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A TRAPEZOIDAL INTUITIONISTIC FUZZY MCDM

METHOD BASED ON SOME AGGREGATION OPERATORS

AND SEVERAL RANKING METHODS

DELIA A. TUŞE

Abstract. Intuitionistic fuzzy numbers extend fuzzy numbers and they
are characterized by two functions that express the degree of membership
and respectively non-membership. Therefore, intuitionistic fuzzy numbers
better quantify uncertain information that occurs in many real situations
and can be successfully used in multicriteria decision making (MCDM)
methods. MCDM is a process of problem identification, construction of
preferences, evaluation of alternatives and determination of the best al-
ternative. Intuitionistic fuzzy numbers aggregating and ranking are still
open research topics. In this paper we propose a MCDM method based on
trapezoidal intuitionistic fuzzy numbers (TIFNs). We use two aggrega-
tion operators and four ranking methods with TIFNs in order to obtain
eight hierarchies of the given alternatives to assist in making a decision.
An algorithm for ranking alternatives based on performance of alterna-
tives versus criteria and weights of the given criteria, both represented by
TIFNs is elaborated. The applicability of the proposed method is shown
by a numerical example.

1. Introduction

MCDM methods are the main content of the decision theory research (see
[19]). Specifically, a MCDM method is a procedure for ranking alternatives,
according to several criteria, knowing the opinion of the decision-makers re-
garding the performance of alternatives and weights of criteria (see, e.g., [11]).
MCDM has a wide range of applications such as personal evaluation, product
evaluation, evaluation of employee performance, economic evaluation, assisting
investment decisions, risk assessment etc. (see [21]). Classical MCDM sup-
poses the existence of accurate data, but in practice it is almost impossible to
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obtain exact information due to the uncertainty and imprecision of available
data. Because of the complexity and uncertainty of decision making process,
MCDM methods based on fuzzy environment has become in last years an area
of research that has received more and more attention (see, e.g., [2], [5], [10],
[11], [17], [18], [20], [22], [23], [25], [28]). In [1] and [2] was introduced, for the
first time, the notion of intuitionistic fuzzy set, as a generalization of fuzzy
sets, characterized by two functions that express the degree of membership
and respectively the degree of non-membership. An intuitionistic fuzzy num-
ber is a particular intuitionistic fuzzy set and an extension of a fuzzy number
as well. The degree of non-membership is different from the complement of
the degree of membership. In many real situations (see [15]) the intuitionistic
fuzzy numbers model better the uncertainty than fuzzy numbers.

The ranking of intuitionistic fuzzy numbers is still an important issue,
although several methods have been proposed (see, e.g., [14], [16], [21], [27],
[28]). Due to the simple form and easy computation, the TIFNs can be
successfully used in the intuitionistic fuzzy MCDM methods. In order to
develop the proposed method, there will be defined on TIFNs two aggregation
operators and four ranking methods.

The paper is structured as follows.
In Section 2 we recall notions and operations related to intuitionistic fuzzy

numbers and especially with TIFNs, we consider two aggregation operators
of the TIFNs, namely the weighted arithmetic aggregation (WAA) opera-
tor and the weighted geometric aggregation (WGA) operator and we mention
some numerical characteristics of TIFNs such as the index, the value, the
ambiguity, the value-index and the ambiguity-index, the score, the accuracy
and the expected value and four ranking methods on TIFNs based on these
associated characteristics. In Section 3 we give a proposed MCDM method
with TIFNs based on the aggregation operators and ranking methods de-
scribed in Section 2. It is also given the algorithm for ranking alternatives
versus criteria, knowing the performances of alternatives and weights of crite-
ria, both given by TIFNs. An example is used to show the applicability of the
proposed method in Section 4. Section 5 provides other intuitionistic fuzzy
MCDM methods from the literature and the obtained results are compared.
The paper ends with a conclusive section.

2. Definitions and notations

In this section we consider the basic definitions, notations and operations
used in this paper.

Even if there are other definitions or representations of the notion of fuzzy
number, the following definition is already accepted in the scientific community
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(see [7], [12]). This definition leads also to operations between fuzzy numbers
taken from arithmetic interval by the Zadeh's extension principle.

Definition 1. (see [13]) A fuzzy number A is a fuzzy set in R, that is a
mapping A : R→ [0, 1], which satisfies the following properties:
(i) A is normal, i.e. ∃x0 ∈ R such that A(x0) = 1;
(ii) A is fuzzy convex, i.e. A(λx1 +(1−λ)x2) ≥ min{A(x1), A(x2)}, for every
λ ∈ [0, 1] and x1, x2 ∈ R;
(iii) A is upper semicontinuous in R, i.e. ∀ε > 0 ∃δ > 0 such that A(x) −
A(x0) < ε, |x− x0| < δ;
(iv) A is compactly supported, i.e. cl{x ∈ R; A(x) > 0} is compact, where
cl(M) denotes the closure of a set M .

Trapezoidal fuzzy numbers are particular fuzzy numbers often used in
applications.

Definition 2. (see [7]) A trapezoidal fuzzy number A = (a, b, c, d), where
a ≤ b ≤ c ≤ d, is a fuzzy set in R with the membership function given by

µA(x) =


x−a
b−a , if x ∈ [a, b)

1, if x ∈ [b, c]
d−x
d−c , if x ∈ (c, d]

0, otherwise.

Definition 3. (see [1] and [3]) An intuitionistic fuzzy set in X 6= ∅ is an object

Ã given by Ã =
{〈
x, µ

Ã
(x) , ν

Ã
(x)
〉

;x ∈ X
}

, where the membership function
µ
Ã

: X → [0, 1] and the non-membership function ν
Ã

: X → [0, 1] satisfy the
condition 0 ≤ µ

Ã
(x) + ν

Ã
(x) ≤ 1, for every x ∈ X.

TIFNs are used to represent an ill-known information in applications (see,
e.g., [8], [9], [16], [26]).

Definition 4. (see [16]) A TIFN Ã = 〈(a1, b1, c1, d1), (a2, b2, c2, d2)〉 is an
intuitionistic fuzzy set in R, with the membership function µ

Ã
and the non-

membership function ν
Ã

defined as

µ
Ã

(x) =


x−a1
b1−a1 , if x ∈ [a1, b1)

1, if x ∈ [b1, c1]
d1−x
d1−c1 , if x ∈ (c1, d1]

0, otherwise

and ν
Ã

(x) =


b2−x
b2−a2 , if x ∈ [a2, b2)

0, if x ∈ [b2, c2]
x−c2
d2−c2 , if x ∈ (c2, d2]

1, otherwise

,

where a2 ≤ a1 ≤ b2 ≤ b1 ≤ c1 ≤ c2 ≤ d1 ≤ d2.

Definition 5. (see [14]) A TIFN Ã = 〈(a1, b1, c1, d1), (a2, b2, c2, d2)〉 is said
to be non-negative TIFN if and only if a2 ≥ 0.
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Remark 1. Any trapezoidal fuzzy number A = (a, b, c, d) can be considered as

a TIFN Ã = 〈(a, b, c, d), (a, b, c, d)〉.

We denote by TIFN(R) the set of TIFNs.
In the following we recall the following basic operations on TIFNs based

on Zadeh's extension principle.

Let Ã = 〈(a1, b1, c1, d1), (a2, b2, c2, d2)〉 and B̃ = 〈(a3, b3, c3, d3), (a4, b4,

c4, d4)〉 be two TIFNs and λ a real number. The sum of Ã and B̃ is defined
by (see [6])

Ã+ B̃ = 〈(a1 + a3, b1 + b3, c1 + c3, d1 + d3),(1)

(a2 + a4, b2 + b4, c2 + c4, d2 + d4)〉,
the scalar multiplication (see [6]), such as

λ · Ã = 〈(λa1, λb1, λc1, λd1), (λa2, λb2, λc2, λd2)〉, for λ ≥ 0 and(2)

λ · Ã = 〈(λd1, λc1, λb1, λa1), (λd2, λc2, λb2, λa2)〉, for λ < 0,(3)

the product on non-negative TIFNs (see [14]), which is an approximation of
the product obtained by Zadeh's extension principle, such as

Ã⊗ B̃ = 〈(a1a3, b1b3, c1c3, d1d3), (a2a4, b2b4, c2c4, d2d4)〉(4)

and the rise to positive power of a non-negative TIFN , such as

Ãλ = 〈(aλ1 , bλ1 , cλ1 , dλ1), (aλ2 , b
λ
2 , c

λ
2 , d

λ
2)〉, for λ ≥ 0.(5)

It is obvious that the neutral element for the sum is 〈(0, 0, 0, 0), (0, 0, 0, 0)〉 and
for the product is 〈(1, 1, 1, 1), (1, 1, 1, 1)〉.

Suppose that Ãi, i = {1, . . . , n} is a set of non-negative TIFNs and ω̃i
given by a non-negative TIFN is the weight of Ai, for all i = {1, . . . , n}. Then
theWAA aggregation operator (see [29]) isWAAω̃ : TIFNn(R)→ TIFN(R),

WAAω̃(Ã1, . . . , Ãn) = (1/n) · (ω̃1 ⊗ Ã1 + . . .+ ω̃n ⊗ Ãn).(6)

If ωi, i = {1, . . . , n} are given by positive crisp numbers, then the WGA
aggregation operator (see [24]) is WGAω : TIFNn(R)→ TIFN(R),

WGAω(Ã1, . . . , Ãn) = Ã1
ω1 ⊗ . . .⊗ Ãn

ωn
.(7)

Among many ranking methods on TIFNs (see, e.g., [14], [16], [21], [27],
[28]), in this section we consider four of them. For this purpose, we recall
the definition of some numerical characteristics of the TIFNs, such as the
index, the value, the ambiguity, the value-index and the ambiguity-index, the
score, the accuracy and the expected value. The ranking methods based on
these characteristics will be used in Section 3 for ranking the alternatives in
an intuitionistic fuzzy frame.
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We consider the TIFN Ã = 〈(a1, b1, c1, d1), (a2, b2, c2, d2)〉.
Firstly, we consider a ranking method on TIFNs based on the index Mβ,k

µ

for membership function and index Mβ,k
ν for non-membership function (see

[14]). In the particular case when β = 1
3 and k = 0, these indexes are:

M
1
3
,0

µ (Ã) =
1

6
(a1 + 2b1 + 2c1 + d1), M

1
3
,0

ν (Ã) =
1

6
(a2 + 2b2 + 2c2 + d2).(8)

Further, for simplification, we denote Mµ(Ã) = M
1
3
,0

µ (Ã), Mν(Ã) = M
1
3
,0

ν (Ã).

Definition 6. (see [14]) Let Ã and B̃ be two TIFNs. Then

Ã ≺M B̃ ⇔Mµ(Ã) < Mµ(B̃) or (Mµ(Ã) = Mµ(B̃) and−Mν(Ã) < −Mν(B̃)),

Ã �M B̃ ⇔Mµ(Ã) > Mµ(B̃) or (Mµ(Ã) = Mµ(B̃) and−Mν(Ã) > −Mν(B̃)),

Ã ∼M B̃ ⇔Mµ(Ã) = Mµ(B̃) and Mν(Ã) = Mν(B̃).

The second ranking method is a ranking method on TIFNs based on the
value-index Vλ and ambiguity-index Aλ (see [28]). The value of the mem-

bership function is given by Vµ(Ã) = 1
6(a1 + 2b1 + 2c1 + d1) and the value

of the non-membership function is given by Vν(Ã) = 1
6(a2 + 2b2 + 2c2 + d2).

Analogously, the ambiguity of the membership function is given by Aµ(Ã) =
1
6(−a1 − 2b1 + 2c1 + d1) and the ambiguity of the non-membership function

is given by Aν(Ã) = 1
6(−a2 − 2b2 + 2c2 + d2). Then the value-index and the

ambiguity-index of Ã are given by

Vλ(Ã) = λVµ(Ã) + (1− λ)Vν(Ã) and Aλ(Ã) = λAµ(Ã) + (1− λ)Aν(Ã).(9)

Here λ ∈ [0, 1] is a weight which represents the decision-maker’s preference
information, namely λ ∈ [0, 0.5) shows that the decision-maker prefers cer-
tainty, λ ∈ (0.5, 1] shows that the decision-maker prefers uncertainty and
λ = 0.5 shows that the decision-maker is indifferent between certainty and
uncertainty.

Definition 7. (see [28]) Let Ã and B̃ be two TIFNs. Then

Ã ≺V A B̃ ⇔ Vλ(Ã) < Vλ(B̃) or (Vλ(Ã) = Vλ(B̃) and Aλ(Ã) > Aλ(B̃)),

Ã �V A B̃ ⇔ Vλ(Ã) > Vλ(B̃) or (Vλ(Ã) = Vλ(B̃) and Aλ(Ã) < Aλ(B̃)),

Ã ∼V A B̃ ⇔ Vλ(Ã) = Vλ(B̃) and Aλ(Ã) = Aλ(B̃).
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For a third ranking method, introduced in [29], we recall the following

definition of the score S and of the accuracy E of Ã:

S(Ã) = (a1 − a2 + b1 − b2 + c1 − c2 + d1 − d2)/4,

E(Ã) = (a1 + a2 + b1 + b2 + c1 + c2 + d1 + d2)/4.(10)

If ai, bi, ci, di ∈ [0, 1], for i ∈ {1, 2} then S(Ã) ∈ [−1, 1] and E(Ã) ∈ [0, 2].

Definition 8. (see [29]) Let Ã and B̃ be two TIFNs. Then

Ã ≺SE B̃ ⇔ S(Ã) < S(B̃) or (S(Ã) = S(B̃) and E(Ã) < E(B̃)),

Ã �SE B̃ ⇔ S(Ã) > S(B̃) or (S(Ã) = S(B̃) and E(Ã) > E(B̃)),

Ã ∼SE B̃ ⇔ S(Ã) = S(B̃) and E(Ã) = E(B̃).

Last ranking method, but not the least important, because it is simple and
has suitable properties, is based on the expected value EV (see, e.g., [6]):

EV (Ã) = (a1 + b1 + c1 + d1 + a2 + b2 + c2 + d2)/8.(11)

Definition 9. (see [6]) Let Ã and B̃ be two TIFNs. Then

Ã ≺EV B̃ ⇔ EV (Ã) < EV (B̃),

Ã �EV B̃ ⇔ EV (Ã) > EV (B̃),

Ã ∼EV B̃ ⇔ EV (Ã) = EV (B̃).

3. Proposed trapezoidal intuitionistic fuzzy MCDM method

A MCDM problem assumes the evaluation of m alternatives A1, . . . , Am,
under n criteria C1, . . . , Cn by a committee of k decision-makers D1, . . . , Dk.
We consider that all criteria are subjective criteria or objective criteria with
respect to the benefit. The performances of alternatives versus criteria indicate
the degree that the alternatives satisfy or do not satisfy the criteria and are
given by decision-makers or experts according to the specified linguistic terms.
In addition, we know the weight of each criterion, given by the decision-makers
according to either the same linguistic terms or another. The problem is
resumed to the evaluation of alternatives and choosing the best one.

The method described in this section follows the standard steps (see, e.g.,
[4]), but our goal is to compare the results when using different aggregation
operators and/or ranking methods. The method can be summarized as fol-
lows. First we determine the average of performances, obtaining the decision
matrix and the average of weights of criteria, obtaining a vector (see Algorithm
1, Steps 1-2). Then we normalize both of them (see Algorithm 1, Steps 3-4).
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The value of each alternative is calculated using, one at a time, the aggre-
gation operators from Section 2 (see Algorithm 1, Steps 5-7). The hierarchy
of the alternative values is determined by using one of the ranking methods
considered in Definitions 6 - 9, used one at a time, too (see Algorithm 1, Steps
8-12). We consider that the performance of an alternative Ai on a criterion
Cj in the opinion of the decision-maker Dt is given by a non-negative TIFN
r̃ijt = 〈(a1ijt, b1ijt, c1ijt, d1ijt), (a2ijt, b2ijt, c2ijt, d2ijt)〉 and the weight of the
criterion Cj in the opinion of the decision-maker Dt is also given also by a
non-negative TIFN w̃jt = 〈(e1jt, f1jt, g1jt, h1jt), (e2jt, f2jt, g2jt, h2jt)〉.

For the first step of the proposed method we calculate the average rating
r̃ij of Ai versus Cj , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, in order to obtain the
decision matrix, as follows:

r̃ij = (1/k) · (r̃ij1 + . . .+ r̃ijk), using (1) and (2).(12)

Next step is the calculation of the average weight w̃j of the criterion Cj ,
j ∈ {1, . . . , n}, as follows:

w̃j = (1/k) · (w̃j1 + . . .+ w̃jk), using (1) and (2) too.(13)

For the next step we have to normalize the values of average performances with
respect to criteria and the values of averaged weights of criteria. This is only
necessary if the maximum value of the performances and/or respectively the
maximum value of the weights are greater than 1. We normalize as follows: if
r̃ij = 〈(a1ij , b1ij , c1ij , d1ij), (a2ij , b2ij , c2ij , d2ij)〉, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
and we find that α = max

1≤i≤m
1≤j≤n

d2ij > 1, then

r̃ij = (1/α) · r̃ij , using (2),(14)

where, for simplicity, we used the same notation r̃ij for the normalized values
in decision matrix. In the same way, if w̃j = 〈(e1j , f1j , g1j , h1j), (e2j , f2j ,
g2j , h2j)〉, j ∈ {1, . . . , n} and we find that β = max

1≤j≤n
h2j > 1, then

w̃j = (1/β) · w̃j , using (2).(15)

We also used the same notation w̃j for the normalized values of the weights
of the criteria. Next step is to evaluate the alternatives Ai, i ∈ {1, . . . ,m} by
the aggregation of the performances with weights using the WAAω̃ operator,
developed as

G̃i = (1/n) · (r̃i1 ⊗ w̃1 + . . .+ r̃in ⊗ w̃n), using (1), (2) and (4).(16)

If we use the WGAω operator, for the beginning, the weights must be de-
fuzzified using the expected value (see (11)), namely wj = EV (w̃j), for j =
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{1, . . . , n}, then

H̃i = r̃i1
w1 ⊗ . . .⊗ r̃inwn , for i ∈ {1, . . . ,m}, using (4) and (5).(17)

In order to obtain the ranking of alternatives, we used, one at a time, all four

criteria from Definitions 6 - 9, separately for G̃i and H̃i.
The above method can be summarized in the following procedure.

Algorithm 1.

IN: m - alternatives
n - criteria
k - decision-makers
r̃ijt = 〈(a1ijt, b1ijt, c1ijt, d1ijt), (a2ijt, b2ijt, c2ijt, d2ijt)〉 - performance of

the alternative Ai on criterion Cj in the opinion of the decision-makerDt, given
by a non-negative TIFN , for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, t ∈ {1, . . . , k}

w̃jt = 〈(e1jt, f1jt, g1jt, h1jt), (e2jt, f2jt, g2jt, h2jt)〉 - weight of the cri-
terion Cj in the opinion of the decision-maker Dt, given by a non-negative
TIFN , for all j ∈ {1, . . . , n}, t ∈ {1, . . . , k}

Step 1. Compute r̃ij for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} as follows:

r̃ij = 〈( 1

k
·
k∑
t=1

a1ijt,
1

k
·
k∑
t=1

b1ijt,
1

k
·
k∑
t=1

c1ijt,
1

k
·
k∑
t=1

d1ijt),

(
1

k
·
k∑
t=1

a2ijt,
1

k
·
k∑
t=1

b2ijt,
1

k
·
k∑
t=1

c2ijt,
1

k
·
k∑
t=1

d2ijt)〉.

Step 2. Compute w̃j for j ∈ {1, . . . , n} as follows:

w̃j = 〈( 1

k
·
k∑
t=1

e1jt,
1

k
·
k∑
t=1

f1jt,
1

k
·
k∑
t=1

g1jt,
1

k
·
k∑
t=1

h1jt),

(
1

k
·
k∑
t=1

e2jt,
1

k
·
k∑
t=1

f2jt,
1

k
·
k∑
t=1

g2jt,
1

k
·
k∑
t=1

h2jt)〉.

Step 3. If α = max
1≤i≤m
1≤j≤n

d2ij > 1, then for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

r̃ij = 〈(
a1ij

α
,
b1ij
α
,
c1ij

α
,
d1ij

α
), (

a2ij

α
,
b2ij
α
,
c2ij

α
,
d2ij

α
)〉.
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Step 4. If β = max
1≤j≤n

h2j > 1, then for j ∈ {1, . . . , n}

w̃j = 〈(
e1j

β
,
f1j

β
,
g1j

β
,
h1j

β
), (

e2j

β
,
f2j

β
,
g2j

β
,
h2j

β
)〉.

Step 5. Compute G̃i for i ∈ {1, . . . ,m} as follows:

G̃i = 〈( 1

n

n∑
j=1

(a1ij · e1j),
1

n

n∑
j=1

(b1ij · f1j),
1

n

n∑
j=1

(c1ij · g1j),
1

n

n∑
j=1

(d1ij · h1j)),

(
1

n

n∑
j=1

(a2ij · e2j),
1

n

n∑
j=1

(b2ij · f2j),
1

n

n∑
j=1

(c2ij · g2j),
1

n

n∑
j=1

(d2ij · h2j))〉.(18)

Step 6. Compute wj = EV (w̃j), for j ∈ {1, . . . , n}, using (11).

Step 7. Compute H̃i for i ∈ {1, . . . ,m} as follows:

H̃i = 〈(
n∏
j=1

a1ij
wj ,

n∏
j=1

b1ij
wj ,

n∏
j=1

c1ij
wj ,

n∏
j=1

d1ij
wj ),(19)

(

n∏
j=1

a2ij
wj ,

n∏
j=1

b2ij
wj ,

n∏
j=1

c2ij
wj ,

n∏
j=1

d2ij
wj )〉.

Step 8. ComputeMµ(G̃i), Mν(G̃i), Mµ(H̃i) andMν(H̃i) for i ∈ {1, . . . ,m},
using (8).

Step 9. If Gi1 �M Gi2 �M . . . �M Gim then the first descending order of
alternatives is Ai1 , Ai2 , ..., Aim , that is Ai1 is better than Ai2 and so on, Aim
is the worst alternative.

Step 10. If Hi1 �M Hi2 �M . . . �M Him then the second descending order
of alternatives is Ai1 , Ai2 , ..., Aim .

Step 11. Compute Vλ(G̃i), Aλ(G̃i), Vλ(H̃i) and Aλ(H̃i) for i ∈ {1, . . . ,m},
using (9).

Step 12. If Gi1 �V A Gi2 �V A . . . �V A Gim then the third descending
order of alternatives is Ai1 , Ai2 , ..., Aim .

Step 13. If Hi1 �V A Hi2 �V A . . . �V A Him then the fourth descending
order of alternatives is Ai1 , Ai2 , ..., Aim .

Step 14. Compute S(G̃i), E(G̃i), S(H̃i) and E(H̃i) for i ∈ {1, . . . ,m}
using (10).

Step 15. If Gi1 �SE Gi2 �SE . . . �SE Gim then the fifth descending order
of alternatives is Ai1 , Ai2 , ..., Aim .

Step 16. If Hi1 �SE Hi2 �SE . . . �SE Him then the sixth descending order
of alternatives is Ai1 , Ai2 , ..., Aim .

Step 17. Compute EV (G̃i) and EV (H̃i) for i ∈ {1, . . . ,m} using (11).
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Step 18. If Gi1 �EV Gi2 �EV . . . �EV Gim then the seventh descending
order of alternatives is Ai1 , Ai2 , ..., Aim .

Step 19. If Hi1 �EV Hi2 �EV . . . �EV Him then the eighth descending
order of alternatives is Ai1 , Ai2 , ..., Aim .

OUT: eight descending orders of alternatives.

The proposed algorithm was implemented obtaining a C# program that
returns all of these results for numerical examples.

4. Numerical examples

The linguistic variables are used to describe situations where the classical
quantitative values can not be used. For example, if we consider a survey and
a five-level Likert scale, the values given by a customer to the performance of
the alternatives can be in the set {very poor, poor, fair, good, very good} and
respectively to the weights of the criteria in the set {very low, low, medium,
high, very high}. Their representations by TIFNs can be, for example, those
from Table 1.

Table 1. Ratings in a five-level Likert scale

Perform. of alt. Weight of criteria TIFNs
Very poor (V P ) Very low (V L) 〈(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)〉
Poor (P ) Low (L) 〈(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5)〉
Fair (F ) Medium (M) 〈(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7)〉
Good (G) High (H) 〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9)〉
Very good (V G) Very high (V H) 〈(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)〉

In this section we give a numerical example, in order to illustrate the
proposed method in Section 3. The problem is taken from [27].

Example 1. (see [27]). An investment company must take a decision from
four possible alternatives to invest the money, namely, A1 - a car company,
A2 - food company, A3 - computer company and A4 - television company.
The decision must be taken according to the following three criteria: C1 - risk
analysis, C2 - growth analysis and C3 - environmental impact analysis. The
four possible alternatives are to be evaluated under the above three criteria
using the corresponding TIFNs for linguistic terms, as shown in Table 1.
The ratings of the alternatives with respect to criteria and the ratings of the
weights of criteria are given in Table 2.
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Table 2. Ratings of alternatives and weights.

Criteria / alternatives
C1 C2 C3 Criteria

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 C1 C2 C3

D1 F F P G G F F G F V G G P M L H
D2 P F V P G V G F F G P V G G P M M M
D3 F G P F G F G G F V G V G F H L H
D4 G G F G F G G G F G V G F H M H
D5 P P P V G G F F V G F V G V G P M M H

Using the proposed method, we obtain the normalized averaged ratings of
alternatives versus criteria (Steps 1 and 3 of Algorithm 1), as follows:

r̃11 = 〈(0.260, 0.360, 0.460, 0.560), (0.160, 0.360, 0.460, 0.660)〉,
r̃21 = 〈(0.500, 0.600, 0.700, 0.800), (0.420, 0.600, 0.700, 0.880)〉,
r̃31 = 〈(0.380, 0.480, 0.580, 0.680), (0.280, 0.480, 0.580, 0.780)〉,
r̃41 = 〈(0.660, 0.760, 0.860, 0.960), (0.640, 0.760, 0.860, 0.980)〉,
r̃12 = 〈(0.340, 0.440, 0.540, 0.640), (0.240, 0.440, 0.540, 0.740)〉,
r̃22 = 〈(0.500, 0.600, 0.700, 0.800), (0.420, 0.600, 0.700, 0.880)〉,
r̃32 = 〈(0.540, 0.640, 0.740, 0.840), (0.460, 0.640, 0.740, 0.920)〉,
r̃42 = 〈(0.620, 0.720, 0.820, 0.920), (0.580, 0.720, 0.820, 0.960)〉,
r̃13 = 〈(0.120, 0.220, 0.320, 0.420), (0.040, 0.220, 0.320, 0.500)〉,
r̃23 = 〈(0.340, 0.440, 0.540, 0.640), (0.240, 0.440, 0.540, 0.740)〉,
r̃33 = 〈(0.260, 0.360, 0.460, 0.560), (0.160, 0.360, 0.460, 0.660)〉,
r̃43 = 〈(0.180, 0.280, 0.380, 0.480), (0.080, 0.280, 0.380, 0.580)〉

and respectively the normalized averaged ratings of weights of criteria (Steps
2 and 4 of Algorithm 1), as follows:

w̃1 = 〈(0.380, 0.480, 0.580, 0.680), (0.280, 0.480, 0.580, 0.780)〉,
w̃2 = 〈(0.220, 0.320, 0.420, 0.520), (0.120, 0.320, 0.420, 0.620)〉,
w̃3 = 〈(0.460, 0.560, 0.660, 0.760), (0.360, 0.560, 0.660, 0.860)〉.

Obviously, the values r̃ij and respectively w̃j are obtained after running the
C# program that implements the Algorithm 1 described in Section 3. The
aggregated values (Steps 5 and 7 of Algorithm 1) are:

G̃1 = 〈(0.076, 0.146, 0.235, 0.344), (0.029, 0.146, 0.235, 0.468)〉,



34 DELIA A. TUŞE

G̃2 = 〈(0.152, 0.242, 0.352, 0.482), (0.085, 0.242, 0.352, 0.623)〉,

G̃3 = 〈(0.128, 0.212, 0.317, 0.442), (0.064, 0.212, 0.317, 0.582)〉,

G̃4 = 〈(0.157, 0.251, 0.365, 0.499), (0.093, 0.251, 0.365, 0.619)〉,

H̃1 = 〈(0.090, 0.171, 0.263, 0.367), (0.031, 0.171, 0.263, 0.470)〉,

H̃2 = 〈(0.278, 0.383, 0.498, 0.623), (0.192, 0.383, 0.498, 0.742)〉,

H̃3 = 〈(0.210, 0.308, 0.417, 0.537), (0.125, 0.308, 0.417, 0.660)〉,

H̃4 = 〈(0.236, 0.352, 0.475, 0.606), (0.138, 0.352, 0.475, 0.699)〉,

where the defuzzified weights are w1 = 0.53, w2 = 0.37, w3 = 0.61.

Therefore, for the first ranking method we obtain for Mµ(G̃i), i ∈ {1, . . . ,
m} the values in the second column of the Table 3, the first four rows. Then,
using Definition 6, the ranking order is A1 ≺M A3 ≺M A2 ≺M A4, which
means that the best alternative is A4 and the worst A1. In order to com-
pare the results, using the same ranking method, we obtain for Mµ(H̃i),
i ∈ {1, . . . ,m} the values in the second column of the Table 3, the last four
rows and using Definition 6, the ranking order is A1 ≺M A3 ≺M A4 ≺M A2.
The difference between these two hierarchies is not very significant, namely

Mµ(G̃2) ∼Mµ(G̃4) and Mµ(H̃2) ∼Mµ(H̃4).

Using the second ranking method, for λ = 0.76 we obtain for Vλ(G̃i),
i ∈ {1, . . . ,m} the values in the third column of the Table 3, the first four rows.
Then, using Definition 7, the ranking order is A1 ≺V A A3 ≺V A A2 ≺V A A4.

Analogously, for Vλ(H̃i), i ∈ {1, . . . ,m} we obtain the values in the third
column of the Table 3, the last four rows and the ranking order A1 ≺V A
A3 ≺V A A4 ≺V A A2. The difference between these two hierarchies, in this

case, is also not very significant given the defuzzified values, namely Vλ(G̃2) ∼
Vλ(G̃4) and respectively Vλ(H̃2) ∼ Vλ(H̃4).

For the third ranking method, if we calculate the score and the accuracy ac-

cording to (10), we obtain for S(G̃i) and respectively for E(G̃i), i ∈ {1, . . . ,m}
the values in the fourth column of the Table 3, the first four rows and using
Definition 8, the ranking order is A1 ≺SE A3 ≺SE A2 ≺SE A4. Then, we

obtain for S(H̃i) and respectively for E(H̃i), i ∈ {1, . . . ,m} the values in
the fourth column of the Table 3, the last four rows and the ranking order
A1 ≺SE A3 ≺SE A2 ≺SE A4, therefore the same hierarchy.

Finally, for the last ranking method, we obtain for EV (G̃i), i ∈ {1, . . . ,m}
the values in the fifth column of the Table 3, the first four rows and using
Definition 9, the ranking order is A1 ≺EV A3 ≺EV A2 ∼EV A4. Analogously,

for EV (H̃i), i ∈ {1, . . . ,m} we obtain the values in the fifth column of the
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Table 3, the last four rows and the ranking order A1 ≺EV A3 ≺EV A4 ≺EV A2,
therefore the same hierarchy.

Table 3. Comparing hierarchies.

Agg. Rank 1 (Mµ) Rank 2 (V0.76) Rank 3 (S/E) Rank 4 (EV )

WAAω̃

A4: 0.31 A4: 0.32 A4: −0.01/0.65 A4: 0.32
A2: 0.30 A2: 0.31 A2: −0.02/0.63 A2: 0.32
A3: 0.27 A3: 0.28 A3: −0.02/0.57 A3: 0.28
A1: 0.20 A1: 0.21 A1: −0.02/0.42 A1: 0.21

WGAω

A2: 0.44 A2: 0.45 A4: 0.00/0.83 A2: 0.45
A4: 0.42 A4: 0.42 A2: −0.01/0.90 A4: 0.42
A3: 0.37 A3: 0.37 A3: −0.01/0.75 A3: 0.37
A1: 0.22 A1: 0.23 A1: −0.01/0.46 A1: 0.23

Therefore, if we use the WAAω̃ operator, we get the same hierarchy for
every ranking method. If we use the WGAω operator, we also obtain almost
the same hierarchy, for every ranking method, with one exception, probably
due to very small differences between the aggregated values of alternatives
A2 and A4. However, the two hierarchies obtained by different aggregation
operators differ. Specifically, regarding the worst alternative, this is definitely
A1. Instead, regarding the best alternative, what matters actually most, can
not be predicted accurately, because using the WAAω̃ operator we obtain
the best alternative A4 and using WGAω operator, A2 seems to be the best
alternative. In this case it requires further study. But, in our opinion, this is
due to very similar values obtained for A2 and respectively A4. Indeed, this
assumption is confirmed by Example 2.

Example 2. Using the same problem from Example 1, we change only two
linguistic variables in Table 2, namely for alternative A4 versus criterion C3

we assume that the decision-makers D3 and D4 choose ”very good” instead of
”fair” as it appears in Example 1.

By running the application that implements Algorithm 1, we obtain the fol-
lowing results. The values r̃ij remain the same, except for the A4 versus C3, for
which we obtain r̃43 = 〈(0.340, 0.440, 0.540, 0.640), (0.280, 0.440, 0.540, 0.700)〉.
Obviously, the values w̃j remain the same and therefore the deffuzified values
of the weights of the criteria are the same. The aggregated value of A4 using

WAAω̃ operator is G̃4 = 〈(0.181, 0.281, 0.400, 0.539), (0.117, 0.281, 0.400,

0.654)〉 and the aggregated value of A4 using WGAω operator is H̃4 = 〈(0.348,
0.464, 0.589, 0.723), (0.297, 0.464, 0.589, 0.784)〉. In this case, the obtained
hierarchies coincide for all aggregation operators and for all ranking methods,
as shown in Table 4 and certainly, the best alternative is A4.
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Table 4. Comparing the new hierarchies.

Agg. Rank 1 (Mµ) Rank 2 (V0.84) Rank 3 (S/E) Rank 4 (EV )

WAAω̃

A4: 0.35 A4: 0.35 A4: −0.01/0.71 A4: 0.36
A2: 0.30 A2: 0.31 A2: −0.02/0.63 A2: 0.32
A3: 0.27 A3: 0.28 A3: −0.02/0.57 A3: 0.28
A1: 0.20 A1: 0.21 A1: −0.02/0.42 A1: 0.21

WGAω

A4: 0.53 A4: 0.53 A4: 0.00/1.06 A4: 0.53
A2: 0.44 A2: 0.45 A2: −0.01/0.90 A2: 0.45
A3: 0.37 A3: 0.37 A3: −0.01/0.75 A3: 0.37
A1: 0.22 A1: 0.23 A1: −0.01/0.46 A1: 0.23

5. Related work and comparison analysis of the results obtained

Firstly, in this section we present other relevant fuzzy MCDM approaches
from the recent literature.

In [29] it was proposed a fuzzy MCDM method that uses triangular in-
tuitionistic fuzzy numbers, two aggregation operators, namely the arithmetic
and geometric aggregation operators and a ranking method based on score
and accuracy. Thus, the method returns two hierarchies of alternatives rela-
tive to the given criteria. Both aggregation operators and also the ranking
method have been integrated in our method, using trapezoidal intuitionistic
fuzzy numbers. We can not do a comparison with the method from [29] for
the following reason: in [29] there are used other operations with intuitionistic
fuzzy numbers than those used by us and in addition triangular intuitionis-
tic fuzzy numbers considered in [29] are not actually triangular intuitionistic
fuzzy numbers in our acceptance, because it does not verify the conditions
from Definition 4. From our point of view not even the input data conside-
red in Table 1 from Section 6 in [29] are not triangular intuitionistic fuzzy
numbers, therefore this is why it is not relevant to do a comparison of the
results.

In [16] it was proposed a new ranking method for triangular intuitionistic
fuzzy numbers based on value and ambiguity. The advantage of this method
is that it reflects the subjective attitude of the decision makers by using a
parameter λ ∈ [0, 1]. The proposed ranking method is exemplified in a fuzzy
MCDM method that uses a comprehensive aggregation operator. Neither this
time we do not compare the obtained results because in [16] it was used another
notation for triangular intuitionistic fuzzy numbers which has no counterpart
in our notation.

In [28] it was proposed a fuzzy MCDM method based on arithmetic ag-
gregation operator and the ranking method based on value and ambiguity
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proposed in [16] uses trapezoidal intuitionistic fuzzy numbers. To show the
effectiveness of our method, we intend to further analyze the results from the
application in [28] compared to the results for the same problem using our
method.

In the following we consider the example from [28], Section 5.1. For this
example, they were obtained by the proposed method in [28] the hierarchies
x4 �V A x2 �V A x3 �V A x1 for λ ∈ [0, 0.354), x4 �V A x3 �V A x2 �V A x1

for λ ∈ [0.354, 0.947] and respectively x3 �V A x4 �V A x2 �V A x1 for λ ∈
(0.947, 1]. In [28] the proposed method was compared to three other methods
from the literature (see [28], Table 2), getting for the same example, in the
case of all three methods the hierarchy x4 � x2 � x3 � x1. By considering
the parameter λ which reflects the attitude of the decision makers about the
preference for the risk, in [28] it was obtained for higher values of λ (indicating
a decision makers preference for the risk), a different hierarchy in which the
alternative x3 easily outpaced the alternative x4. Besides, in [28] it stated
out that ”a risk-taking decision maker may prefer x3, whereas a risk-averse
decision maker may prefer x4”.

If we consider the same example and treat it by the method proposed in
this paper, we get the following hierarchies, lined up in the same order as in
the examples from Section 4, namely: x4 �M x3 �M x2 �M x1, x4 �V A
x3 �V A x2 �V A x1, for λ = 0.97, x3 �SE x1 �SE x4 �SE x2, x4 �EV
x3 �EV x2 �EV x1, x3 �M x4 �M x2 �M x1, x2 �V A x4 �V A x3 �V A x1,
for λ = 0.97, x3 �SE x4 �SE x1 �SE x2 and x3 �EV x4 �EV x2 �EV x1.
The second hierarchy from the previous list was obtained with our method
using the same aggregation operator and the same ranking method as those
used in the method from [28]. But the obtained hierarchies are different.

Deeper analyzing, by our method are obtained the values Vλ(S̃3) = 0.19 and

Vλ(S̃4) = 0.20, for λ = 0.97, therefore very close values, but yet different. If

we replace λ = 0.97 in (42) from [28], we obtain Vλ(S̃1) = 0.38, Vλ(S̃2) = 0.58,

Vλ(S̃3) = 0.59 and Vλ(S̃4) = 0.59, therefore the hierarchy x3 ∼V A x4 �V A
x2 �V A x1, which is not in contradiction with our result. Moreover, if we
use in the example from [28] the geometric aggregation operator and the same
ranking method based on value and ambiguity, we get for λ = 0.97 the values

Vλ(S̃3) = 0.57 = Vλ(S̃4), therefore another proof that x3 and x4 ”competing”
together for the position of the best alternative.

In conclusion, as we have seen, in the example from [28] it was obtained,
somewhat at the limit of, that x3 is the best alternative in the case when the
decision makers prefer the risk. Using our method, the alternative x3 it was
also obtained as the best alternative in the four of the eight cases.
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6. Conclusion

In this paper we used TIFNs for modelling real problems in relationship
with the MCDM. The proposed method is based on two aggregation opera-
tors, namely, the WAA operator and the WGA operator and on four ranking
methods, based on the index, value, ambiguity, value-index, ambiguity-index,
score, accuracy and expected value. The method is suitable for MCDM be-
cause it is well known that TIFNs works well with the uncertainty. We
elaborated an algorithm for the proposed method and we compared the eight
hierarchies of alternatives obtained by using each aggregation operator and
each ranking method. In the other papers it was also tried to use several
aggregation operators and/or several ranking methods in the same MCDM
method, in order to obtain more than one hierarchy of alternatives, which
could be compared and analyzed later. For example, in [29] there were used
within a proposed MCDM method the arithmetic and the geometric aggre-
gation operators and a ranking method based on score and accuracy, thus
obtaining two hierarchies of alternatives. In the example given in [29] the two
obtained hierarchies coincided.

The proposed method is better than other existing methods in the litera-
ture (see, e.g., [21], [23]) because it preserves more information. As example,
the method proposed in [21] transforms the values of decision matrix from
TIFNs in interval numbers, uses the interval density aggregation operators
and the ranking of alternatives is based on sorting the interval numbers. There-
fore, it does not use operations with TIFNs, but there is a prior defuzzification
before the application of the method. Instead, our method is operating with
TIFNs throughout the method, only at the end the results being defuzzified
for easy interpretation of the results.

In [6] it was demonstrated a bijection between the set of TIFNs and
the set of interval-valued trapezoidal fuzzy numbers and the corresponding
properties, therefore the proposed method from this paper can be applied
for interval-valued trapezoidal fuzzy numbers too. In addition, taking into
account Remark 1, it is obvious that our method generalizes other similar
methods developed for trapezoidal fuzzy numbers, for example the method
given in [4].

As future research directions, it can be seen that the proposed method can
be easily extended to other types of intuitionistic fuzzy numbers. Also, because
of the fact that trapezoidal intuitionistic fuzzy numbers are a generalization
of trapezoidal fuzzy numbers, other existing fuzzy MCDM methods that use
fuzzy numbers can be extended to intuitionistic fuzzy numbers. Last but not
least, we intend to search for other effective aggregation operators and/or
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ranking methods for the trapezoidal intuitionistic fuzzy numbers which will
be integrated in our method.
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