
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXI, Number 1, 2016

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS

IN THE CONTEXT OF MIXDECORATOR PATTERN

VIRGINIA NICULESCU

Abstract. Decorator design pattern is a very well-known pattern that allows

additional functionality to be attached to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality. MixDec-
orator is an enhanced variant of the Decorator, which does not just eliminate

some constraints of the original one, but also allows it to be used as a base for

a general extension mechanism. This pattern introduces significant flexibility by
allowing direct access to all added responsibilities.

MixDecorator implementation imposes some constraints and we analyze and com-
pare the implementation solutions in two of the most important mainstream

object-oriented languages: Java and C#. This also leads to a comparison anal-

ysis between C# extension methods and Java default methods, or virtual exten-
sion methods as they are also called, in a more general context of trait-based

programming.

1. Introduction

The authors of GoF Design Patterns book [2] consider that ’delegation’ is an
extreme form of object composition that can always be used to replace inheritance.
Decorator pattern is one of the patterns that express well exactly these issues.

There are many situations when we want to add a combination of additional
capabilities onto an object. However, the additional capabilities we want could be
highly variable, and could extend the interface of the base object. We also may want
all additional responsibilities to be directly available.

The classical Decorator pattern offers a solution to extend the functionality of an
object in order to modify its behavior. It is usually agreed that decorators and the
original class object share a common set of operations.

Still, when we want to add new responsibilities, and not just to change the be-
havior of the existing ones, the classical Decorator pattern allows us to define such a
decoration, but the new responsibilities are accessible only if they are defined in the
last added decoration.

Received by the editors: January 2016.

2010 Mathematics Subject Classification. 68P05.
1998 CR Categories and Descriptors. D.1.5 Object-oriented Programming D.3.3Language Con-

structs and FeaturesPatterns E.1DataData Structure .
Key words and phrases. object-orientation, patterns, decorator, responsibilities, languages, Java,

C#.

94

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS 95

MixDecorator pattern [3] does not just eliminate some constraints of the classical
pattern (e.g. limitation to one interface), but also allows it to be used as a base for
a general extension mechanism. Using it, we may combine different responsibilities,
have direct access to all, and operate with them in any order.

We present in this paper a comparison analysis between the implementations of
this pattern – as a case study – in two of the most important mainstream object-
oriented languages: Java and C#. MixDecorator imposes some constraints and C#
extension methods and Java default methods, need to be used.

This analysis represents a base for a more general analysis between C# extension
methods and Java virtual extension methods, or default interface methods as they
are also called, in the more general context of trait-based programming.

The paper is structured as follows: the second section briefly describes extension
methods in C# and Java, and the next section succinctly presents the Decorator
pattern and emphasizes the constraints imposed by the classical version of it. Section 4
describes the MixDecorator pattern. In the following two sections the implementations
in Java and C# are discussed; a comparison analysis of these two is done in section
7. Conclusions and future work are presented in section 8.

2. Extension Methods in C# and Java

Java 8 introduces default methods in interfaces; they are also called virtual ex-
tension methods. The primary intent of this feature was to allow interfaces to be
extended over time while preserving backward compatibility. Implicitly, interfaces in
Java provide multiple type-inheritance, in contrast to class-inheritance. Still, Java 8
interfaces introduce a form of multiple implementation inheritance, too. A default
method is a virtual method that specifies a concrete implementation within an in-
terface: if any class implementing the interface will override the method, the more
specific implementation will be executed. But if the default method is not overridden,
then the default implementation in the interface will be executed[6]. It is also consid-
ered that Java 8 interfaces can be exploited to introduce a trait-oriented programming
style [1].

In C# we have a mechanism called “extension methods” that allows adding new
methods to a class after the complete definition of the class [5]. They allow the
extension of an existing type with new functionality, without having to sub-class or
recompile the old type. The mechanism allows only static binding, and so the methods
that could be added to a class cannot be declared virtual. In fact, an extension method
is a static method defined in a non-generic static class, and can be invoked using an
instance method syntax.

3. Decorator pattern and its constraints

The Decorator pattern is a structural pattern used to extend or alter the func-
tionality of objects at run-time by wrapping them in an object of a decorator class.
This pattern is designed such that multiple decorators can be stacked on top of each
other, each one adding new functionality to the overridden method(s) [2].

This means that objects based upon the same underlying class can be decorated
in different ways. In addition, as both the class of the object being modified and the

96 VIRGINIA NICULESCU

Figure 1. The class diagram of the standard Decorator pattern.

class of the decorator share a base class, multiple decorators can be applied to the
same object to incrementally modify behavior.

3.1. Limitations of the classical Decorator pattern. As a possible usage sce-
nario we may consider that we have n responsibilities intended to be defined as deco-
rations for a base class IComponent. These responsibilities are defined as methods
– f1, f2, ..., fn. As the pattern specifies, n decorator classes will be defined
(Decorator1, Decorator2 . . . Decoratorn), each defining the corresponding method,
and they are all derived from a decoration class DecoratorBase, which is in turn de-
rived from IComponent. Theoretically, we may obtain any combination of decorations
but we only have the base class interface available.

So, if there are some responsibilities that are really new responsibilities (that
change the object interface) and they are not used just to alter the behavior of the
operations defined in the base class, they will be accessible only if the last decoration
is the one that defines them. We will refer to this kind of decorations as interface
responsibilities. More concretely, if responsibility f1 is a new interface responsibility
and it is defined in the class Decorator1, then the corresponding message could be
sent only to an object that has the Decorator1 decoration, but also only if this is the
last added decoration.

4. MixDecorator

By using MixDecorator we are able to attach a set of additional responsibilities
to an object dynamically, and to allow direct access to all added responsibilities. It
provides an alternative to subclassing for extending objects functionality and their
types also (by extending the set of messages that could be sent to them) [3].

The solution of the MixDecorator is inspired by the Decorator but there are several
important differences. As for simple decorators we enclose the subject in another

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS 97

Figure 2. The class diagram for the MixDecorator pattern.

object, the decorator object, but the decorator could have an interface that extends
the base interface.

The general solution is presented in Figure 2. This makes a clear separation
between IComponent and DecoratorBase by introducing a general IDecorator interface
that extends IComponent and adds only getBase() method (this method is considered
mandatory). The concrete class DecoratorBase has almost the same definition as
the corresponding class from the classical Decorator (the difference is the additional
method getBase()).

For a particular application, after the new responsibilities are inventoried, then,
particular IDecoratorOperations and ConcreteDecoratorBase are defined.
IDecoratorOperations defines the methods that correspond to all new responsibil-
ities. ConcreteDecoratorBase is derived from DecoratorBase but also implements
IDecoratorOperations. The interface is introduced in order to emphasize the new
added resposibilities.

The following code snippet emphasizes the forces fulfilment; the execution throws
no exception, and it can be noticed that, for example, f3() could be called even if
Decorator3 is not the last added decoration.

1 IComponent c = new ConcreteComponent();

2 IDecoratorOperations d = new Decorator1(new Decorator2(new Decorator3(c)));

98 VIRGINIA NICULESCU

3 d.operation();

4 d.f3(); d.f1(); d.f2();

This could be achieved because in ConcreteDecoratorBase class we define a ”re-
cursive search” of the methods, as it is emphasized by the following Java code:

1 public class ConcreteDecoratorBase extends DecoratorBase implements

IDecoratorOperations {

2 public ConcreteDecoratorBase(IComponent base)

3 { super(base); }

4 public void f1() throws UnsupportedFunctionalityException{

5 IComponent base = this.getBase();

6 if (base instanceof IDecoratorOperations)

7 ((IDecoratorOperations)base).f1();

8 else //if base is not a decorator but a concrete component

9 throw new UnsupportedFunctionalityException("f1");

10 }

11 . . .

12 }

(Direct casting inside a try-catch block could be used instead of instanceof operator).

The base case of solving a call is when the invoked responsibility is defined in the
last added decoration: in this case the object directly calls the method. If the invoked
responsibility is not defined in the last added decoration, then its definition from
ConcreteDecoratorBase is used. The recursion is stopped when the obtained base is
just a simple component, and not a decorator that implements IDecoratorOperations.

The corresponding implementation in other object-oriented language, is similar.

4.1. Extensions with other responsibilities. If other possible responsibilities are
discovered as being appropriate to be used, these could be added in general using the
following steps:

(1) Define a new interface – IDecoratorOperations Extended that extends the in-
terface IDecoratorOperations interface, and defines the desired new responsi-
bilities.

(2) Define a class – ConcreteDecoratorBase Extended that extends
ConcreteDecoratorBase and implements IDecoratorOperations Extended.

(3) (optional) Provide an adaptation that assures that all the responsibilities
either added in the first design iteration or in the next, could be combined in
any order.

Figure 3 illustrates the new added classes.
The specified adaptation as the third step could be done using, for example, Adapter
pattern. The previous decoration classes are adapted to the new extended interface.
For example the class Decorator2 Adapted is derived from Decorator2, and implements
IDecoratorOperations Extended; no method overriding is necessary. But, this exten-
sion also requires a basic implementation of the methods defined in the interface
IDecoratorOperations Extended. (Without the adaption we can wrap the initial set of
decorations with the new ones, but viceversa is not possible.)

The implementation of the class ConcreteDecoratorBase Extended is similar to

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS 99

Figure 3. The classes that need to be defined when new decorations
are intended to be added.

that of ConcreteDecoratorBase. Next, a usage example based on the presented struc-
ture is given:

1 IComponent c = new ConcreteComponent();

2 IDecoratorOperations d31 = new Decorator3(new Decorator1(c));

3 IDecoratorOperations_Extended d431 = new Decorator4(d31);

4 IDecoratorOperations_Extended d2431 = new Decorator2_Adapted(d431);

5 d431.f3(); d431.f4(); d431.f1(); d2431.f2(); d2431.f4();

The code produces the correct execution of all the methods.

Generally, in order to allow new decoration extensions, there is an implementation
requirement defined by the possibility of adding new methods to an interface (to add
a set of methods to IDecoratorOperations interface), and also to provide a basic
implementation for them.

Classically, this is done based on multiple inheritance. So, a language as C++ or
any other that allows multiple inheritance leads to a simple implementation, where
IDecoratorOperations Extended is defined as an abstract class. Other mechanisms –
specific to the target language – could be investigated. An example is provided by
the Java default methods.

100 VIRGINIA NICULESCU

5. Java Implementation

In Java, a simplified implementation of MixDecorator is possible by using inter-
face default methods. The class ConcreteDecoratorBase could be eliminated, and the
methods declared in the IDecoratorOperations interface could be defined as default
methods, with the corresponding implementations taken from ConcreteDecoratorBase.
Figure 4 emphasizes the specific class diagram, and the following code snippet some
implementation details.

1 public interface IDecoratorOperations extends IDecorator{

2 default public void f1() throws UnsupportedFunctionalityException{

3 IComponent base = getBase();

4 if(base instanceof IDecoratorOperations){

5 ((IDecoratorOperations)base).f1();

6 }

7 else throw new UnsupportedFunctionalityException("f1");

8 }

9 . . .

10 }//~ end of the interface IDecoratorOperations

(This solution is based on operator instanceof, but type-casting could be used instead.)

Defining new decorations - and so extending the functionality - could also be
simplified in Java implementation.

The class ConcreteDecoratorBase Extended should not be defined anymore, since
again default methods could be used for interface IDecoratorOperations Extended.
The implementation of the method f4() in IDecoratorOperations Extended could be
defined in Java as:

1 public interface IDecoratorOperations_Extended extends IDecoratorOperations{

2 default void f4() throws UnsupportedFunctionalityException{

3 try{ ((IDecoratorOperations_Extended)getBase()).f4(); }

4 catch(ClassCastException e){

5 throw new UnsupportedFunctionalityException("f4"); }

6 }

7 . . .

8 }//~ end of the interface IDecoratorOperations_Extended

(This solution is based on type-casting, but operator instanceof could be used instead.)
If we need to define a new decoration that overrides a responsibility (method) de-

fined by a previous decoration, this is possible by defining the new decoration class as
a subclass of the initial decoration class that defines the new responsibility. It was the
case of Decorator4 Second that extends Decorator4 and overrides f4(). Since the Java
solution is based on polymorphic calls, if the used decoration is Decorator4 Second,
then the method f4() defined in this class is used.

Also, in Java, we may simplify the implementation for extensions by replacing
the implementation of the interface IDecoratorOperations with a new one that defines
the new methods too (methods f4(), f5()). In this way, the new Java mechanism
is used to the maximum efficiency. The initial decoration classes does not have to

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS 101

Figure 4. The class diagram for Java implementation of the
MixDecorator pattern.

be recompiled, and no adaptation is needed. Still, we need to have access to the
IDecoratorOperations interface in order to replace its implementation.

6. C# Implementation

In C# the simplification could be done by adding the new decoration methods
directly to the interface IDecorator, and by excluding both ConcreteDecoratorBase

and IDecoratorOperations. Figure 5 presents the corresponding class diagram.
New static classes that define the extensions methods for IDecorator should be

introduced (e.g. Decorator Extension12 with the methods f1(), f2()). The main
difference of this solution is that being based on static methods, the base case should
be treated inside the extension method, too. The extension methods define a searching
recursive mechanism for each new method.

Also, we still may use the type IDecorator for the wrapped objects, that, in this
case, will accept messages defined as new methods in the decorators.

1 public static class Decorator_Extensions12

2 { public static void f1(this IDecorator cdb)

3 {try

102 VIRGINIA NICULESCU

Figure 5. The class diagram for C# implementation of the MixDec-
orator pattern.

4 { ((Decorator1)cdb).f1(); }

5 catch (InvalidCastException e)

6 { try { ((IDecorator)cdb.getBase()).f1(); }

7 catch (InvalidCastException ee)

8 { throw new UnsupportedFunctionalityException("f1"); }

9 }

10 . . .

11 }//~ end of class Decorator_Extension12

(This solution is based on type-casting, but operator as could be used instead; also the
exception type UnsupportedFunctionalityException could be replaced by the C# ex-
ception type System.NotSupportedException.)

The extension methods define each a recursion that it’s stopped either if the
current decoration is that one which defines the invoked method or by throwing an
exception if no decoration that defines such a method was found.

If other decorators are added (Decorator3, Decorator4), other extension class
could be defined in a similar way. With this C# solution, no adaptation of the first
defined decoration classes is needed, because in fact there is no difference between
defining new responsibilities in the first design iteration, or in the next.

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS 103

But this simple solution doesn’t works well in all the cases:
If more decorations are added, which define, for example, a responsibility with the
same name as a previously defined responsibility (for example in Figure 5 there is also
Decorator4 Second that defines a method f4()), there are two possibilities to solve this
problem:

-: To change the implementation of the method f4() which was defined in the
class Decorator Extension, such that it will verify in chain all the possibilities
(starting from the more specialised class).

-: To define a new interface IDecorator Second that extend IDecorator interface,
make Decorator4 Second implements this interface, and define a new extension
class Decorator Extension4 Second where the new definition for f4() could be
added. This variants implies also an adaptation for all previously defined dec-
orator – as it was described for the general case and for Java implementations
(Figure 5 emphasizes this solution).

7. Comparison of Java and C# solutions

Both implementations, allow simplification of the general solution.
The C# extensions methods are static methods that are called as if they were

instance methods. This static character does not affect the solution in the simple
case (when there are no overridings of the new added responsibilities) because, these
static methods provide just searching mechanisms for the instance methods with the
same name. But, just in these simple cases, the searching mechanism does not have
to be changed dynamically. Since all the extensions are done on the same interface
IDecorator we do not need to adapt the decoration classes to new interfaces (in case
of a multistage development).

Java implementations is similar to an implementation based on multiple inheri-
tance that can be used in any object oriented language that accept multiple inher-
itance (ex. C++). Java 8 default methods implies a form of multiple inheritance
(behavior multiple inheritance). The Java solution is efficient and the possible simpli-
fications over the general case are important. The advantage is given by the dynamic
bindings of virtual extension methods, that simplifies the searching mechanism; the
base case – when the front decoration is the one that defines the called responsibility
– is solved automatically. The disadvantage is represented by the need of adaptation
of the previous decorations to the new added set.

Apparently the implementation of MixDecorator pattern is simpler in C#, but
if we thoroughly analyze the solutions we can notice that for the general case, when
the new responsibilities could be overriden, the C# mechanisms based on static bind-
ing (imposed by the extension methods) in searching mechanism implies an explicit
specification of the type where the corresponding method (specified by the message
name) is defined. This imply to rewrite the extension method that correspond to a
message name, each time a new decoration that overrides the corresponding method
is defined, or to define a new decorator interface, together with adaptations of the
previously defined decorators.

104 VIRGINIA NICULESCU

The searching algorithm for the concrete implementation of a responsibility is the
same for all the responsibilities and so, we may try to use Template Method pattern [2].
This means to define a method execute that receive the name of the responsibility and
a variable list of arguments, and tries to call the concrete methods. The invocation
should be done based on reflection since the name of the method is given as a string.
The recursive search of the method could be included inside this method execute.

If we want to provide a general extension mechanism similar to that provided
by the Scala traits, then an implementation of MixDecorator based on a general
dispatcher could be used.

8. Conclusions

MixDecorator – is similar to Decorator pattern in the sense that allows function-
ality extension, but it treats also the situations when we want to add new responsibil-
ities, more concretely, when we want to enlarge the set of messages that could be sent
to an object (so we may consider that we dynamically modify the type of an object).
The structure of the pattern as emphasized in Figure 2 could be easily implemented
in any object-oriented language. But in Java 8 and C# its implementation could be
simplified.

Essentially, the implementation requirement is defined by the possibility of adding
new methods to a class. Classically this is done based on inheritance. Other mecha-
nisms – specific to the target language – could also be used.

Two implementations – in Java and C# – were analyzed, and this analysis em-
phasizes the differences and also the advantages and disadvantages of Java extended
interfaces and C# extension methods.

The C# extension methods could be considered as a weaker mechanism over Java
virtual extension methods (default methods) since they do not allow polymorphism.
Still, in the context of implementing MixDecorator pattern they lead to a very simple
solution, for the case when no method overrinding is used. Java implementation is a
more object-oriented solution since some actions are done implicitly based on poly-
morphic call of the invoked methods. C# extension methods provide a very flexible
way to add a method to a class, but as the C# developers say “extension methods
certainly are not pure object-oriented”. Still, extension methods are features of some
object-oriented programming languages, most of them being dynamic languages.

References

[1] V.Bono, E. Mensa, M. Naddeo. Trait-oriented Programming in Java 8. PPPJ’14: International
Conference on Principles and Practices of Programming on the Java Platforms, Sep 2014, Cra-
cow, Poland.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object

Oriented Software, Addison-Wesley, 1994.
[3] V. Niculescu MixDecorator: An Enhanced Version of Decorator Pattern In Proceedings 20th

European Conference on Pattern Languages of Programs (EuroPLoP’2015) Kloster Irsee, Ger-
many 8-12 July 2015, Art No. 36 (doi:10.1145/2855321.2855358).

[4] A. Shalloway, J. R. Trott. Design Patterns Explained: A New Perspective on Object-Oriented

Design. Addison Wesley, 2004

C# EXTENSION METHODS VERSUS JAVA DEFAULT METHODS 105

[5] Extension Methods (C# Programming Guide)
https://msdn.microsoft.com/en-us//library/bb383977.aspx

[6] Java SE 8: Implementing Default Methods in Interfaces

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html/

Department of Computer Science, Babeş-Bolyai University, Kogalniceanu 1, 400084,

Cluj-Napoca, Romania
E-mail address: vniculescu@cs.ubbcluj.ro

