
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXI, Number 1, 2016

COMPARISON OF SESSION LOGIC WITH SESSION TYPES

TIBOR KISS

Abstract. The aim of this paper is to compare two states of the art
techniques of protocol verification, namely: Session Types and Session
Logic, in terms of their applicability in an industrial environment. The
evaluation was done by modelling a set of industrial protocols with both
methods, and comparing them from a qualitative point of view. For com-
parison, we considered the following qualitative properties of the encoded
protocols: the specification expressiveness in the encoding of safety and
functional requirements, the efficiency of the protocol from data transmis-
sion point of view and the re-usability of the specification. The results
of this comparison are summarised in three business protocol examples
which are presented in detail in this paper. Despite the fact that the two
formalism present minor differences theoretically, the experimental results
showed that the difference between the two techniques is significant.

1. Introduction

Modern programming concepts [5, 7, 17, 23] are based on the assump-
tion that one of the primary and fundamental aspects of modern programs is
communication. This assumption is underlined by the fact that a lot of chal-
lenging aspects of programming (like the processes synchronization, access to
persistent storage systems, user interaction, the access of shared resources and
data exchange between processes) can be modelled (and implemented) with
communication.

A simple technique for addressing this issue is process calculus which pro-
vides a family of approaches for formal modelling of structured interaction,
providing a set of tools to describe the high-level communications between a
collection of independent processes. Examples of process calculi include CSP
(Communicating Sequential Processes) [19], CCS (Calculus of Communicating

Received by the editors: January 12, 2016.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEERING]: Soft-

ware/Program Verification – Formal methods; D.3.4 [PROGRAMMING LAN-
GUAGES]: Processors – Code generation.

Key words and phrases. Proof-based development, Program Verification, Session types,
Session Logic, Separation Logic.

54

COMPARISON OF SESSION LOGIC WITH SESSION TYPES 55

Systems) [22] and π - calculus [21]. These calculi provide a set of algebraic
laws that allow formal reasoning about equivalences between processes.

Additionally, due to its importance, a number of researchers have focused
on the problems of constraining the shape of processes by way of type sys-
tems. However, the direct application of the theoretical typing techniques to
the mainstream engineering languages, presents a few obstacles. Existing type
systems are targeted at calculi with first-class primitives for linear communi-
cation channels and communication oriented control flow. The majority of
mainstream engineering languages needs to be extended in this sense to be
suitable for syntactic session type checking. As an answer to this problem,
a set of revolutionary new theories appeared in the last few years to enforce
the correctness of the processes implemented in a mainstream programming
languages via logic.

The object of this paper is to study the precise relationship between these
two formalism. In particular, for type system, we choose session types as a
widely studied formalism in this area, and we compare with session logic, a
novel formalism to verify protocol specification correctness.

The comparisons of the superficially different formalisms enlightening com-
mon underlying concepts, will hopefully improve the language design and the
programming practice for communication based computing.

In this paper, we will survey all these aspects informally, by means of ex-
amples. These examples are based on our experiments with the HIP/SLEEK
extension for session logic1. We begin in Section 2 with session types in their
global versus local formulation, where the basic concepts and formalisms are
presented. Section 3 presents the session logic as an improvement of ses-
sion types which have been proposed to gain expressiveness and to catch
stronger computational properties. Section 4 is devoted to compare with exam-
ples the two formalisms into an imperative and object-oriented programming
paradigms and finally in Section 5, we quickly review the two formalisms in
the conclusion.

2. Session types

Session types are a type formalism used to model structured communication-
based programming for distributed systems [12]. In particular, binary session
types, describe the communication between exactly two participants in such
scenarios [8]. When session types are added to a standard communication
channel, it must statically enforce that client-server communication proceeds
according to a previously defined choreography. The syntax of session types is
illustrated in Fig. 1, where S is the set of closed session type terms, then the

1, which is a recently developed extension by us to verify session logic

56 TIBOR KISS

syntax can be interpreted as follows: type begin is the type of an unopened
session channel; end is a terminated session channel; K!〈T 〉;S and K?〈T 〉;S
indicate respectively the types for sending and receiving a message of type T
and continuation of session type S.

S ::= K!〈T 〉;S send
K?〈T 〉;S receive
K ⊕ {li : Si}i∈I selection
K&{li : Si}i∈I branching
µs.S|s recursion
begin — end begin, end

Figure 1. Binary Session Types.

Select and branch, K ⊕ {li : Si}i∈I
and K&{li : Si}i∈I are sets of labelled
session types indicating, respectively,
external and internal choice. µs.S and
s model recursive session types.

Usually, this typing discipline in-
cludes also a duality function which con-
structs a specific dual type for any given
session type. The definition of inductive
duality can be found in Fig. 2.

The duality is an important part of the theory of session types because
allows us to verify both ends of a communication channel, using the same
specification.

K!〈T 〉.S = K?〈T 〉.S K?〈T 〉.S = K!〈T 〉.S
K ⊕ {li : Si}i∈I .S = K&{li : Si}i∈I .S K&{li : Si}i∈I .S = K ⊕ {li : Si}i∈I .S
µs.S = µs.S s.S = s.S begin.S = begin.S end.S = end.S

Figure 2. Session Types Dual Specification.

The semantics of session types is defined in terms of a subtyping relation.
A detailed definition of this semantic can be found in [1].

3. Session Logic

As far as we know, the session logic from [11] is the first to introduce a
dedicate logical theory which enables effective compile-time assertion-based
validations of protocol specification for a typed imperative program.

Different from previous approaches, session logic proposes a novel use of
disjunction to specify and verify the implementation of communication pro-
tocols. Even though the logic is based on two-party channel sessions, it can
also handle delegation through the use of higher-order channels. Furthermore,
due to the use of disjunctions to model both internal and external choices, we
need to use only conventional conditional statements to support both kinds of
choices. In contrast, session types require the host languages to be extended
with a set of specialized switch constructs to model both internal and external
choices.

COMPARISON OF SESSION LOGIC WITH SESSION TYPES 57

spred ::= p(root, v∗) ≡ Φ Φ ::=
∨
σ∗ σ ::= ∃ v∗·κ∧π

mspec ::= requires Φpr ensures Φpo;
S ::= emp | ?r ·Φ | !r ·Φ | ∼S | S1;S2 | S1 ∨ S2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
κ ::= emp | v 7→c(v∗) | p(v∗) | κ1 ∗ κ2 | C(v, S) π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
φ ::= r : t | ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1@B2 | B1vB2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2| B1uB2 | B1−B2 | ∅ | {v}

Figure 3. Session Logic Specification Language.

Additionally, session logic is based on an extension of separation logic, and
thus it supports heap-manipulating programs and copyless message passing.

As channels can support a variety of messages, the read content can be
treated as dynamically typed where conditionals are dispatched based on the
received types. Alternatively, type-safe casting can be guaranteed via the
verification of communication safety. In addition, Session Logic can go beyond
such cast safety by ensuring that heap memory and properties of values passed
into the channels are suitably captured.

The specification language in Fig. 3 allows shape predicates spred to
specify program properties in a combined domain. Note that such predicates
are constructed with disjunctive constraints Φ.

∼!r ·∆ =?r ·∆ ∼?r ·∆ =!r ·∆
∼(S1 ∨ S2) = ∼S1 ∨ ∼S2 ∼(S1;S2) = ∼S1;∼S2

Figure 4. Rules for Dual Specification.

A session specification for channel v is represented by C(v, S) where S can
denote a sending communication, a receiving communication, a sequence of
communication operations and a choice of communication operations. S can
also capture pure (e.g. type) or heap properties of the exchanged messages.
An abstract program state σ has mainly two parts: the heap part and the
pure part and it is extended with several domains as: bag domain, integer
domain and the new session logic domain. During the symbolic execution,
the abstract program state at each program point will be a disjunction of σ’s,
denoted by ∆. An abstract state ∆ can be normalized to the Φ form [10]. The
rules to obtain dual specifications are given in Fig. 4.

58 TIBOR KISS

4. Examples

We start our comparison by extending Fig. 1 from [14], which is a business
protocol example between Buyer, Shipper and Seller.

Figure 5. Buyer-Seller protocol

From the beginning, the Buyer
sends the product name as a String
object to the Seller. The Seller replies
by sending the product’s price as a
double. If Buyer is satisfied with the
price, she sends a strict positive quan-
tity as an integer to the Seller, other-
wise it sends zero and quits the conver-
sation. If the Buyer buys the product
then the Seller establishes a connection
with the Shipper in order to arrange
the transportation of the product. The
Seller provides the necessary informa-
tion about the product and also dele-
gates the Buyer connection to the Ship-
per. Finally, the Shipper and the Buyer
establishes the necessary detail related
to the transportation. As part of this
process, the Buyer provides to the Seller
her address, and the Seller provides a delivery date to the Buyer. The example
from Fig. 5 is a 3-party session but can be modeled as two 2-party sessions. In
a 2-party session, one channel specification is typically sufficient for describing
the communication between two parties. We will provide an incomplete model
of the Buyer-Seller and Seller-Shipper protocols by using the following session
types to represent the Buyer’s and Shipper’s communication pattern:

buyer ty ≡ begin.!String.?double.! <!int.!Addr.?Date.end, !int.end >
deleg ty ≡ !Addr; .?Date.end
shipper ty ≡ begin.?ProductInfo.?S(deleg ty).!S(end).end

The first types specification is not accurate enough conform to the problem
requirement, because the quantity and the choice data must be interconnected
(the quantity must be greater than zero if the condition in the sendIf state-
ment is true), so erroneous implementations such as from Fig.7 can not be
captured. More detailed specification of the protocol is not possible in the
existing session types formalism.

The dual specifications of the above session types correspond to the Seller’s
communication pattern, which are:

seller buy ty ≡ begin.?String.!double.? <?int.?Addr.!Date.end, ?int.end >
seller ship ty ≡ begin.!ProductInfo.!S(deleg ty).?S(end).end

The program from Fig.6 that implements the above protocol uses special-
ized branching constructs, like sendIf and receiveIf to model the internal
and external choices. Additionally, the program transmits unnecessarily a

COMPARISON OF SESSION LOGIC WITH SESSION TYPES 59

boolean value representing the decision of the sendIf. This value which en-
larges the transmitted data size is useless because the condition can be encoded
into quantity, according to the specification.

void buyer(buyer ty c, String p)

{ send(c, p);
double price = receive(c);
double budget = ...;

sendIf (price <= budget)then{
int q = ...;
send(c, q);

Addr a = ...;

send(c, a);
ShipDate sd = receive(c);

send(c, 3);

}

void seller(seller buy ty cb,

seller ship ty cs)

{ String p = receive(cb);
send(cb, getPrice(p));

receiveIf(cb) {
int q = receive(cb);
ProductInfo pi = ...;

send(cs, pi);

sendS(cs, cb);
cb = receiveS(cs);

}
}

void shipper(shipper ty c)

{ ProductInfo pi;

pi = receive(c);
deleg ty cs;

cs = receiveS(c);

Addr a = receive(cs);
ShipDate sd = ...;

send(cs, sd);

sendS(c, ss);
}

Figure 6. Session Types Business Protocol Implementation

void buyer(buyer ty c, String p)

{ send(c, p);
double price = receive(c);
int quantity = ...;

sendIf (quantity == 0)then{
send(c, quantity);
Addr a = ...;

send(c, a);

ShipDate sd = receive(c);
send(c, 3);

}

void buyer(buyer ty c, String p)

{ send(c, p);
double price = receive(c);
double budget = ...;

sendIf (price <= budget)then{
int q = 0;
send(c, q);

Addr a = ...;

send(c, a);
ShipDate sd = receive(c);

send(c, 3);

}

Figure 7. Business Protocol Erroneous Implementation

For the session logic-based approach, the above communication patterns
for Buyer, Shipper and Seller could be represented, as follows:

buyer ch ≡ !String; ?double; ((!r:int · r>0; !Addr; ?Date)∨!0)
seller buy ch ≡ ∼buyer ch

≡ ?String; !double; ((?r:int · r>0; ?Addr; !Date; ?int)∨?0)
deleg ch ≡ !Addr; ?Date; end
shipper ch ≡ ?ProductInfo; ?r:Chan · C(r, deleg ch); !r:Chan · C(r, emp)
seller ship ch ≡ !ProductInfo; !r:Chan · C(r, deleg ch); ?r:Chan · C(r, emp)

Superficially, these logical specifications look similar to the previous session
types; however, there are several notable differences. Firstly, there is no need

60 TIBOR KISS

for any begin/end declarations since the protocol is expected to be locally
captured after creation. Secondly, the logic makes use of disjunction2 instead
of some specialized notations for internal and external choices. This allows us
to directly use conditionals to support choices which are naturally modelled
by disjunctive formulae during program reasoning.

Thirdly, instead of transmitting the decision of the internal choice (as true
or false in this case), we may just use values (such as greater than 0 or 0).

There are two benefits of this encoding. First, in contrast with session
types this theory allows the verification of optimal protocols. 3 Second, the
theory allows the expressing of functional properties into the protocol. Such a
well-defined functional property from the previous specification is the encoding
of the internal and external choices into quantity. The perfect encoding of this
functional requirement allows a more precise verification of the implementation
excluding errors like in Fig.7.

Most importantly, instead of types or values, the logic allows more general
properties to be passed into the channel to facilitate the verification of func-
tional correctness properties, which can go beyond communication safety. This
includes the use of higher-order channels to model session types delegation,
where channels and their expected specifications are passed as messages.

As a simple illustration, we may strengthen channel specification by using
positive integers instead of merely integer prices. This change is captured by
the following modified channel specification for Buyer.

buyer chan ≡ !String; !r:double · r>0; ((!r:int · r>0; !Addr; ?Date)∨!0)
seller buy chan ≡ ∼buyer chan

≡ ?String; !r:double · r>0; ((?r:int · r>0; ?Addr; !Date)∨?0)

The specification seller buy chan is the dual specification of buyer chan.
Such dual specification is obtained by inverting the polarity of messages, where
input is converted to output and vice-versa as specified in Fig.4.

Session logic also supports separation formulae for pointer-based message
passing for shared memory implementation. Another issue worth noting is
that thread specification and channel specification needs to be different. As
an example, let us specify a stronger specification for seller’s communication
with the protocol, by insisting that price of products sold by this seller is at
least 20 units, as follows:

2To support unambiguous channel communication, the disjunction by the receiver must
have some disjoint conditions, so that the session logic may guarantee its synchronization
with the sender.

3The buyer ty protocol specification is not optimal because requires the transmission of
the internal choice decision, in contrast with the specificationbuyer ch which is optimal.

COMPARISON OF SESSION LOGIC WITH SESSION TYPES 61

seller sp ≡ ?String; !r:double · r>20; ((?r:int · r>0; ?Addr; !Date; !int)∨?0)

With this change, we can write a program that implements the above
protocol, as shown in Fig. 8. Note that we can directly use conditionals
instead of the specialized switch constructs as in Fig. 6.

The benefit of this change is twofold. Firstly, the verification mechanism
can be applied to mainstream engineering languages, without the need to
extend it with communication primitives like in the case of session types.
Secondly, we can have an optimal implementation from the transmitted data
perspective because the internal and external choices can be based on the
transmitted data as in the seller function from Fig. 8.

open(cb) with buyer chan;

open(cs) with shipper chan;

(buyer(cb, prod) || seller(cb, cs) || shipper(cs));
close(cb);

close(cs);

void buyer(Chan c, String p)
requires C(c, buyer ch)

ensures C(c, emp)
{ send(c, p);

double price = receive(c);

double budget = ...;

if price <= budget then{
int q = ...;

send(c, q);
Addr a = ...;

send(c, a);

ShipDate sd = receive(c);
send(c, 3);

} else send(c, 0); }

void seller(Chan cb, Chan cs)
requires C(cb, seller buy ch)

∗C(cs, seller ship ch)

ensures C(c, emp) ∗ C(c, emp)
{ String p = receive(cb);

send(cb, getPrice(p));

int q = receive(cb);
if q > 0 then {

int q = receive(cb);
ProductInfo pi = ...;

send(cs, pi);

send(cs, cb);
cb = receive(cs);

} }

void shipper(Chan c)
requires C(c, shipper ch)

ensures C(c, emp)
{ ProductInfo pi;

pi = receive(c);

deleg ty cs;

cs = receive(c);
Addr a = receive(cs);

ShipDate sd = ...;
send(cs, sd);

send(c, cs);

}

Figure 8. Session Logic Business Protocol Implementation

Another important aspect is that the seller process specification seller sp

imposes a stronger property over the sent price, using r>20 instead of r>0
that is similar to the session types subtyping, but is more flexible.

In the end of this example, we want to emphasize the delegation as one
of the most important distinctions between session types and other commu-
nication calculus-based methods. Without the enforcement of delegation, we
cannot compare a verification method with session types. From delegation
perspective the session logic specification is precise as session types and high-
lights the state of the transmitted channel, which must be insured by the

62 TIBOR KISS

sender and can be assumed by the receiver, but unlike session types solution,
session logic uses the same send/receive channel methods for sending values,
data structures, and channels as can be seen in Fig.8.

In order to have a more precise comparison, we must take into consider-
ation the example from [15]. The example is based on a business protocol
between a buyer and a seller. The buyer has a choice between request a quote,
accept a quote and quit. In the first case, she must send the name of a product,
and then receive the price and a reference number for the quote. In the second
case when the buyer wants to buy a product, she must send a quote reference
followed by payment information. The problem is underspecified because it is
not possible to buy an item before obtaining a quote. The session types and
session logic specifications of this problem are the following:

buyer r ty ≡ &{reqQuote :!String.?double.?OfferId.buyer r ty,
accQuote :!OfferId.!Payment.buyer r ty, quit.end}

buyer ty ≡ begin.buyer r ty

c buyer ty ≡ begin.reqOffer.accOffer.end

req ch ≡ !String; ?double; ?Quote
buyer r ch ≡ {!1; req ch; buyer r ch∨!2; !Quote; !Pay; buyer r ch∨!3}
buyer ch ≡ req ch; buyer r ch

The session types theory propose the collection of the buyer ty specification
into the c buyer ty class session type instead of annotating the method def-
initions with pre- and post-conditions as in session logic. This approach has
several advantages and disadvantages. The benefit is that we have an abstract
behaviour model for each class, which allows the modular verification of the
usage of classes and also the effective encapsulation of channels in objects. On
the other hand, this typing discipline is at a disadvantage compared to session
logic when it comes to functional correctness and flexibility. This logic allows
also the modular verification of communication properties (as can be seen in
Fig.9), but in contrast with session types, the methods are reusable (see Fig.1
from [15]) and the functional correctness can be enforced.

void req(Chan c, String p)
requires C(c, req ch; rest)

ensures C(c, rest)

void pay(Chan c, Payment p)

requires C(c, !2; !Quote; !Pay; rest)
ensures C(c, rest)

// C(c, buyer ch)
req(c, prod name);

// C(c, buyer r ch)

pay(c, pay inf);
// C(c, buyer r ch)

send(c, 3);

// C(c, emp)

// C(c, buyer ch)
pay(c, pay inf);

// VerificationError!!

send(c, 3);
// Invalid code!!

Figure 9. Session Logic Business Protocol Implementation

In the end, we highlight the expressiveness of session logic, by using a new
business protocol example between Buyer and Seller. The Buyer recursively
sends a read-only list of product identifiers, while the Seller responds with a

COMPARISON OF SESSION LOGIC WITH SESSION TYPES 63

price for each product identifier. The sequence diagram of the problem can be
found in Fig.10.

Given the following data node declaration and linked list definition:
data node{int id; node next; } pred ll(root) ≡ root = null ∨

∃ q · root7→node〈 , q〉 ∗ ll(q)

The communication specification between buyer and seller can be written
using an inductive definition, as below:

buy lsp ≡ !p :node · p = null ∨ !p :node · p 7→node〈 , 〉; ?Double; buy lsp

The protocol specification asserts that each outward transmission of a not
null node must be followed by an input of type Double. The communication
terminates once the Buyer has received a null reference from the seller, which
marks the end of the list.

Figure 10. List example

The fact that the communication uses node
transmission serves a double scope: for sharing
product information and for ensuring that the
Buyer’s loop and the Seller’s loop are synchro-
nized. As opposed to other session types enforce-
ment techniques, the synchronization of the loops
are done via the transmitted data. Generally, the
session type techniques require a flag transmis-
sion at each iteration in order to ensure that the
loops have same iterations. In contrast, session
logic allows the verification of a more optimal im-
plementation by using separation logic to specify
and verify this example.

void buyer(Chan c)
requires C(c, buy lsp)
ensures C(c, emp)
{ node it = getItems();
recvPrices(c, it);}

void seller(Chan c)
requires C(c,∼buy lsp)
ensures C(c, emp)
{ node it = receive(c);
if(it! = null){
send(c, price(it.id));
freeNode(it);
seller(c);}}

void recvPrices(Chan c, node it)
requires C(c, buy lsp) ∗ ll(it)
ensures C(c, emp)

{ if(it! = null){
node nxt = it.next;
int id = it.id;
send(c, it);
Double price = receive(c);
procPrice(id, price);
recvPrices(c, nxt);
} else {
send(c, it);}
}

Figure 11. Items Purchasing implementation

64 TIBOR KISS

5. Conclusion

The article compares two states of the art theories which try to enforce
the protocol specification via verification. Due to space limitations, we focus
on the key differences between the two formalisms.

First, session types proposals require the host language to be extended
with a set of specialized linear communication primitives like send, receive
and internal- and external−choice [15, 18, 13], therefore their type theory
cannot be applied to industrial mainstream languages. This issue is well known
in the literature, therefore, are several works which enforce the session types
specification via dynamic verification [9, 2, 20, 24, 16]. To handle the problem,
session logic uses disjunctions to model both internal and external choices, in
consequence, the hosting language can use conventional conditional statements
to support both kinds of choices.

Second, session types are not flexible enough to encode size optimized
protocols, 4 due to its limitation to have external choices based on a transmit-
ted value. In contrast, session logic which uses logical formulas to model the
external choices allows such flexible encoding.

Third, the weak constraint constituted by typing channels with session
types is not always sufficient to detect subtle communication errors [3]. These
are caused by the fact that, viewed as constraints on behaviour, session types
have a much less restrictive power than session logic.

In addition, two downsides of session logic must be mentioned. First, there
are situations where the session logic entailment is undecidable. Second, theo-
retically the logic is not so founded as session types (some aspect of verification
like exception handling [6], time constraints [4] and multiparty session types
[17] are not developed).

Despite their previous drawbacks, this, apparently small change, consti-
tuted by verifying channels with logic, is sufficient to detect subtle errors in
industrial mainstream languages. In fact, it reveals to be the right setting
where concepts of deductive verification (like Hoare logic or separation logic)
for imperative program verification can be combined, for functional verifica-
tion of distributed systems.

6. Acknowledgements

This work is supported by Siemens grant no. 7472/3202246933.

4An example that shows this problem is presented in section 4.

COMPARISON OF SESSION LOGIC WITH SESSION TYPES 65

References

[1] Giovanni Bernardi, Ornela Dardha, Simon J Gay, and Dimitrios Kouzapas. On duality
relations for session types. In Trustworthy Global Computing, pages 51–66. Springer,
2014.

[2] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko
Yoshida. Monitoring networks through multiparty session types. In FMOODS/FORTE
2013, volume 7892 of LNCS, pages 50–65. Springer, 2013.

[3] Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A multiparty multi-session
logic. In Trustworthy Global Computing, pages 97–111. Springer, 2013.

[4] Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
CONCUR 2014. Springer, 2014.

[5] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional lock-
freedom. In Coordination Models and Languages, pages 49–64. Springer, 2014.

[6] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interactional exceptions
in session types. In CONCUR 2008-Concurrency Theory, pages 402–417. Springer, 2008.

[7] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty asyn-
chronous global programming. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 263–274. ACM,
2013.

[8] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca
Padovani. Foundations of session types. ACM, 2009.

[9] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko
Yoshida. Asynchronous distributed monitoring for multiparty session enforcement. In
Trustworthy Global Computing, pages 25–45. Springer, 2012.

[10] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated
Verification of Shape, Size and Bag Properties Via User-Defined Predicates in Separation
Logic. Sci. of Comp. Prog., 77:1006–1036, 2012.

[11] Florin Craciun, Tibor Kiss, and Andreea Costea. Towards a session logic for communin-
cation protocols. In International Conference on Engineering of Complex Computer
Systems, Australia, 2015.

[12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Pro-
ceedings of the 14th Symposium on Principles and Practice of Declarative Programming,
PPDP ’12, pages 139–150, New York, NY, USA, 2012. ACM.

[13] Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko
Yoshida. Bounded session types for object oriented languages. In Formal Methods for
Components and Objects. Springer Berlin Heidelberg, 2007.

[14] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. Session types for object-oriented languages. Springer Berlin Heidelberg,
2006.

[15] Simon J. Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Modular session types for distributed object-oriented programming. SIGPLAN
Not., 45(1):299–312, January 2010.

[16] Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain Demangeon,
Pierre-Malo Denilou, and Nobuko Yoshida. Structuring communication with session
types. In Concurrent Objects and Beyond. Springer Berlin Heidelberg, 2014.

[17] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. ACM SIGPLAN Notices, 2008.

66 TIBOR KISS

[18] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda.
Type-safe eventful sessions in java. In ECOOP 2010. Springer Berlin Heidelberg, 2010.

[19] Harold D Lasswell. The structure and function of communication in society. The com-
munication of ideas, 37:215–228, 1948.

[20] Eduardo R. B. Marques, Francisco Martins, Vasco Thudichum Vasconcelos, Nicholas
Ng, and Nuno Dias Martins. Towards deductive verification of mpi programs against
session types. Open Publishing Association, 2013.

[21] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge univer-
sity press, 1999.

[22] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i.
Information and computation, 100(1):1–40, 1992.

[23] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented program-
ming with jolie. In Web Services Foundations, pages 81–107. Springer, 2014.

[24] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local verification of global
protocols. Springer Berlin Heidelberg, 2013.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Cluj-Napoca

E-mail address: kisst@cs.ubbcluj.ro

