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PARALLEL TRACKING AND MAPPING WITH SURFACE

DETECTION FOR AUGMENTED REALITY

ALEXANDRU MORARU, ADRIAN STERCA, AND RAREŞ BOIAN

Abstract. This work presents PTAM-SD, a Parallel Tracking and Map-
ping algorithm with planar surface detection suitable for augmented real-
ity applications in small workspaces. Our PTAM-SD algorithm tracks the
movements of the video input camera in 3D space and updates the scale
and position of the augmented reality game scene. PTAM-SD also assists
the AR game by determining a planar surface in the real environment
which is used for displaying the game scene.

1. Introduction and Related Work

Simultaneous Localization and Mapping (SLAM) is the process through
which a mobile robot builds a map of the surrounding environment and at
the same time it tracks its movement through this environment map [1]. The
robot uses odometry data to estimate its position and sensor data to extract
landmarks from the environment, landmarks which will form the map of the
environment. Examples of sensors which can be used for landmark extraction
and mapping are laser scanners, sonars and, more recently, video cameras.
Formulated mathematically, the SLAM problem implies computing the prob-
ability distribution P (Xk,m|Z0:k, X0:k−1) for each time k where Xk is the
location of the robot at time k, m is the map (i.e. the set of locations of all
landmarks observed so far), Z0:k is the set of all landmark observations in time
interval [0, k] and X0:k−1 is the set estimated locations of the robot in time
interval [0, k − 1]. The algorithm for solving the SLAM problem usually has
an iterative form and at each step the new position of the robot is estimated
based on a motion model, then observations are gathered from the sensors and
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the new position is updated. Many SLAM solving algorithms use Extended
Kalman Filters [2] or particle filters [4].

Several SLAM algorithms were proposed for augmented reality applica-
tions [3]. These algorithms use a hand-held camera or the video camera of a
smart phone for getting sensor data from the environment. PTAM [3] tracks
the movements of the video camera and builds a map of the environment in
order to render an AR game. The localization and mapping processes are done
approximately separately in two threads. It does not require a fiducial image
for placing the game scene, but relies on the user to point the camera initially
at a flat (planar) surface.

In this paper we propose a parallelized SLAM algorithm with surface de-
tection used for building augmented reality applications for small workspaces.
The augmented reality is projected on a planar surface of the environment
and, differently from PTAM [3], the planar surface is automatically detected
in the video input stream by the system.

An approach to finding planar surface for real time applications is by using
segmentation. Segmentation is an important step in many perception tasks,
such as object detection and recognition. In [6] an efficient method for seg-
menting organized point cloud data is presented. This approach uses the RGB
data that are available in an image and on top of that uses the 3D coordinates
of each pixel and of surface normals. There are two main algorithms that are
proposed in this paper: Connected Component algorithm and a Planar Seg-
mentation algorithm [6]. The Connected Component Algorithm operates on
organized point cloud data. It works by partitioning an organized point cloud
into a set of segments. The Planar Segmentation Algorithm segments the
scene to detect large connected components corresponding to planar surfaces,
including walls, the ground, tables, etc. Our approach of detecting planar
surfaces involves building an approximate disparity/depth map by simulating
3D vision from consecutive frames with a slight OX displacement recorded by
the same video camera.

2. System Architecture

The system uses a smart-phone (which will be referred to as the client) for
getting sensor data from the environment (i.e. video input and accelerometer
data) and for rendering the AR game, and a computer/notebook (which will
be referred to as the server) for processing the sensor data received from the
client (i.e. tracking the smart-phone position, mapping and planar surface
detection). The client component has two running threads. On one of them,
frames are captured from the video camera and send to the server and the other
thread waits for incoming positioning data from the server; this positioning
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data tells the client application the new, updated location of the video camera
(relative to the previous location). The server component has similarly, a
receiving thread and a processing thread. The receiving thread receives frames
from the client component and pushes them in a queue, while the processing
thread removes frames from this queue, computes/updates the current location
of the video camera and the map and then it sends this updated location to
the client. Together with this information, the server also sends to the client
the position and contour of the planar surface it detected in the input video
(if any).

The client component was implemented as a hybrid project in C# and
C++ whilst the server application is entirely written in C++. All the com-
munication between the server and the client is done using reliable, TCP
connections via an ad-hoc wireless connection. The system was tested using a
laptop with an Intel Core i5-2430M processor, with maximum processing speed
of 2.5GHz and 6GB RAM, and a Microsoft Lumia 640 with an Quad-core 1.2
GHz Cortex-A7 processor, 1GB RAM and the GPU is Adreno 305.

3. Tracking and Mapping

The tracking of camera movements is based on a feature detection and
matching algorithm and our system uses the support of the OpenCV 2.4.10
library for this. The tracking algorithm requires two consecutive frames re-
ceived from a video input device, from which it detects and extracts ORB
keypoints (i.e. a combination of FAST keypoint detector and BRIEF descrip-
tor with some modifications) [12]. We have tested several feature extraction
algorithms: SIFT [7], SURF [8], STAR (a version of [9]), MSER [10], BRISK
[11] and ORB, and the one that gave the most accurate homography was ORB.
Details about these tests are presented in [5]. In Fig. 1 we can see that ORB
gives an accurate homography and a good matching between keypoints from
two consecutive video frames with a small displacement on the 0x axis.

After the ORB feature extraction, the algorithm uses a BruteForce Matcher
to find similar keypoints in both frames and from the resulting array of match-
ing keypoints, the algorithm computes the minimum and maximum distance
between two matching keypoints. Having these two distance values and a
(minimum) threshold of 3 times the minimum distance for two keypoints, a
series of “good“ matches is extracted. After the filtering of keypoints, the
algorithm computes the displacement (on x-axis and on y-axis) between the
two images. This computation is done firstly by calculating the difference be-
tween every two keypoints. Secondly, we compute the average displacement
between all the filtered keypoints. The homography is computed from the sets
of keypoints (one set for each frame). The homography can be computed only
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Figure 1. The matched keypoints and homography computed
using ORB features for two successive frames with a small X
displacement

if the size of both sets of keypoints is bigger than 4. The homography re-
turns as result a matrix and from that matrix we perform a transformation of
perspective between the two images. This perspective transformation gives a
quadrilateral, which is the surface of the first frame transposed into the second
one. The tracking algorithm is depicted in the following listing:

f unc t i on FindDisplacement ( image1 , image2 ) {
keypointsImage1 = detec t ( image1 ) ;
keypointsImage2 = detec t ( image2 ) ;

de sc r ip to r s Image1 = e x t r a c t ( image1 , keypointsImage1 ) ;
de sc r ip to r s Image2 = e x t r a c t ( image2 , keypointsImage2 ) ;

matches = BFMatcher . match ( descr iptors Image1 , de sc r ip to r s Image1 ) ;

FindMinAndMaxDistances ( matches , minDist , maxDist ) ;
goodMatches = DetermineGoodMatches ( matches , minDist ) ;

<image1Points , image2Points> = GetImagesPoints ( goodMatches ) ;

<displacementX , displacementY> =

ComputeDisplacement ( image1Points , image2Points ) ;
h = findHomography ( image1Points , image2Points ) ;

perspect iveTrans form ( f rame1 corners , f rame2 corners , h ) ;

q u a d r i l a t e r a l S u r f a c e = ComputeSurface ( f rame2 corne r s ) ;
}

where image1 and image2 are the two images that are compared to find the
displacement, displacementX is the computed displacement on the x-axis,
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displacementY is the computed displacement on the y-axis, h is the com-
puted homography, stored as a matrix. The variable quadrilateralSurface
represents the value of the area of the first image transposed into the second
one.

In order to compute the displacement on the z-axis (i.e. zoom in/out)
we compute the surface of the quadrilateral resulted from transposing the
first image into the second one (obtained by the algorithm depicted above).
The surface of the quadrilateral is computed by drawing one diagonal of the
quadrilateral and computing the surface area of the two resulting triangles
using Heron’s formula for calculating surface areas:

(1) Surface =
√

s ∗ (s− a) ∗ (s− b) ∗ (s− c),

where s is the semi-perimeter of the triangle, and a, b, c are the length of its
edges. The transposed image surface will be used to compute the displacement
on the z-axis and to scale the elements from the virtual reality on the smart-
phone client.

4. Mapping

Simply put, mapping is the process of initializing and adding feature points
in a 3D environment map while performing the tracking operation. The map
is initialized with the keyframes from the first frame received. After that,
whenever a new frame is received the mapping thread performs a search to
find if the frame contains new key features that were not previously added into
the map. In our system we use mapping for storing the representation and
the spatial coordinates of the detected planar surface. In the map, the sys-
tem saves the approximated coordinates and dimensions of the planar surface
and its surroundings, such that when the video input device reaches in the
neighborhood of the surface, the server will tell the client to draw the game
characters on the planar surface.

The idea is to store some key features from the frame that contains the
planar surface, and at every frame processing where we determine the dis-
placement we shall also compute the relative displacement from the features
that describe the planar surface. By making these repeated computation we
can determine (with a small error) when we returned to the initial position.

5. Surface Detection

The surface detection algorithm tries to detect a planar surface area in the
video input stream. It does this by computing a disparity map (i.e. 3D depth
map) from each pair of consecutive video frames and selects from this disparity
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map the largest area having the same (maximal) distance from the viewer. The
algorithm requires two frames received from any input device with one video
lens. The restriction imposed by this algorithm is that the two frames must
be taken consecutively and the second frame must be displaced only on the
x-axis (horizontally). In the disparity map the white pixels represents the
closest object to the camera and the black pixels the most distant object. The
algorithm’s goal is to find a surface of continuous black pixels of a maximum
area.

Due to the fact that in our PTAM-SD project we continuously send frames
to the server (from the client), we can use two frames received. We do not
take strictly two successive frames, we take a frame, skip a few frames (i.e.
5 frames) to reduce the computational costs and also to obtain an accurate
disparity map, then take the next one and compute the disparity map. So
the two selected, consecutive frames are 5-frames apart. Below, we present an
example of the disparity map obtained from two images taken with our phone
camera, that is also used to run the client in the main system. In Figure 2
we have a random frame saved from the video camera output stream. We
then saved another frame from the same video stream which is 5-frames apart
from the frame depicted in Figure 2. This second (i.e. which was obtained by
slightly moving the video camera on the right on the 0X axis) is depicted in
Figure 3. The depth map computed from these two frames is shown in Figure
4.

The resulting disparity map is not extremely accurate, but it is something
we can work with. It contains the main objects in the scene which are rep-
resented as groups of lighter pixels and this is very helpful in the process of
finding a planar surface. The drawbacks of this algorithm of finding a planar
surface in a scene with multiple objects are:

• The human error; because a human cannot move the video input device
just on the x-axis as wanted, unwillingly it will move it either on the
y- or z-axis or even both, even if it is just a little movement.
• This algorithm alone cannot make the difference between a planar

surface (like a table) and a wall.

The planar surface detection algorithm performs a search on the computed
8-bit disparity map. This algorithm searches in the received disparity map for
the largest continuing area of black pixels. Because the computational time
is important to us, we did not consider parsing all the pixels in the image,
because this will mean a very large (greater than 100 milliseconds) processing
time. Instead, we take a width step of 5 pixels and a height step of 10 pixels.
So, we parse the matrix on rows in search for the longest sequence of black
pixels. Having the array of longest sequence of black pixels from each row, we
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Figure 2. The initial frame

Figure 3. The displaced frame (obtained by moving the cam-
era on the right)
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Figure 4. The disparity map of the two images in Fig. 2 and
Fig. 3

parse it in the search of the longest run of consecutive sequences that overlap
and the length of the overlap part is greater than a minimum threshold. The
result of all these computations are the coordinates (in pixels) of the planar
surface found by the algorithm.

The full algorithm is available below, in pseudo-code:

f unc t i on FindSurface ( image )
{

he ightStep = 10 ;
widthStep = 5 ;

matrixLength = image . GetNumberRows ( ) / he ightStep ;

sur faceMatr ix [ matrixLength ] [ 2 ] ;
for i = he ightStep to image . GetNumberRows ( ) , i = i+he ightStep
{

for j = widthStep to image . GetNumberCols ( ) , j = j+widthStep

{
c o l o r = image . GetColorAt ( i , j ) ;
i f ( c o l o r == ’ black ’ )

{
i n c r e a s e the cur r en t s equence ;
continue s ea r ch ing ;

}
else
{
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end cur r en t s equence ;

i f ( cu r r en t s equence > max sequence )
{

max sequence = cur r ent s equence ;

}
}

}
matr ixPos i t i on = i / he ightStep − 1 ;
sur faceMatr ix [ matr ixPos i t i on ] [ 0 ] = maxSequence . GetStartIndex ( ) ;
sur faceMatr ix [ matr ixPos i t i on ] [ 1 ] = maxSequence . GetLength ( ) ;

}
return OperateOnSurfaceMatrix ( sur faceMatr ix , matrixLength ,

widthStep , he ightStep ) ;

}

where the parameter image is the disparity map with 8-bit pixels, widthStep
and heightStep are the imposed steps for parsing the disparity map, and
surfaceMatrix is a two-dimensional array that keeps the coordinates of pix-
els (starting pixel and the number of pixels from the longest sequence of black
pixels) from each visited line. The OperateOnSurfaceMatrix function com-
putes the largest rectangular surface enclosed in a black-colored pixels area of
the disparity map.

f unc t i on OperateOnSurfaceMatrix ( sur faceMatr ix , matrixLength ,

widthStep , he ightStep )
{

for i = 0 to matrixLength − 1

{
for j = i + 1 to matrixLength
{

l i n e P i x e l s = ComputeOverlappingSurface ( sur faceMatr ix ,
i , j , widthstep ) ;

i f ( l i n e P i x e l s i s v a l i d )

{
int cu r r en tSur f a c e = ( l i n e P i x e l s . GetEndingPixel ( ) −

l i n e P i x e l s . GetSta r t ingP ixe l ( ) ) ∗ ( ( j − i + 1) ∗
he ightStep ) ;

i f ( cu r r en tSur f a c e > maxSurface )

{
save cur rent s u r f a c e s i z e and i t s c oo rd ina t e s ;

}
}

}
}
return s u r f a c e c o o r d i n a t e s ;

}

where surfaceMatrix is the matrix containing the data regarding longest
lines of black pixels, and lineP ixels represents the coordinates of overlapping
segments of the lines, returned by function ComputeOverlappingSurface.
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Variables currentSurface and maxSurface represent the area of the cur-
rent rectangular surface candidate and the final chosen rectangular surface,
respectively.

f unc t i on ComputeOverlappingSurface ( sur faceMatr ix , po s i t i on1 ,

pos i t i on2 , widthStep )
{

s t a r t i n g P i x e l = sur faceMatr ix [ p o s i t i o n 1 ] [ 0 ] ;

end ingPixe l=s t a r t i n g P i x e l+sur faceMatr ix [ p o s i t i o n 1 ] [ 1 ] ∗ widthStep ;

l ineOver lapp ingThresho ld = 50 ∗ widthStep ;

for i = p o s i t i o n 1 + 1 to p o s i t i o n 2 + 1
{

l i n e S t a r t i n g P i x e l = sur faceMatr ix [ i ] [ 0 ] ;

l i n eEnd ingP ixe l=l i n e S t a r t i n g P i x e l+sur faceMatr ix [ i ] [ 1 ] ∗ widthStep ;

i f ( l i n e S t a r t i n g P i x e l > s t a r t i n g P i x e l )

s t a r t i n g P i x e l = l i n e S t a r t i n g P i x e l ;

i f ( l i n eEnd ingP ixe l < end ingPixe l )
end ingPixe l = l ineEnd ingP ixe l ;

i f ( end ingPixe l − s t a r t i n g P i x e l < l ineOver lapp ingThresho ld )
return i n v a l i d ;

}

return <s t a r t i n g P i x e l , endingPixe l >;
}

where the variable lineOverlappingThreshold represents the minimum thresh-
old distance that a mutual segment of the lines must meet in order for it to
be considered valid.

Applying the search algorithm on the disparity map in Fig. 4, we obtain
the planar surface highlighted in Fig. 5.

6. Virtual Reality Rendering

In order to evaluate our proposed PTAM-SD system, we developed a small
DirectX based game for smart-phones running Windows Phone 8 or better.
Our game is rendered on the smart-phone and uses the functions of PTAM-SD
in order to track the phone’s movement, render and scale the scene according
to the phone’s new position and detect a planar surface for mapping the game’s
scene on the found surface. We used several smart phones as our client besides
the one outlined in Section 2. The frame rate at which the application renders
the game scene is around 30 to 60 fps (frames per second), depending on the
device running the application.

The game draws a main cube which the user can control by moving it on
the X, Y and Z axis using buttons displayed on the phone’s touchscreen. The
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Figure 5. The planar surface detected

user must move the main cube so that it avoids collision with other cubes
that are continuously passing horizontally (i.e. from left to right) below, on
the same plane and above the main cube. Th user can also navigate in the
AR scene by moving the phone in 3D space. PTAM-SD will detect if the
phone moved and will adjust the game scene accordingly. PTAM-SD will also
determine a planar surface on which the game would be rendered. We can
see 2 captions with the game in figures 6 and 7. But we can not show the
whole game here, so we recorded two videos with the game which are available
here: https://www.cs.ubbcluj.ro/∼forest/research/papers/augmentedreality-
capture1.m2ts and https://www.cs.ubbcluj.ro/∼forest/research/papers/aug
mentedreality-capture2.m2ts.

7. Conclusions

In this paper we presented PTAM-SD, a SLAM-like system that tracks the
camera movement on the x-, y- and z-axis. This system also offers support for
the cameras tilt by updating all the rendered scene according to its tilt angle
and provides an important feature to AR applications that use our PTAM-SD
system, namely a planar surface detection algorithm that does not require the
user intervention, nor a fiducial image. The detected planar surface can be
used to render an AR game on, providing the consumer with an improved user
experience.
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Figure 6. Game capture #1

Figure 7. Game capture #2
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