of a software life
cycle, requiring a large software engineering effort. The software engineering

Received by the editors: September 20, 2016.
2010 Mathematics Subject Classification. 68N99, 68T05.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement - Restructuring, reverse engineering, and reengineering ;
D.2.8 [Software Engineering]: Metrics – Product metrics; I.2.6 [Artificial Intelligence]:
Learning – Induction;

Key words and phrases. software defect prediction, software metrics, fuzzy decision trees.

5



6 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

literature reveals that understanding the software represents about half of
the amount of effort allocated to the maintenance activity. Fixing defects
represents one of the main software maintenance activities, also being referred
to as corrective maintenance [8].

For increasing the efficiency of the software defect-fixing process, defect
prediction models are useful for anticipating locations in a software system
where future defects may appear. Identifying software defects is difficult,
mainly for complex software projects. The main difficulty related to building
supervised defect predictors is the fact that the number of defects in software
projects is much smaller than the number of non-defective entities and thus,
the training data is highly imbalanced [2].

In [10] we have introduced a novel method for software defect detection
using fuzzy decision trees (FuzzyDT ). The proposed method uses software
metrics, which are often used for software defect prediction. We have pro-
vided in [10] experiments on JEdit and Ant open source systems, to show the
effectiveness of our method. In this paper, we further investigate the FuzzyDT
method on other five publicly available data sets [4] called Ar1, Ar3, Ar4, Ar5
and Ar6. We also analyse different parameter settings for our method. The
following criteria are used in the performed analysis:

• Using different threshold values for the software metrics needed to
define the fuzzy membership functions.
• Using only some selected software metrics or using all of the software

metrics from the data sets for building the fuzzy decision trees.
• Using different impurity functions in building the fuzzy decision tree.

The remainder of the paper is structured as follows. Section 2 presents
the background of the FuzzyDT method for software defect prediction, while
Section 3 describes the criteria used in our further study. Section 4 presents
the experimental results obtained on several case studies, as well as an analysis
of the obtained results and a comparison to related work. Section 5 contains
the conclusions of the paper.

2. Background

In this section we present the main background of the FuzzyDT method
we have previously introduced in [10] for software defect prediction.

A fuzzy decision tree appears to be an effective choice for solving the soft-
ware defect prediction problem for the following reasons. Most importantly,
the nature of the data concerning software metrics makes a clear differentiation
between the defective and non-defective classes virtually impossible and there-
fore a certain degree of uncertainty must be taken into account in the decision
process. That is why it is important that accurate fuzzy functions are defined



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 7

and incorporated in the classical decision tree paradigm, thus transforming it
into a fuzzy decision tree.

A fuzzy decision tree [7] follows the classical decision tree paradigm for
classification in the sense that, starting from the entire data set, a tree is
constructed by selecting at any decision step the most relevant attribute with
respect to an impurity measure and splitting the remaining attribute infor-
mation on several branches according to the distinct values that underlie the
chosen attribute. The internal nodes of the fuzzy tree contain all the instances
from the data set, but each instance has a membership degree to each class.
A leaf node from the fuzzy tree, instead of indicating a single classification as
in the classical approach, contains cumulative membership values to each of
the classes.

However, in the case of the fuzzy approach, the distinct values that enable
the decision branching process of the tree are replaced by fuzzy functions
concerning the attribute. The entropy and the information gain measures,
which play a fundamental part in the decision process, are strongly dependent
not only on the balance in size between the target classes used in training, in
the current case the classes of defective or non-defective software components,
but also on the construction of the fuzzy membership functions concerning
each attribute since these functions need to be established in such a way that
they better enable the defect classification process.

3. Comparison criteria

The FuzzyDT method for software defect prediction presented in Section
2 depends on different parameters, whose selection can influence the accuracy
of the obtained results. In this section we present the comparison criteria that
are used in our experiments and serves as the basis for the study performed
on the FuzzyDT method.

3.1. Thresholds for the software metrics. Our first action is to investigate
how different software metrics thresholds for the fuzzy membership function
influence the results of the algorithm.

All the data sets used for the experiments in this paper contain 29 software
metrics and the class label (defective or non-defective). In order to build
the fuzzy decision trees, we define for each software metric two trapezoidal
fuzzy functions: the first fuzzy function determines the membership degree
of a software metric value to the class of defective entities and the second
fuzzy function determines the membership degree to the class of non-defective
entities.

For defining the fuzzy functions we take inspiration from the work pre-
sented in [6]. The authors have created a large data set by computing the value



8 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

Figure 1. The two fuzzy functions defined for the total loc
software metric.

of different software metrics for 111 software systems and identified thresholds
to group the value of these software metrics into three categories: Good, Reg-
ular and Bad. They defined the threshold between the first two categories at
the 70th percentile and between the second and the third categories at the 90th

percentile in the data. Similar to this work, we merge the five Ar data sets
used for the experimental evaluation and for each software metric we compute
the value of 70 and 90 percentile and use these values for defining the fuzzy
functions. For example, the two fuzzy functions defined for the total loc soft-
ware metric, where the two percentile values are 49.9 and 117.6, are presented
on Figure 1.

Denoting the two threshold values used to define the fuzzy functions as a
and b, the membership degree of a software metric value x to the non-defective
class can be computed using Formula (1). Similarly, the membership degree
to the defective class can be computed using Formula (2).

(1) µnon−defect(x) =


1, x < a
b−x
b−a a ≤ x ≤ b
0, x > b



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 9

(2) µdefect(x) =


0, x < a
x−a
b−a a ≤ x ≤ b
1, x > b

Besides using the value of percentiles 70 and 90 as thresholds for defin-
ing the fuzzy functions, we use two other pairs of thresholds as well. These
thresholds are presented in Table 1. By modifying the threshold value, we are
actually modifying the section where the two functions overlap. We consider
the first threshold pair Regular and we defined one where the overlap section
is narrower (second row of Table 1), and one where the overlap section is wider
(third row of Table 1).

Name Percentile threshold Percentile threshold
for a for b

Regular 70 90
Narrow overlap 75 85
Wide overlap 65 95

Table 1. Different percentile thresholds used for defining the
fuzzy functions.

3.2. Software metrics. In this section investigate the effect of using different
software metrics in building the fuzzy decision tree for the software defect
prediction task.

3.2.1. All 29 software metrics. We use the values of 29 different McCabe and
Halstead software metrics: halstead vocabulary, unique operators, unique ope-
rands, total operands, total operators, executable loc, halstead length, total loc,
halstead volume, halstead error, halstead difficulty, halstead effort, halstead
time, blank loc, condition count, multiple condition count, branch count, deci-
sion count, cyclomatic complexity, halstead level, comment loc, code and com-
ment loc, decision density, call pairs, design complexity, cyclomatic density,
normalized cyclomatic complexity, design density formal parameters.

3.2.2. A subset of 9 software metrics. For reducing the dimensionality of the
feature set characterizing the software entities, we use the analysis performed
in [11] on the Ar3, Ar4 and Ar5 data sets for selecting relevant software
metrics for the software defect prediction task. For determining the im-
portance of the software metrics information gain (IG) measure was used.
From the software metrics having IG values higher than a given threshold,
9 software metrics measuring different characteristics of the software system



10 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

Figure 2. Selected software metrics

were selected in [11] being representative for the software defect detection
process: halstead vocabulary, total operands, total operators, executable loc,
halstead length, total loc, condition count, branch count, decision count [11].
These software metrics are used as features in our classification task.

The selected software metrics are shown in Figure 2.

3.3. Impurity functions. In this section we investigate the effect of using
different impurity functions in building the fuzzy decision tree.

For building the fuzzy decision tree, two impurity functions are used to
measure the heterogeneity of a set of l software entities labeled as defects and
non-defects. As we have described in Section 2, each internal node from the
fuzzy decision tree stores all the instances from the training data set (let us
denote t by D), but each instance has a certain membership degree to each
class.

The first impurity function is the one usually used when building decision
trees, namely the entropy.

The entropy measure at a node from the fuzzy decision tree is computed
as in Formula (3) and it represents a generalization for the entropy from the
crisp case.



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 11

Entropy(node) = −
ndefect

ndefect + nnon−defect
· log

ndefect
ndefect + nnon−defect

−

(3)
nnon−defect

ndefect + nnon−defect
· log

nnon−defect

ndefect + nnon−defect

where ndefect sums the membership degrees for the defective entities from D,
nnon−defect sums the membership degrees for the non-defective entities from
D.

The second impurity function we use is the misclassification function. The
misclassification at a certain node from the tree is computed as shown in
Formula (4) and generalizes the definition of the misclassification function for
the crisp case.

(4)

misclassification(node) =

{ nnon−defect

ndefect+nnon−defect
if ndefect > nnon−defect

ndefect

ndefect+nnon−defect
otherwise

The notations in Formula (4) are the same as in Formula (3).

4. Experimental results

In this section we provide an experimental evaluation of the FuzzyDT
model (described in Section 2) on five open-source data sets previously used
in the software defect detection literature. For each case study, the comparison
criteria presented in Section 3 is applied.

First, the data sets used in our case studies are described, then the obtained
experimental results are provided. An analysis of the obtained results and their
comparison to related work is provided in Section 4.3.

4.1. Data sets. The data sets used in our experiments are called Ar1, Ar3,
Ar4, Ar5 and Ar6, they are open-source and available at [4]. These data sets
were obtained from a Turkish white-goods manufacturer embedded software
implemented in C [11]. From these software products the functions and meth-
ods were extracted and these entities are represented as 29-dimensional vectors
containing the value of different McCabe and Halstead software metrics. The
data sets used in our case studies are composed of these high-dimensional
representations. For each software entity from the data sets, the class label
denoting whether the entity is defective or not is known.

Table 2 gives the description of the Ar1 -Ar6 datasets used in our case
studies. For each data set, its difficulty, as well as the number of defects and
non-defects are shown. The measure of difficulty for a data set was proposed



12 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

Data set Defective Non-defective Difficulty

Ar1 9 112 0.666
Ar3 8 55 0.625
Ar4 20 87 0.7
Ar5 8 28 0.375
Ar6 15 86 0.666

Table 2. Description of the Ar1 -Ar6 data sets.

in [3] by Boetticher and represents the percentage of software entities from
the data set for which the nearest neighbor has a different class label. For
computing the difficulty of the data sets we considered only the percentage
of software defects (defective entities) for which the nearest neighbor is non-
defective.

One can observe from Table 2 the imbalanced nature of the data sets, with
much smaller number of defective entities than non-defective ones. We also
observe large values for the difficulty measure, which confirm the complexity
of the defect classification task.

In order to make the data sets less imbalanced, we decided to add to
each data set more defective entities, but instead of oversampling or creating
synthetic instances, we use the actual defective instances from the other data
sets. For example, to the 9 defective entities from Ar1 we add all the defective
entities from the other four data sets. In this way, all data sets contain the
same 60 defective entities, while the number of non-defective entities remains
the same as in Table 2. The only exception is the Ar5 data set, which has only
28 non-defective entities and to which we only add the 20 defective entities
from Ar4, making it perfectly balanced.

Figure 3 shows the Ar1-Ar6 data sets reduced to two dimensions using
t-SNE [13], after the aforementioned transformations. It can be seen that the
defective and non-defective instance are clustered very close together, with no
clear way to separate them in two dimensions. This is another proof of the
problem’s intrinsic difficulty.

4.2. Results. For evaluating the performance of the fuzzy decision tree, we
have used a leave-one-out cross validation technique [14]. For each data set a
fuzzy decision tree is built using all but one instances and the tree is tested
on the instance not used for the training. This process is repeated until every
instance from the data set was used once for testing.

During the cross validation process, the confusion matrix is computed. The
confusion matrix contains the number of true positives (TP; defective instances
classified as defective), true negatives (TN; non-defective instances classified as



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 13

Figure 3. Two dimensional representations using t-SNE of
our transformed data sets.

non-defective), false positives (FP; non-defective entities classified as defective)
and false negatives (FN; defective entities classified as non-defective).

In the literature there is a large number of different performance metrics
that can be computed from the confusion matrix. While accuracy (Formula
5) is often used, it is not suitable in the case of imbalanced data sets. A more
relevant evaluation measure for the performance of the software defect classifier
is the Area under the ROC curve (AUC) measure [5]. This measure is usually
used in case of classifiers that, instead of returning directly the class of the
tested instance, return a single value, which is transformed into the class label
using a threshold. For such approaches modifying the value of this threshold
can lead to different values for the Probability of detection (Formula 6) and
the Probability of false alarm (Formula 7) measures. For each threshold, the
point (Pf, Pd) is represented on a plot, and AUC measures the area under
this curve.

(5) Acc =
TP + TN

TP + TN + FP + FN

(6) Pd =
TP

TP + FN



14 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

(7) Pf =
FP

FP + TN

In case of the approaches where the output is directly the class label, like
our approach, there is one single (Pf, Pd) point, but it can be linked to the
(0, 0) and (1, 1) points and the area under this curve can be computed using
Formula 8.

(8) AUC = (1− Pf) ∗ Pd+
Pf ∗ Pd

2
+

(1− Pf) ∗ (1− Pd)

2

The results achieved for the five data sets used for experimental evaluation
for all the parameter combinations presented in Section 3 are presented in
Tables 3, 4, 5, 6, 7. In these tables, besides the value of the Acc and AUC
metrics, we provide the complete confusion matrices as well.

Thresholds #Metrics Impurity TP FP TN FN Acc AUC
function

29 Entropy 38 8 104 22 0.826 0.781
a=70, b=90 Misclassification 38 8 104 22 0.826 0.781

9 Entropy 35 5 107 25 0.826 0.769
Misclassification 34 5 107 26 0.820 0.761

29 Entropy 36 11 101 24 0.797 0.751
a=75, b=85 Misclassification 39 12 100 21 0.808 0.771

9 Entropy 34 5 107 26 0.820 0.761
Misclassification 34 5 107 26 0.820 0.761

29 Entropy 39 4 108 21 0.855 0.807
a=65, b=95 Misclassification 36 6 106 24 0.826 0.773

9 Entropy 31 3 109 29 0.814 0.745
Misclassification 31 3 109 29 0.814 0.745

Table 3. Detailed results obtained for the Ar1 data set.

4.3. Discussion and comparison to Related Work. To get an overall
view of the results, Table 8 presents the minimum, maximum, average and
population standard deviation of the Acc and AUC values across each con-
figuration for each data set. It can be seen that the best average accuracy is
obtained on Ar1, while the best average AUC is obtained on Ar5.

We also record, in Table 9, for each data set the configurations for which
the highest AUC values are achieved. The column T contains the percentile
thresholds, M contains the number of metrics, and I contains the impurity
function of each configuration.



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 15

Thresholds #Metrics Impurity TP FP TN FN Acc AUC
function

29 Entropy 38 26 29 22 0.583 0.580
a=70, b=90 Misclassification 40 20 35 20 0.652 0.652

9 Entropy 36 12 43 24 0.687 0.691
Misclassification 36 15 40 24 0.661 0.664

29 Entropy 42 26 29 18 0.617 0.614
a=75, b=85 Misclassification 42 26 29 18 0.617 0.614

9 Entropy 40 14 41 20 0.704 0.706
Misclassification 37 18 37 23 0.644 0.645

29 Entropy 44 24 31 16 0.652 0.649
a=65, b=95 Misclassification 40 23 32 20 0.626 0.624

9 Entropy 31 15 40 29 0.617 0.622
Misclassification 33 18 37 27 0.609 0.611

Table 4. Detailed results obtained for the Ar3 data set.

Thresholds #Metrics Impurity TP FP TN FN Acc AUC
function

29 Entropy 40 10 77 20 0.796 0.776
a=70, b=90 Misclassification 39 15 72 21 0.755 0.739

9 Entropy 27 7 80 33 0.728 0.685
Misclassification 26 7 80 34 0.721 0.676

29 Entropy 32 15 72 28 0.708 0.681
a=75, b=85 Misclassification 41 13 74 19 0.782 0.767

9 Entropy 29 11 76 31 0.714 0.678
Misclassification 30 13 74 30 0.708 0.675

29 Entropy 36 6 81 24 0.796 0.766
a=65, b=95 Misclassification 34 9 78 26 0.762 0.732

9 Entropy 25 5 82 35 0.728 0.680
Misclassification 26 5 82 34 0.735 0.688

Table 5. Detailed results obtained for the Ar4 data set.

From Table 9 we can see that in case of each data set the highest AUC
value was achieved for a different configuration.

Since looking at the whole configuration does not lead to a conclusion
regarding the best configuration, in the following we compare the results for
each of the three comparison criteria presented in Section 3 separately. Table
10 shows the results of the comparison.

Thresholds for the fuzzy functions. The second column from Table 10
contains for each of the three thresholds used for the fuzzy functions the num-
ber of cases when the highest AUC is achieved for those threshold values, the
other parameters having the same value. For example, for the Ar1 data set,



16 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

Thresholds #Metrics Impurity TP FP TN FN Acc AUC
function

29 Entropy 24 4 24 4 0.857 0.857
a=70, b=90 Misclassification 24 2 26 4 0.893 0.893

9 Entropy 21 6 22 7 0.768 0.768
Misclassification 22 6 22 6 0.786 0.786

29 Entropy 22 5 23 6 0.804 0.804
a=75, b=85 Misclassification 19 5 23 9 0.750 0.750

9 Entropy 21 6 22 7 0.768 0.768
Misclassification 21 6 22 6 0.768 0.768

29 Entropy 21 5 23 7 0.786 0.786
a=65, b=95 Misclassification 22 4 24 6 0.821 0.821

9 Entropy 20 6 22 8 0.750 0.750
Misclassification 22 6 22 6 0.786 0.786

Table 6. Detailed results obtained for the Ar5 data set.

Thresholds #Metrics Impurity TP FP TN FN Acc AUC
function

29 Entropy 40 13 73 20 0.774 0.758
a=70, b=90 Misclassification 42 11 75 18 0.801 0.786

9 Entropy 39 6 80 21 0.815 0.790
Misclassification 39 6 80 21 0.815 0.790

29 Entropy 35 16 70 25 0.719 0.699
a=75, b=85 Misclassification 37 14 72 23 0.747 0.727

9 Entropy 38 6 80 22 0.808 0.782
Misclassification 38 4 82 22 0.822 0.793

29 Entropy 39 5 81 21 0.822 0.796
a=65, b=95 Misclassification 40 5 81 20 0.829 0.804

9 Entropy 35 5 81 25 0.795 0.763
Misclassification 35 5 81 25 0.795 0.763

Table 7. Detailed results obtained for the Ar6 data set.

Data set
Acc AUC

Min Max Avg Stdev Min Max Avg Stdev

Ar1 0.797 0.855 0.821 0.013 0.745 0.807 0.767 0.017
Ar3 0.583 0.704 0.639 0.033 0.580 0.706 0.639 0.034
Ar4 0.708 0.796 0.744 0.032 0.675 0.776 0.712 0.039
Ar5 0.750 0.893 0.795 0.042 0.750 0.893 0.795 0.042
Ar6 0.719 0.829 0.795 0.032 0.699 0.804 0.771 0.030

Table 8. Minimum, maximum, average and population stan-
dard deviations of the obtained values on each data set.



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 17

Data set T M I
Ar1 65-95 29 Entropy
Ar3 75-85 9 Entropy
Ar4 70-90 29 Entropy
Ar5 70-90 29 Misclassification
Ar6 65-95 29 Misclassification

Table 9. The configurations for which the highest AUC values
are achieved.

we compare the AUC values achieved for 9 software metrics with Entropy,
for the three possible threshold values. When two thresholds have the same
maximum AUC value, both are considered.

Number of software metrics used. Table 10 contains on the third column
for both values for the number of software metrics used the number of cases
when the value of the AUC measure is higher for that software metric number,
the other parameters having the same value.

The impurity function used. The last column from Table 10 contains for
both impurity functions used the number of cases when the value of the AUC
measure was higher for that impurity function, the other parameters having
the same value. The last column, Ties, counts the number of cases when the
AUC value is the same for the two impurity functions. From Table 10 we can
see that, even if Misclassification has the highest number of wins, there is no
significant difference between the two impurity functions. While in case of the
other two criteria one of the parameter values always has about twice as much
wins as the other(s), in this case the difference between the number of wins
for the two impurity functions is only one and there are also 7 ties. What is
interesting is how these wins are achieved: on the Ar1, Ar3 and Ar4 data sets
together Entropy has 10 wins (from a total of 11 wins) and Misclassification
only 4 (and there are 4 ties), while on the other two data sets, Ar5 and Ar6,
Misclassification has 8 wins and Entropy only 1.

Threshold value # Software metrics Impurity function
70-90 75-85 65-95 9 29 Entropy Misclassification

Number of wins 12 5 6 10 20 11 12
Ties – – 7

Table 10. Comparison of our results based on the considered
comparison criteria.



18 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

Approach Ar1 Ar3 Ar4 Ar5 Ar6

Our FuzzyDT 0.807 0.706 0.776 0.893 0.804
Genetic Programming [1] 0.530 0.67 0.65 0.67 0.630

Multiple Linear Regression [1] 0.550 0.61 0.62 0.55 0.590
Binary Logistic Regression [15] 0.551 0.87 0.73 0.39 0.722

Logistic Regression [12] 0.734 0.82 0.82 0.91 0.640
Logistic Regression [9] 0.494 n/a n/a n/a 0.538

Artificial Neural Networks [9] 0.711 n/a n/a n/a 0.774
Support Vector Machines [9] 0.717 n/a n/a n/a 0.721

Decision Trees [9] 0.865 n/a n/a n/a 0.948
Cascade Correlation Networks [9] 0.786 n/a n/a n/a 0.758

GMDH Network [9] 0.744 n/a n/a n/a 0.702
Gene Expression Programming [9] 0.547 n/a n/a n/a 0.688

Table 11. Comparison of our average AUC with related work
on the same data sets.

Comparison to related work. Table 11 compares our best AUC values
with supervised learning methods from the literature. It can be seen that our
fuzzy decision tree approach leads to better results than most of the other
approaches. Out of 11 other approaches, our approach is the second best on
four of the data sets (Ar1, Ar4, Ar5 and Ar6 ), and third best on the remaining
Ar3.

Figure 4 presents, for each data set, how many of the other approaches our
method outperforms. One can observe that the FuzzyDT method presented
in this paper outperforms most of the approaches considered for comparison.

We note that some of the authors we compare ourselves to report average
AUCs, while others, such as [1], report the best values. Since our standard
deviations are small, we consider our comparisons to still be relevant and
insightful.

5. Conclusions and Further Work

In this paper we have presented a study on the effect of changing different
parameters for the FuzzyDT method we have previously introduced in [10] for
software defect prediction. We have considered three possible variations for the
FuzzyDT, and reported and analysed the results on the Ar open-source data
sets. We showed that all variations can perform well, depending on the data
set we are working with. This is why we recommend to try multiple settings
and choose the best performing one for the problem at hand.



A STUDY ON SOFTWARE DEFECT PREDICTION USING FUZZY DECISION TREES 19

Figure 4. Counts of related work methods that are better and
worse than FuzzyDT on the considered data sets.

Considering the thresholds for the fuzzy functions comparison criterion we
can observe that the best threshold for defining the fuzzy functions seems to
be 70-90. It provides higher AUC than the other two thresholds 12 times,
which is slightly more than half of the cases. From the number of software
metrics point of view we can see that using all the software metrics from the
data set leads to better results than using only the 9 software metrics selected
in [11]. The best impurity function which should be used can depend on the
exact data set. Therefore, it is impossible to choose the best impurity function
for a data set without performing experiments that consider both Entropy and
Misclassification.

The experimental results we have obtained for the best parameter setting
show that the fuzzy decision tree approach performs better than most of the
existing approaches for the software defect prediction task. Further work will
be done to use function approximation methods (like neural networks, radial
basis function networks, etc.) to learn the fuzzy functions.

Acknowledgements

This work was supported by a grant of the Romanian National Authority
for Scientific Research and Innovation, CNCS–UEFISCDI, project number
PN-II-RU-TE-2014-4-0082.



20 ZS. MARIAN, I.-G. CZIBULA, I.-G. MIRCEA AND V.-S. IONESCU

References

[1] Wasif Afzal, Richard Torkar, and Robert Feldt. Resampling methods in software quality
classification. International Journal of Software Engineering and Knowledge Engineer-
ing, 22(2):203–223, 2-12.

[2] Ishani Arora, Vivek Tetarwal, and Anju Saha. Open issues in software defect prediction.
Procedia Computer Science, 46:906 – 912, 2015.

[3] Gary D. Boetticher. Advances in Machine Learning Applications in Software Engineer-
ing, chapter Improving the Credibility of Machine Learner Models in Software Engi-
neering. IGI Global, 2007.

[4] Tera-promise repository. http://openscience.us/repo/.
[5] Tom Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–874,

2006.
[6] Tarćısio G. S. Filó, Mariza A. S. Bigonha, and Kecia A. M. Ferreira. A catalogue of

thresholds for object-oriented software metrics. In First International Conference on
Advances and Trends in Software Engineering, pages 48–55, 2015.

[7] C. Z. Janikow. Fuzzy decision trees: issues and methods. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 28(1):1–14, 1998.

[8] Mira Kajko-Mattsson, Stefan Forssander, and Ulf Olsson. Corrective maintenance ma-
turity model (cm3): Maintainer’s education and training. In Proceedings of the 23rd
International Conference on Software Engineering, ICSE ’01, pages 610–619, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[9] Ruchika Malhotra. Comparative analysis of statistical and machine learning methods
for predicting faulty modules. Applied Soft Computing, 21:286–297, 2014.

[10] Z. Marian, I.G. Mircea, I.G. Czibula, and G. Czibula. A novel approach for software
defect prediction using fuzzy decision trees. page to be published, Timisoara, Romania,
2016. IEEE Computer Science.

[11] Zsuzsanna Marian, Gabriela Czibula, Istvan-Gergley Czibula, and Sergiu Sotoc. Soft-
ware defect detection using self-organizing maps. Studia Universitatis Babes-Bolyai,
Informatica, LX(2):55 – 69, 2015.

[12] Jaechang Nam and Sunghun Kim. Heterogeneous defect prediction. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 508–519.
ACM, 2015.

[13] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579–2605, 2008.

[14] G. Wahba, Y. Lin, and H. Zhang. GACV for support vector machines, or, another way
to look at margin-like quantities. Advances in Large Margin classifiers, pages 297–309,
2000.

[15] Liguo Yu and Alok Mishra. Experience in predicting fault-prone software modules us-
ing complexity metrics. Quality Technology & Quantitative Management, 9(4):421–433,
2012.

Department of Computer Science,, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Kogălniceanu 1, Cluj-Napoca, 400084, Roma-
nia.

E-mail address: {marianzsu, istvanc, mircea, ivlad}@cs.ubbcluj.ro


