COVERS OF GRAPHS BY TWO CONVEX SETS

RADU BUZATU

ABSTRACT. The nontrivial convex 2-cover problem of a simple graph is studied. We establish the existence of a convex (2, nt)-cover in dependency of existing convex (2, t)-covers. We prove that it is NP-complete to decide whether a graph that has convex (2, t)-covers also has a convex (2, nt)cover. In addition, we identify some classes of graphs for which there exists a convex (2, nt)-cover.

1. INTRODUCTION

In this work we consider only simple connected graphs. We denote by G = (X; U) a graph with vertex set X, |X| = n, and edge set U, |U| = m. The *neighborhood* of a vertex $x \in X$ is the set of all vertices $y \in X$ such that $x \sim y$, and it is denoted by $\Gamma(x)$.

The distance between vertices x and y in G is denoted by d(x, y). We say that $x \in X$ is a *simplicial* vertex of G if $\Gamma(x)$ is a clique.

Let us remind some notions defined in [1]: a) metric segment $\langle x, y \rangle$ is the set of all vertices lying on a shortest path between vertices $x, y \in X$; b) a set $S \subseteq X$ is called *convex* if $\langle x, y \rangle \subseteq S$ for all $x, y \in S$; c) *convex hull* of $S \subseteq X$, denoted d - conv(S), is the smallest convex set containing S.

A set $S \subseteq X$ is called *nontrivial* if $3 \le |S| \le n - 1$. Otherwise S is called *trivial*.

A family of sets $\mathbf{P}_2(G) = \{X_1, X_2\}$ is called *convex 2-cover* of the graph G = (X; U) if $X_1 \notin X_2$, $X_2 \notin X_1$ and $X_1 \cup X_2 = X$, where X_1 and X_2 are convex sets in G. The concept of *convex p-cover* of a graph for $p \ge 2$ is defined in [2] as a cover of graph by p convex sets. In particular, $\mathbf{P}_2(G)$ is called *convex 2-partition* of graph G if it is a convex 2-cover of G and sets of $\mathbf{P}_2(G)$ are disjoint.

Received by the editors: October 13, 2015.

²⁰¹⁰ Mathematics Subject Classification. 05C35, 05C85.

¹⁹⁹⁸ CR Categories and Descriptors. G.2.2 [Discrete Mathematics]: Graph Theory – Graph algorithms; F.1.3 [Theory of Computation]: Complexity Measures and Classes – Reducibility and completeness.

 $Key\ words\ and\ phrases.$ convexity, convex covers, simplicial vertex, NP-completeness, convex partition.

 $\mathbf{P}_{2,t}(G) = \{S_t, S_{nt}\}$ is said to be a *convex* (2, t)-*cover* of G if it is a convex 2-cover of G such that S_t is a trivial set. In the same way, $\mathbf{P}_{2,nt}(G) = \{S_1, S_2\}$ is said to be a *convex* (2, nt)-*cover* of G if it is a convex 2-cover of G such that S_1 and S_2 are nontrivial.

Denote by $\widetilde{\boldsymbol{\mathcal{P}}}_{2,t}(G) = \{ \boldsymbol{\mathcal{P}}_{2,t}^1, \boldsymbol{\mathcal{P}}_{2,t}^2, \dots, \boldsymbol{\mathcal{P}}_{2,t}^k \}, k \in N$, a family of all possible convex (2, t)-covers of G.

Deciding if a graph has a convex 2-cover was declared an open problem in [2]. After, we proved its NP-completeness [7]. We know that verifying if a set is convex can be done in polynomial time [4]. Consequently, determining if there exists a convex (2, t)-cover also can be done in polynomial time. Thus, it is NP-complete to decide whether a graph G has a convex (2, nt)-cover.

This paper is organized as follows. In section 2 we establish the existence of a convex (2, nt)-cover in dependency on existing convex (2, t)-covers. Also, identification algorithms for some specifical graph classes are developed. In section 3 we prove that it is NP-complete to decide whether a graph that has convex (2, t)-covers also has a convex (2, nt)-cover. In section 4 we present some graph classes, which have a convex (2, nt)-cover.

2. Convex (2, nt)-cover via convex (2, t)-covers

It is clear that every simple connected graph G on n vertices, where n = 2 or n = 3, has a convex (2, t)-cover but has no a convex (2, nt)-cover.

Let us analyze the case n = 4.

Consider a cycle on 4 vertices C_4 and the *nontrivial convex cover number* $\varphi_{cn}(G)$ as the least integer $p \geq 2$ for which G has a convex p-cover by nontrivial convex sets. The next theorem is true.

Theorem 2.1. [7] If G is a simple connected graph on 4 vertices, then $\varphi_{cn}(G) = 2$ if and only if $G \neq C_4$.

As a consequence of Theorem 2.1, we get the following result.

Corollary 2.2. Let G be a simple connected graph on 4 vertices. Then G has a convex (2, nt)-cover if and only if $G \neq C_4$.

According to definition of the nontrivial convex cover number, Corollary 2.2 is true.

In the sequel we analyze the case $n \geq 5$.

Theorem 2.3. Let G = (X; U), $|X| \ge 5$, be a simple connected graph. Then the following conditions are equivalent:

- 1) in G there exists a simplicial vertex $x \in X$;
- 2) in G there exists $\mathbf{\mathcal{P}}_{2,t}(G) = \{S_t = \{x\}, S_{nt} = X \setminus \{x\}\};$
- 3) in G there exists $\mathbf{\mathcal{P}}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x\}\}.$

Proof. Since x is a simplicial vertex in G, it follows that every two vertices $y, z \in \Gamma(x)$ are adjacent. Further, $d - conv(\Gamma(x)) = \Gamma(x)$ and $d - conv(X \setminus \{x\}) = X \setminus \{x\}$. Thus, G can be covered by a convex (2, t)-cover:

$$\boldsymbol{\mathcal{P}}_{2,t}(G) = \{S_t = \{x\}, S_{nt} = X \setminus \{x\}\}.$$

Consequently $1 \Rightarrow 2$.

Suppose there exists a convex (2, t)-cover $\mathbf{P}_{2,t}(G) = \{S_t = \{x\}, S_{nt} = X \setminus \{x\}\}$. Graph G is connected. Hence, there is at least one vertex y such that $y \sim x$ and $d - conv(\{x, y\}) = \{x, y\}$. Therefore, G can be covered by a convex (2, t)-cover:

$$\boldsymbol{\mathcal{P}}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x\}\}.$$

Consequently $2) \Rightarrow 3$.

Suppose there exists a convex (2,t)-cover $\mathbf{P}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x\}\}$. Since S_{nt} is convex, $\Gamma(x)$ is a clique in G. Whence x is a simplicial vertex. Consequently $3 \rightarrow 1$). \Box

Theorem 2.4. Let G = (X; U), $|X| \ge 5$, be a simple connected graph that contains a simplicial vertex. Then G has a convex (2, nt)-cover.

Proof. It follows from Theorem 2.3 that there is a convex (2, t)-cover $\mathcal{P}_{2,t}(G) = \{S_t = \{x\}, S_{nt} = X \setminus \{x\}\}$ such that x is a simplicial vertex. We consider 2 cases.

1) $\Gamma(x) = \{y\}$. Since G is a connected graph and |X| - 1 > 3, there exists $z \in S_{nt}$ such that $z \sim y$. Taking into account that $\langle x, z \rangle = \{x, y, z\}$ and $d - conv(\{x, y, z\}) = \{x, y, z\}$, we obtain the nontrivial convex set $\{x, y, z\}$. This yields that G has a convex (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = \{x, y, z\}, S_2 = S_{nt}\}.$$

2) $|\Gamma(x)| \ge 2$. Select two vertices $y, z \in \Gamma(x)$. Since x is a simplicial vertex, $y \sim z$ and $\{x, y, z\}$ is a triangle that is a nontrivial convex set. This implies that G has a convex (2, nt)-cover $\mathbf{\mathcal{P}}_{2,nt}(G) = \{S_1 = \{x, y, z\}, S_2 = S_{nt}\}.$

Finally, G has a convex (2, nt)-cover. \Box

Theorem 2.5. Let $G = (X; U), |X| \ge 5$, be a simple connected graph without simplicial vertices. Then the following conditions are equivalent:

- 1) in G there exist two adjacent vertices $x, y \in X$ such that $A = \Gamma(x) \setminus \{y\}$ and $B = \Gamma(y) \setminus \{x\}$ are cliques in G, where for all vertices $a \in A, b \in B$, the inequality $d(a, b) \leq 2$ is satisfied;
- 2) in G there exists a convex (2,t)-cover $\mathbf{\mathcal{P}}_{2,t}(G) = \{S_t = \{x,y\}, S_{nt} = X \setminus \{x,y\}\}.$

Proof. Combining Theorem 2.3 with the absence of simplicial vertices in G, we get that G has no a convex (2, t)-cover such that cardinality of the trivial

convex set is one, or cardinality of the trivial convex set is two and trivial set intersects nontrivial set.

Let $x, y \in X$ be two vertices, which satisfy the condition 1). Then the following relations are true:

$$d - conv(\{x, y\}) = \{x, y\}, \ \{x, y\} \cap d - conv(A \cap B) = \emptyset.$$

It follows that G has a convex (2, t)-cover:

$$\boldsymbol{\mathcal{P}}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x, y\}\}.$$

Consequently $1) \Rightarrow 2$

Suppose there exists a convex (2, t)-cover $\mathcal{P}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x, y\}\}$. According to the theorem conditions G does not contain simplicial vertices. Because of the connectivity of S_t and S_{nt} , we have $x \sim y$, and sets $A = \Gamma(x) \setminus \{y\}, B = \Gamma(y) \setminus \{x\}$ generate cliques in G. Moreover, if there exist two vertices $a \in A, b \in B$ such that d(a, b) > 2, then $\{x, y\} \subseteq \langle a, b \rangle \subseteq S_{nt}$. This contradicts convexity of S_{nt} . Further, this means that for all vertices $a \in A, b \in B$, we have $d(a, b) \leq 2$. Consequently $2) \Rightarrow 1$). \Box

Theorem 2.6. Let G = (X; U), $|X| \ge 5$, be a simple connected graph without simplicial vertices and let $\widetilde{\mathbf{P}}_{2,t}(G)$ contains two convex (2,t)-covers such that intersection of their trivial convex sets is empty. Then G has a convex (2,nt)-cover.

Theorem 2.6 follows directly from the fact that the nontrivial convex sets of respective convex (2, t)-covers form a convex (2, nt)-cover of G.

Theorem 2.7. Let G = (X; U), $|X| \ge 5$, be a simple connected graph without simplicial vertices and let $|\widetilde{\mathbf{P}}_{2,t}(G)| = k \ge 2$ such that intersection of trivial sets S_t^i , $1 \le i \le k$, of any two convex (2, t)-covers is not empty. Then exactly one of the following conditions is satisfied:

1) $|\widetilde{\mathbf{P}}_{2,t}(G)| = 3$ and $S_t^1 \cup S_t^2 \cup S_t^3$ generates a triangle in G; 2) $|\bigcap_{i=1}^k S_t^i| = 1.$

Proof. G has no simplicial vertices. Further, using Theorem 2.3, we get that cardinality of trivial convex set for all convex (2, t)-covers of G is two and trivial convex set does not intersect nontrivial convex set. Let us consider 3 cases.

 $|\mathcal{P}_{2,t}(G)| = 2$. It follows that $|S_t^1 \cap S_t^2| = 1$. Hence, condition 2) is satisfied. $|\widetilde{\mathcal{P}}_{2,t}(G)| = 3$. If $|S_t^1 \cap S_t^2 \cap S_t^3| = 1$, then condition 2) is satisfied. Otherwise $S_t^1 \cup S_t^2 \cup S_t^3$ generates a triangle in G and condition 1) is satisfied.

 $|\widetilde{\mathbf{P}}_{2,t}(G)| \geq 4$. Obviously, in this case we have $|\bigcap_{i=1}^{|\widetilde{\mathbf{P}}_{2,t}(G)|} S_t^i| = 1$. This means that condition 2) is satisfied. \Box

Theorem 2.8. Let $G = (X; U), |X| \ge 5$, be a simple connected graph, without simplicial vertices, that satisfies the equality:

$$\widetilde{\boldsymbol{\mathcal{P}}}_{2,t}(G) = \{ \boldsymbol{\mathcal{P}}_{2,t}^i(G) = \{ S_t^i, S_{nt}^i \} : 1 \le i \le 3 \},\$$

where $S_t^1 \cup S_t^2 \cup S_t^3$ generates a triangle in G. Then G has a convex (2, nt)-cover.

Proof. Denote $S = S_t^1 \cup S_t^2 \cup S_t^3$. It is obvious that G can be covered by one of the three convex (2, nt)-covers:

$$\boldsymbol{\mathcal{P}}_{2,nt}^{1}(G) = \{S_{nt}^{1}, S\}, \ \boldsymbol{\mathcal{P}}_{2,nt}^{2}(G) = \{S_{nt}^{2}, S\}, \ \boldsymbol{\mathcal{P}}_{2,nt}^{3}(G) = \{S_{nt}^{3}, S\}.$$

This proves the theorem. \Box

Theorem 2.9. Let G = (X; U), |X| > 5, be a simple connected graph, without simplicial vertices, that satisfies the equality:

$$\widetilde{\mathbf{P}}_{2,t}(G) = \{ \mathbf{P}_{2,t}^i(G) = \{ S_t^i = \{a, b_i\}, S_{nt}^i\} : 1 \le i \le k, \ k \ge 3 \}.$$

Then G has a convex (2, nt)-cover.

Proof. According to the theorem conditions, we have $|\mathbf{P}_{2,t}(G)| \geq 3$, $\bigcap_{i=1}^{k} S_t^i = \{a\} \text{ and } |\Gamma(a) \setminus \{b_i\}| \ge 2 \text{ for } 1 \le i \le k. \text{ Sets } S_{nt}^i, 1 \le i \le k,$ are convex nontrivial due to inequality $|X| \geq 5$. Since, combining absence of simplicial vertices in G with Theorem 2.3, we obtain that G has only convex (2, t)-covers such that the cardinality of the trivial convex set is two and trivial convex set does not intersect nontrivial convex set. Now, $b_i \sim b_j$ for all $i, j \in \{1, 2, \dots, k\}, i \neq j$, because $a \notin S_{nt}^i, 1 \leq i \leq k$. Therefore, $\bigcup_{i=1}^k S_t^i$ is a nontrivial clique in G. Thus, $\bigcup_{i=1}^{k} S_t^i$ is a nontrivial convex set. Finally, there is one of possible convex (2, nt)-covers of graph G:

$$\mathbf{P}_{2,nt}(G) = \{\{a, b_1, b_2\}, S_{nt}^1\}.$$

This proves the theorem. \Box

Now we give the definition of the graph family $\mathbf{\mathcal{P}}$, which will be useful in the sequel.

Define $\mathbf{\mathcal{F}}$ as the family of graphs G = (X; U) that satisfy the following conditions:

a) $X = \{a, b_1, b_2, x_1, x_2, \dots, x_m\}, m \ge 1;$ b) $U = \{\{a, b_1\}, \{a, b_2\}\} \cup \{\{x_i, x_j\} : 1 \le i, j \le m; i \ne j\} \cup \{\{b_1, x_i\}, \{b_2, x_i\} : 1 \le i, j \le m; i \ne j\} \cup \{\{b_1, b_1\}, \{b_2, b_2\} \}$ $1 \le i \le m$.

It can easily be checked that all graphs $G \in \mathcal{P}$ on $n \geq 5$ vertices have exactly two convex (2, t)-covers:

$$\boldsymbol{\mathcal{P}}_{2,t}^{1}(G) = \{\{a, b_1\}, \{b_2, x_1, \dots, x_m\}\}, \ \boldsymbol{\mathcal{P}}_{2,t}^{2}(G) = \{\{a, b_2\}, \{b_1, x_1, \dots, x_m\}\}.$$

Graph family $\boldsymbol{\mathcal{P}}$ is presented in Figure 1.

RADU BUZATU

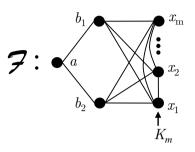


FIGURE 1. Graph family **7**

Theorem 2.10. A graph $G = (X; U) \in \mathcal{P}$ has no a convex (2, nt)-cover.

Proof. By definition, $|X| \ge 4$. If |X| = 4, then $G = C_4$. Under the conditions of Corollary 2.2, G has no a convex (2, nt)-cover.

Suppose $|X| \ge 5$. Assume that graph G has a convex (2, nt)-cover. Further, one of nontrivial convex sets of this convex (2, nt)-cover contains vertices $\{b_1, b_2\}$ or $\{a, x\}$, where $x \in X \setminus \{a, b_1, b_2\}$. Notice that for every graph $G = (X; U) \in \mathcal{P}$ the following conditions hold:

$$\{b_1, b_2\} \subseteq \langle a, x \rangle$$
, for all $x \in X \setminus \{a, b_1, b_2\}$;

$$d - conv(\{b_1, b_2\}) = X.$$

This contradiction proves the theorem. \Box

Theorem 2.11. Let G = (X; U), $|X| \ge 5$, $G \notin \mathbf{7}$, be a simple connected graph, without simplicial vertices, that satisfies the equality:

$$\widetilde{\boldsymbol{\mathcal{P}}}_{2,t}(G) = \{ \boldsymbol{\mathcal{P}}_{2,t}^1(G) = \{ S_t^1 = \{a, b_1\}, S_{nt}^1 \}, \boldsymbol{\mathcal{P}}_{2,t}^2(G) = \{ S_t^2 = \{a, b_2\}, S_{nt}^2 \} \}.$$

Then G has a convex (2, nt)-cover.

Proof. Suppose $b_1 \sim b_2$. Then G has convex (2, nt)-covers:

$$\boldsymbol{\mathcal{P}}_{2,nt}^{1}(G) = \{\{a, b_1, b_2\}, S_{nt}^{1}\}, \boldsymbol{\mathcal{P}}_{2,nt}^{2}(G) = \{\{a, b_1, b_2\}, S_{nt}^{2}\}.$$

Now suppose that $b_1 \approx b_2$. Denote $A = \Gamma(a) \setminus \{b_1\}, B = \Gamma(b_1) \setminus \{a\}$. We see that $A, B \subseteq S_{nt}^1$. If $S_{nt}^1 \neq d - conv(A \cup B)$, then G has a convex (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = \{a, b_1\} \cup d - conv(A \cup B), S_2 = S_{nt}^1\}.$$

Assume that $S_{nt}^1 = d - conv(A \cup B)$. In addition, suppose that $|A| \ge 2$. It follows from Theorem 2.5 that $A \cup \{a\}$ is a clique in G. Thus, $A \cup \{a\}$ is a nontrivial convex set. By the theorem conditions, we have $b_2 \in A$, $b_1 \in S_{nt}^2$. Hence, G has a convex (2, nt)-cover:

$$\mathbf{\mathcal{P}}_{2,nt}(G) = \{S_1 = A \cup \{a\}, S_2 = S_{nt}^2\}.$$

Further assume that $A = b_2$. In accordance with Theorem 2.5, we obtain that $B \ge 1$. Let us consider 2 cases.

Suppose $S_{nt}^1 \neq A \cup B$. Then, combining convexity of S_{nt}^1 with Theorem 2.5, there is a vertex $x \in B$ that satisfies $d(b_2, x) = 2$ such that there is a vertex $y \in \langle b_2, x \rangle$, where $y \notin A \cup B$, $y \in d - conv(A \cup B)$, otherwise $S_{nt}^1 = A \cup B$. This implies that G has a convex (2, nt)-cover:

$$\mathbf{\mathcal{P}}_{2,nt}(G) = \{S_1 = \{a, b_1, x\}, S_2 = S_{nt}^1\}.$$

Suppose $S_{nt}^1 = A \cup B$. Then, since $|X| \ge 5$ and |A| = 1, it follows that $|B| \ge 2$. If $b_2 \sim x$ for all $x \in B$, then $G \in \mathcal{P}$ and by Theorem 2.10, it follows that this graph has no a convex (2, nt)-cover. Conversely, graph G has a convex (2, nt)-cover:

$$\textbf{P}_{2,nt}(G) = \{S_1 = d - conv(\{b_1, b_2\}), S_2 = B \cup \{b_1\}\}.$$

The theorem is proved. \Box

Let us remark that every simple connected graph, that contains simplicial vertices, has at least two different convex (2, t)-covers. This follows directly from Theorem 2.3.

Now we define some families of graphs.

By \mathscr{J} denote a family of simple connected graphs on $n \geq 5$ vertices that have at least two different convex (2, t)-covers and not belong to \mathscr{F} .

By \mathcal{A} denote a family of simple connected graphs on $n \geq 5$ vertices that have exactly one convex (2, t)-cover.

Theorem 2.12. A graph $G \in \mathcal{G}$ has a convex (2, nt)-cover.

Theorem 2.12 follows directly from Theorems 2.3 - 2.11.

Let \mathcal{H}' be a subfamily of \mathcal{H} with the following properties:

- a) $A \cap B = \emptyset$, where $A = \Gamma(x) \setminus \{y\}$, $B = \Gamma(y) \setminus \{x\}$ such that $\{x, y\}$ is the trivial set of the convex (2, t)-cover of a graph;
- b) For each $a \in A$ there exists $b \in B$ such that $a \sim b$ and for each $b \in B$ there exists $a \in A$ such that $b \sim a$;
- c) $d conv(A \cup B) = S_{nt}$, where S_{nt} is the nontrivial set of the convex (2, t)-cover of a graph;
- d) $S_{nt} \neq A \cup B$. This implies that there exist $a \in A, b \in B, c \in C$ such that d(a,b) = 2 and $c \in \langle a,b \rangle$, where $C = S_{nt} \setminus (A \cup B)$.

Let $\mathcal{H}'' = \mathcal{H} \setminus \mathcal{H}'.$

Theorem 2.13. A graph $G \in \mathcal{P}''$ has a convex (2, nt)-cover.

Proof. Let $\mathcal{P}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt}\}$ be a convex (2, t)-cover of G. Denote $A = \Gamma(x) \setminus \{y\}, B = \Gamma(y) \setminus \{x\}$. Since $G \in \mathcal{H}''$, where $\mathcal{H}'' = \mathcal{H} \setminus \mathcal{H}'$, we have $G \notin \mathcal{H}'$ and it follows that at least one property that characterize the family \mathcal{H}' is not satisfied.

If $A \cap B \neq \emptyset$, then G has a convex (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = \{x, y, z\}, S_2 = S_{nt}\},\$$

where $z \in A \cap B$.

Assume that the property a) is satisfied. Conversely, by the above, G has a convex (2, nt)-cover. If there exists $a \in A$ for which does not exist $b \in B$ such that $a \sim b$, then G has a convex a (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = \{x, y, a\}, S_2 = S_{nt}\}.$$

In the same way, if there exists $b \in B$ for which does not exist $a \in A$ such that $b \sim a$, then G has a convex a (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = \{x, y, b\}, S_2 = S_{nt}\}$$

If $d - conv(A \cup B) \neq S_{nt}$, then G has a convex (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = \{x, y\} \cup d - conv(A \cup B), S_2 = S_{nt}\}$$

If $S_{nt} = A \cup B$. Then we consider two cases.

1) Suppose $|A| \ge 2$ and $|B| \ge 2$. Then G has a convex (2, nt)-cover:

$$\mathbf{P}_{2,nt}(G) = \{S_1 = A \cup \{x\}, S_2 = B \cup \{y\}\}.$$

2) Suppose |A| = 1. Since every graph of the family \mathcal{H}'' has at least five vertices, we get $|B| \geq 2$. Assume that the properties a) and b) are satisfied. Conversely, by the above, G has a convex (2, nt)-cover. Let $A = \{v\}$. According to the property b), the vertex v is adjacent to all vertices of B and further $G \in \mathcal{T}$. By definition, \mathcal{H}'' is the family of graphs that have exactly one convex (2, t)-cover but every graph that belongs to the family \mathcal{T} has exactly two convex (2, t)-covers. This implies a contradiction. Similarly, we get a contradiction if suppose |B| = 1. Thus, $|A| \geq 2$ and $|B| \geq 2$ but in this case G has a convex (2, nt)-cover. \Box

Consider simple connected graph G has n vertices and m edges. In the sequel, we present some algorithms that determine appartenance of G to the classes: **7**, **9**, **4**', **4**''.

Next we propose the Algorithm 2.14 that determine whether a graph G belongs to the family $\mathbf{\mathcal{P}}$.

Algorithm 2.14.

Input: Simple connected graph G = (X; U).

Output: YES: G belongs to $\mathbf{7}$, or NO: G does not belong to $\mathbf{7}$.

Step 1) If $|X| \leq 3$, then return NO.

Step 2) If |X| = 4, then check whether $G = C_4$. If $G = C_4$, then return YES; otherwise return NO.

Step 3) Check whether there exists or not a unique vertex $x \in X$ such that $\Gamma(x) = \{y, z\}$ and $y \nsim z$. If not, then return NO.

Step 4) Check whether both $\{y\} \cup X \setminus \{x, z\}$ and $\{z\} \cup X \setminus \{x, y\}$ are cliques in G. If so, then return YES; otherwise return NO.

Theorem 2.15. It can be decided in time $O(n^2)$ whether a graph G belongs to the family \mathcal{P} .

Proof. Evidently, steps 1) and 2) run in constant time. The step 3) is executed in O(n) time. It is clear that it can be verified in $O(n^2)$ time if the given subgraph is a clique or not. Hence the step 4) operates in $O(n^2)$. Based on the mentioned facts, the execution time of the algorithm is $O(n^2)$. \Box

Algorithm 2.16 determines whether or not a graph G belongs to one of the families: $\mathcal{G}, \mathcal{H}', \mathcal{H}''$.

Algorithm 2.16.

Input: Simple connected graph G = (X; U).

Output: $F \mathcal{G}$: G belongs to \mathcal{G} , or $F \mathcal{H}'$: G belongs to \mathcal{H}' , or $F \mathcal{H}''$: G belongs to \mathcal{H}'' , or NO: G does not belong to any of the families.

Step 1) Apply Algorithm 2.14. If Algorithm 2.14 returns YES, then return NO.

Step 2) Check whether there exists or not a simplicial vertex in G. If there is a simplicial vertex in G, then return $F\mathcal{G}$.

Step 3) Search all convex (2,t)-covers of G, i.e., define $\mathcal{P}_{2,t}(G)$. For this purpose search all adjacent vertices $x, y \in X$, which satisfy the next equality $d - \operatorname{conv}(X \setminus \{x, y\}) = X \setminus \{x, y\}.$

Step 4) If $\mathbf{P}_{2,t}(G) = \emptyset$, then return NO.

Step 5) If $|\widetilde{\mathbf{P}}_{2,t}(G)| \geq 2$, then return $F\mathbf{g}$.

Step 6) If $A \cap B \neq \emptyset$ such that $A = \Gamma(x) \setminus \{y\}, B = \Gamma(y) \setminus \{x\}$, where $\{x, y\}$ is the trivial set of the single convex (2, t)-cover of $\widetilde{\mathbf{P}}_{2,t}(G)$, then return $F\mathbf{\mathcal{P}}''$.

Step 7) Check whether there exist $a \in A$ such that, for all $b \in B$ the condition $a \approx b$ is satisfied or there exist $b \in B$ such that, for all $a \in A$ the condition $b \approx a$ is satisfied. If there exists such $a \in A$ or $b \in B$, then return $F \mathcal{H}''$.

Step 8) Compute $d - conv(A \cup B)$. If $d - conv(A \cup B) \neq S_{nt}$, where S_{nt} is the nontrivial set of the single convex (2,t)-cover of $\widetilde{\mathbf{P}}_{2,t}(G)$, then return $F\mathbf{\mathcal{H}}''$.

Step 9) If $S_{nt} = A \cup B$, then return $F\mathcal{A}''$. Step 10) Return $F\mathcal{A}'$.

Theorem 2.17. It can be decided in time $O(nm^2)$ whether or not a graph G belongs to one of the families: $\mathcal{G}, \mathcal{H}', \mathcal{H}''$.

Proof. Since complexity of Algorithm 2.14 is $O(n^2)$, then it results that the complexity of the step 1) is $O(n^2)$.

A vertex $x \in X$ is simplicial if and only if $\Gamma(x)$ is a clique, but determining if a given subset is a clique can be done in $O(n^2)$. Further, checking every vertex whether it is simplicial executes in $O(n^3)$. So the complexity of the step 2) is $O(n^3)$.

The convex hull of a set $S \subseteq X$ can be computed in O(|d - conv(S)|m) time [4]. Since |d - conv(S)| can reach value n, we obtain that the complexity of the step 8) is O(nm).

The family $\mathcal{P}_{2,t}(G)$ is obtained by applying the convex hull algorithm to set $X \setminus \{x, y\}$ for all adjacent vertices $x, y \in X$. Since $|d - conv(X \setminus \{x, y\})|$ can reach value n, we obtain that the complexity of the step 3) is $O(nm^2)$.

Clearly, steps 4), 5) and 10) run in constant time, steps 6) and 9) run in O(n) time, but step 7) is executed in $O(n^2)$. As a result, we can decide in $O(nm^2)$ time whether or not a graph G belongs to one of the families: 9, 2', 2'', 2''.

Theorem 2.18. Let $G = (X; U) \in \mathscr{P}'$ be a graph that has a convex (2, t)cover $\mathscr{P}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x, y\}\}$ and has a convex (2, nt)-cover. Then G has a convex (2, nt)-cover $\mathscr{P}_{2,nt}(G) = \{S_1, S_2\}$ such that exactly one of the following conditions is satisfied:

- a) $x, y \in S_1$ and $S_2 = X \setminus \{x, y\};$
- b) $x \in S_1$, $x \notin S_2$ and $y \in S_2$, $y \notin S_1$.

Proof. Let $\mathbf{\mathcal{P}}'_{2,nt}(G) = \{S'_1, S'_2\}$ be a convex (2, nt)-cover of G. Suppose $x, y \in S'_1$. Then, since S_{nt} is nontrivial convex set, we obtain $S_1 = S'_1$ and $S_2 = S_{nt}$. Thus, the condition a) is satisfied. Otherwise the condition b) is satisfied. \Box

Theorem 2.19. It can be decided in time $O(n^2m)$ if a graph $G = (X; U) \in \mathscr{H}'$ has a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18. And for this purpose it is sufficient to determine whether there exists $z \in A \cup B$ such that $S_{nt} \nsubseteq d - conv(\{x, y, z\})$, where $\mathscr{P}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x, y\}\}$ is a convex (2, t)-cover of G and $A = \Gamma(x) \setminus \{y\}$, $B = \Gamma(y) \setminus \{x\}$.

Proof. By definition of \mathscr{H}' , G has no simplicial vertices and $|X| \ge 5$. Let $\mathscr{P}^{1}_{2,nt}(G) = \{S^{1}_{1}, S^{1}_{2} = S_{nt}\}$ be a convex (2, nt)-cover of G such that $x, y \in S^{1}_{1}$. It is clear that there exists a vertex $z \in A \cup B$ such that the relation $d - conv(\{x, y, z\}) \subseteq S^{1}_{1}$ is satisfied. Furthermore, graph G has a convex (2, nt)-cover:

$$\mathbf{\mathcal{P}}_{2,nt}^2(G) = \{S_1^2 = d - conv(\{x, y, z\}), S_2^2 = S_{nt}\}.$$

Without loss of generality it is sufficient to determine whether there exists $z \in A \cup B$ such that $S_{nt} \nsubseteq d - conv(\{x, y, z\})$. For this purpose we compute the convex hull of $\{x, y, z\}$ for all $z \in A \cup B$. If there is at least one vertex $z \in A \cup B$ such that $S_{nt} \nsubseteq d - conv(\{x, y, z\})$, then G has a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18.

Let us remind that computing of the convex hull of a set $S \subseteq X$ can be done in O(|d - conv(S)|m) time [4]. The decision whether G has a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18 can be obtained by applying the convex hull algorithm at most $|A \cup B|$ times. Thus, the overall complexity is $O(n^2m)$. \Box

Theorem 2.20. Let $G = (X; U) \in \mathcal{P}'$ be a graph that has a convex (2, t)-cover $\mathcal{P}_{2,t}(G) = \{S_t = \{x, y\}, S_{nt} = X \setminus \{x, y\}\}$ and has no a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18, but has a convex (2, nt)-cover $\mathcal{P}_{2,nt}(G) = \{S_1, S_2\}$ that satisfies the condition b) of Theorem 2.18, that is, $x \in S_1, x \notin S_2$ and $y \in S_2, y \notin S_1$. Then the following conditions are satisfied:

a) $(\Gamma(x)\setminus y) \subseteq S_1$ and $(\Gamma(x)\setminus y) \cap S_2 = \emptyset$;

b) $(\Gamma(y)\backslash x) \subseteq S_2$ and $(\Gamma(y)\backslash x) \cap S_1 = \emptyset$.

Proof. Assume $(\Gamma(x)\setminus y) \cap S_2 \neq \emptyset$, or $(\Gamma(x)\setminus y) \not\subseteq S_1$, i.e., $(\Gamma(x)\setminus y) \cap S_2 \neq \emptyset$. Therefore, we get $x \in S_2$. Since $x \in S_1$ and $y \in S_2$, this means that $\mathbf{\mathcal{P}}_{2,nt}(G)$ does not satisfy the condition b) of Theorem 2.18. We have a contradiction. By the same argument, if we assume $(\Gamma(y)\setminus x) \cap S_1 \neq \emptyset$, or $(\Gamma(y)\setminus x) \not\subseteq S_2$, then we also get a contradiction. \Box

3. NP-completeness

It is known that determining if a graph has a convex 2-cover is NPcomplete [7]. Generally, knowing all convex (2, t)-covers of a graph G does not facilitate determining if G has a convex (2, nt)-cover. But it is useful to know if a graph that has convex (2, t)-covers also has a convex (2, nt)-cover.

In previous section we proved that all graphs of the families \mathcal{J} and \mathcal{H}'' have a convex (2, nt)-cover and none graph of \mathcal{P} has a convex (2, nt)-cover. Also, we proved that it can be determined in polynomial time whether or not a graph belongs to one of the families: $\mathcal{P}, \mathcal{J}, \mathcal{H}', \mathcal{H}''$.

Denote by $\mathcal{H}'(2, nt)$ the problem of deciding whether a graph $G \in \mathcal{H}'$ has a convex (2, nt)-cover.

Now let us prove that the $\mathcal{P}'(2, nt)$ problem is NP-complete. For this purpose we reduce the NP-complete 1-IN-3 3 SAT problem [5] to the $\mathcal{H}'(2, nt)$ problem.

1-IN-3 3 SAT problem:

Instance: Set $V = \{v_1, v_2, \ldots, v_n\}$ of variables, collection $\boldsymbol{\mathcal{C}} = \{\boldsymbol{c}_1, \boldsymbol{c}_2, \ldots, \boldsymbol{c}_m\}$ of clauses over V such that each clause $\boldsymbol{c} \in \boldsymbol{\mathcal{C}}$ has $|\boldsymbol{c}| = 3$ and no negative literals.

Question: Is there a truth assignment for V such that each clause in \mathcal{C} has exactly one true literal?

We say that \mathcal{C} is *satisfiable* if there exists a truth assignment for V such that \mathcal{C} is satisfiable and each clause in \mathcal{C} has exactly one true variable.

Theorem 3.1. The $\mathcal{H}'(2, nt)$ problem is NP-complete.

Proof. $\mathcal{H}'(2, nt)$ problem is in NP, because verifying if a set is convex can be done in polynomial time [4] and nontriviality is verifying in constant time. Further, we reduce 1-IN-3 3 SAT to the $\mathcal{P}'(2, nt)$ problem. First, we determine the structure of a particular graph $G = (X; U) \in \mathcal{H}'$ from a generic instance (V, \mathcal{C}) of 1-IN-3 3 SAT. Next, we prove that \mathcal{C} is satisfiable if and only if G has a convex (2, nt)-cover. For this purpose we prove that a convex (2, nt)-cover of G defines a truth assignment that satisfies (V, \mathcal{C}) . At the same time, we prove that a truth assignment that satisfies (V, \mathcal{O}) defines a convex (2, nt)-cover of G.

Let graph G be given by vertex set X and edge set U. The vertex set X consists of:

- a) vertices y and z;
- b) $\boldsymbol{\mathcal{V}} = \{\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n\}, Y = \{y_1, y_2, y_3, y_4\}, Y' = \{f, y_5, y_6, y_7, y_8, y_9\}, Y' = \{f, y_5, y_6, y_7, y_8, y_9\}, Y' = \{g_1, g_2, \dots, g_n\}, Y' = \{$ $Z = \{z_1, z_2, z_3, z_4\}, Z' = \{t, z_5, z_6, z_7, z_8, z_9\};$
- c) $F = \{f_j | 1 \le j \le m\}, T = \{t_j | 1 \le j \le m\};$ d) $L = \{l_j^i | 1 \le j \le m, 1 \le i \le 3\}, \mathcal{L} = \{\ell_j^i | 1 \le j \le m, 1 \le i \le 3\},$ $Q = \{q_i^{\tilde{i}} | 1 \le j \le m, 1 \le i \le 3\}.$

We get $X = \{y, z\} \cup \mathcal{V} \cup Y \cup Y' \cup Z \cup Z' \cup F \cup T \cup L \cup Q \cup \mathcal{L}$. Every variable $v_i \in V$ corresponds to vertex $\boldsymbol{a}_i \in \boldsymbol{\mathcal{V}}$. Every clause $\boldsymbol{c}_j \in \boldsymbol{\mathcal{C}}$ corresponds to eleven vertices: f_j , l_j^1 , l_j^2 , l_j^3 , $\boldsymbol{\ell}_j^1$, $\boldsymbol{\ell}_j^2$, $\boldsymbol{\ell}_j^3$, q_j^1 , q_j^2 , q_j^3 , t_j . The edge set U satisfies the conditions:

- a) $y \sim z$, $y_4 \sim z_k$ and $z_4 \sim y_k$ for $1 \le k \le 4$;
- b) $\mathcal{U} \cup Q, Y \cup \{y\}$ and $Z \cup \{z\}$ are cliques in G;
- c) $\Gamma(f) = \mathcal{U} \cup Q \cup F \cup Y \cup \{y_6, y_7\}$ and $\Gamma(t) = \mathcal{U} \cup Q \cup T \cup Z \cup \{z_6, z_7\};$

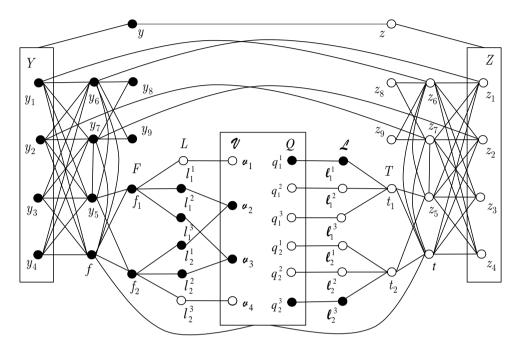


FIGURE 2. The convex (2, nt)-cover of the graph G for the instance $(V, \mathcal{C}) = (\{v_1, v_2, v_3, v_4\}, \{\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}\})$

- d) $\Gamma(y_5) = F \cup Y \cup \{y_6, y_7\}, \ \Gamma(y_6) = Y \cup \{f, y_5, y_8, y_9, z_1\}, \ \Gamma(y_7) = Y \cup \{f, y_5, y_8, y_9, z_2\} \text{ and } \Gamma(z_5) = T \cup Z \cup \{z_6, z_7\}, \ \Gamma(z_6) = Z \cup \{t, z_5, z_8, z_9, y_1\}, \ \Gamma(z_7) = Z \cup \{t, z_5, z_8, z_9, y_2\};$
- e) every clause $\mathbf{c}_{j} = \{v_{a}, v_{b}, v_{c}\}, 1 \leq j \leq m$, corresponds to eighteen edges: $\{l_{j}^{1}, v_{a}\}, \{l_{j}^{2}, v_{b}\}, \{l_{j}^{3}, v_{c}\}, \{l_{j}^{1}, f_{j}\}, \{l_{j}^{2}, f_{j}\}, \{l_{j}^{3}, f_{j}\}, \{\ell_{j}^{1}, t_{j}\}, \{\ell_{j}^{2}, t_{j}\}, \{\ell_{j}^{3}, t_{j}\}, \{q_{j}^{1}, \ell_{j}^{1}\}, \{q_{j}^{2}, \ell_{j}^{2}\}, \{\ell_{j}^{3}, \ell_{j}^{3}\}, \{l_{j}^{1}, \ell_{j}^{2}\}, \{l_{j}^{2}, \ell_{j}^{2}\}, \{l_{j}^{2}, \ell_{j}^{3}\}, \{l_{j}^{2}, \ell_{j}^{2}\}, \{l_{j}^{3}, \ell_{j}^{3}\}, \{l_{j}^{2}, \ell_{j}^{2}\}, \{l_{j}^{2}, \ell_{j}^{3}\}, \{l_{j}^{3}, \ell_{j}^{2}\}, \{l_{j}^{3}, \ell_{j}^{2}\}.$

We skip the trivial case $|\mathcal{C}| = 1$ of 1-IN-3 3 SAT problem. Consider $|\mathcal{C}| \geq 2$.

Firstly, we show that the obtained graph G = (X; U) belongs to \mathcal{P} . Let us remember that \mathcal{P} is a family of simple connected graphs on $n \geq 5$ vertices that have exactly one convex (2, t)-cover. According to Theorem 2.3, G has no simplicial vertices. It follows easily from construction of G that this graph really has no such vertices but contains the only one pair of adjacent vertices $\{y, z\}$, which satisfies the conditions of Theorem 2.5. This means that G has exactly the one convex (2, t)-cover $\mathcal{P}_{2,t} = \{S_t = \{y, z\}, S_{nt} = X \setminus \{y, z\}\}$ and further G belongs to \mathcal{P} .

RADU BUZATU

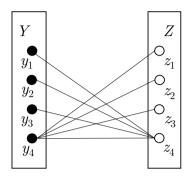


FIGURE 3. Edges between Y and Z

Secondly, we show that G is in \mathcal{H}' . To do this we show that all the properties, which characterize the family \mathcal{H}' are satisfied. Clearly, we see that properties a), b) are satisfied. Since $\{y_6, y_7, z_6, z_7\} \subseteq d - conv(A \cup B)$, $d - conv(\{y_6, y_7, z_6, z_7\}) = S_{nt}$ and $\{A \cup B\} \subseteq S_{nt}$, the properties c) and d) are also satisfied. This means that G is in \mathcal{H}' .

Thirdly, we show that G has no a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18. By construction of G, $S_{nt} \subseteq d - conv(\{y, z, x\})$ for all $x \in A \cup B$, where $A = \Gamma(y) \setminus \{z\}$ and $B = \Gamma(z) \setminus \{y\}$. Further, taking into account Theorem 2.19, we obtain that G has no a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18. Thus, if graph G has a convex (2, nt)-cover, then it satisfies the condition b) of Theorem 2.18 and satisfies Theorem 2.20.

We prove that \mathcal{C} is satisfiable if and only if G has a convex (2, nt)-cover.

If G = (X; U) has a convex (2, nt)-cover, then \mathcal{C} is satisfiable.

Let $\mathbf{\mathcal{P}}_2(G) = \{S_f, S_t\}$ be a convex (2, nt)-cover of G such that $y \in S_f$, $y \notin S_t$ and $z \in S_t$, $z \notin S_f$. We have $d - conv(\{y_i, z_j\}) = S_{nt} = X \setminus \{y, z\}$ for every $i, j \in \{8, 9\}$. Further, $y_8, y_9 \in S_f$, $z_8, z_9 \in S_t$ and let $S_1 = Y \cup Y' \cup F$, $S_2 = Z \cup Z' \cup T$.

Let us distinguish some properties:

1) $S_1 \cap S_t = \emptyset$ and $S_2 \cap S_f = \emptyset$.

We see what $S_1 \subseteq d-conv(\{y_8, y_9\}), S_2 \subseteq d-conv(\{z_8, z_9\})$. Consequently we have $S_1 \subseteq S_f, S_2 \subseteq S_t$.

Moreover, for each $u \in S_1$, we get $d - conv(\{u, z_8, z_9\}) = S_{nt}$. This implies that $u \notin S_t$ for each $u \in S_1$. Similarly, for each $u \in S_2$, we get

 $d - conv(\{u, y_8, y_9\}) = S_{nt}$. This implies that $u \notin S_f$ for each $u \in S_2$. Thus $S_1 \cap S_t = \emptyset$ and $S_2 \cap S_f = \emptyset$.

2) Sets $L, \mathcal{V}, Q, \mathcal{L}$ are uniquely interdependent.

If vertex l_j^i belongs to S_t , then $\Gamma(l_j^i) \cap \mathcal{V} \subseteq S_t$ and ℓ_j^k belongs to S_t for $1 \leq k \leq 3, k \neq i$.

If vertex \boldsymbol{a}_i belongs to S_t , then $\Gamma(\boldsymbol{a}_i) \cap L \subseteq S_t$ and for all $l_j^a \in \Gamma(\boldsymbol{a}_i) \cap L$ vertices $\boldsymbol{\ell}_i^k$ belong to S_t for $1 \leq k \leq 3, k \neq a$.

Vertex ℓ_j^i belongs to S_f if and only if q_j^i belongs to S_f . If vertex ℓ_j^i belongs to S_f , then $L' = \{l_j^k | 1 \le k \le 3, k \ne i\} \subseteq S_f$ and $\Gamma(l_j^k) \cap \mathcal{U}$ is contained in S_f for all $l_j^k \in L'$.

3) Exactly one vertex of $L_j = \{l_j^1, l_j^2, l_j^3\}$ belongs to S_t , for $1 \le j \le m$, and exactly one vertex of $\mathcal{L}_j = \{\ell_j^1, \ell_j^2, \ell_j^3\}$ belongs to S_f , for $1 \le j \le m$.

Exactly one vertex of every set $L_j = \{l_j^1, l_j^2, l_j^3\}, 1 \leq j \leq m$, belongs to S_t . In the converse case, if two vertices $\{l_j^a, l_j^b\}$ of L_j belong to S_t , then f_j belongs to S_t . By Property 1, we get a contradiction. If none vertex of $L_j = \{l_j^1, l_j^2, l_j^3\}$ belongs to S_t , then $L_j \subseteq S_f, \mathcal{L}_j = \{\ell_j^1, \ell_j^2, \ell_j^3\} \subseteq S_f$ and t_j belongs to S_f . Now by Property 1, we have a contradiction.

In addition, exactly one vertex of every set $\mathcal{L}_j = \{ \ell_j^1, \ell_j^2, \ell_j^3 \}, 1 \leq j \leq m$, belongs to S_f .

We associate \mathcal{V} with V and L with \mathcal{C} such that convex (2, nt)-cover represents a truth assignment for \mathcal{V} , where the variable v_i is true if and only if the vertex $\boldsymbol{\omega}_i \in S_t$.

Let us remark that sets S_f , S_t are nontrivial and disjoint. It follows from Properties 1 - 3 that if G has a convex (2, nt)-cover $\mathbf{P}_2(G) = \{S_f, S_t\}$, then $\mathbf{\mathcal{C}}$ is satisfiable.

If \mathcal{C} is satisfiable, then G = (X; U) has a convex (2, nt)-cover.

Suppose that there exists a truth assignment, which satisfies (V, \mathcal{C}) . We construct a convex (2, nt)-cover $\mathcal{P}_2(G) = \{S_f, S_t\}$ as follows:

Step 1. Define $S_t = Z \cup Z' \cup T \cup \{z\};$

- Step 2. For each true variable v_i of V we add vertex \boldsymbol{a}_i and the set $L' = \Gamma(\boldsymbol{a}_i) \cap L$ to S_t and for each $l_j^a \in L'$ we add vertices $q_j^b, \boldsymbol{\ell}_j^b$ to S_t such that $\boldsymbol{\ell}_j^b \sim l_j^a$ and $q_j^b \sim \boldsymbol{\ell}_j^b$;
- Step 3. Define $S_f = X \setminus S_t$.

RADU BUZATU

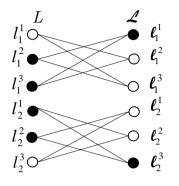


FIGURE 4. Edges between L and $\boldsymbol{\measuredangle}$

Clearly, for the resulting convex (2, nt)-cover $\mathcal{P}_2(G) = \{S_f, S_t\}$ the Properties 1, 2 and 3 are satisfied. Note also that sets S_f and S_t are disjoint. Hence, if \mathcal{C} is satisfiable, then G has a convex (2, nt)-cover.

We represent in Figure 2 the graph G that corresponds to a particular instance $(V, \mathcal{C}) = (\{v_1, v_2, v_3, v_4\}, \{\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}\})$. Sets $Q \cup \mathcal{V} \cup \{f\}$, $Q \cup \mathcal{V} \cup \{t\}, Y \cup \{y\}$ and $Z \cup \{z\}$ generate cliques in G. White vertices belong to S_t and black vertices belong to S_f . White vertices of \mathcal{V} represent the variables of V set to true. All edges between Y and Z are represented in Figure 3 but all edges between L and \mathcal{L} are represented in Figure 4. \Box

Finally, we obtain that it is NP-complete do decide whether a graph that has convex (2, t)-covers also has a convex (2, nt)-cover. Indeed, this follows from fact that the $\mathcal{H}'(2, nt)$ problem is NP-complete.

4. Some graph classes, which have a convex (2, nt)-cover

Let us examine some classes of simple connected graphs, which have a convex (2, nt)-cover.

Consider C_n a cycle graph on *n* vertices. Recall that a *chordal* graph is a connected graph such that every cycle of length at least 4 has a chord.

Theorem 4.1. A chordal graph G on $n \ge 4$ vertices has a convex (2, nt)-cover.

Proof. Every chordal graph G contains at least one simplicial vertex [6]. Also, every chordal graph on n = 4 vertices is not equal to the cycle C_4 . This yields that under the conditions of Corollary 2.2 and Theorem 2.4, chordal graph G on $n \ge 4$ vertices has a convex (2, nt)-cover. \Box

Corollary 4.2. A tree and a complete graph on $n \ge 4$ vertices have a convex (2, nt)-cover.

Corollary 4.2 follows directly from the fact that these types of graphs are subclusses of chordal graphs.

A power of cycle C_n^k , $1 \le k \le \lfloor \frac{n}{2} \rfloor$, is a graph such that $X(C_n^k) = X(C_n)$ and $U(C_n^k) = \{\{u_i, u_j\} | u_i, u_j \in X(C_n^k), d_{C_n}(u_i, u_j) \le k\}.$

In [3] it is established the following theorem, which states conditions to determine whether C_n^k has a convex 2-partition.

Theorem 4.3. [3] C_n^k has a convex 2-partition if and only if $n \le 2k+2$ or $n \equiv 0, 1, 2 \pmod{2k}$.

Using Theorem 4.3, we have the following result.

Theorem 4.4. C_n^k has a convex (2, nt)-cover if and only if $n \ge 4$, $C_n^k \ne C_4$, and $n \le 2k + 2$ or $n \equiv 0, 1, 2 \pmod{2k}$.

Proof. First, we shall show that C_n^k has a convex 2-partition if and only if C_n^k has a convex 2-cover. By construction of C_n^k , every convex set of C_n^k consists of consecutive vertices of C_n . Suppose $\mathcal{P}_2(C_n^k) = \{S_1, S_2\}$ is a convex 2-cover of C_n^k . Subtracting $S_1 \cap S_2$ from S_1 or from S_2 , we get a convex 2partition of C_n^k . Therefore, every convex 2-cover of C_n^k can be transformed in a convex 2-partition. Recall that convex 2-partition is a convex 2-cover.

Let us show that C_n^k has a convex 2-cover if and only if C_n^k has a convex (2, nt)-cover and conditions $n \ge 4$, $C_n^k \ne C_4$ hold.

For $n \leq 3$ there is no convex (2, nt)-cover of graph C_n^k . It remains to verify if C_n^k has a convex (2, nt)-cover for $n \geq 4$.

Assume that n = 4. According to power of cycle definition, we have $1 \le k \le 2$. If k = 1, then $C_4^1 = C_4$. By Corollary 2.2, it follows that this graph has no a convex (2, nt)-cover. On the other hand, if k = 2, then $C_4^2 = K_4$ and the application of Corollary 4.2 yields that C_4^2 has a convex (2, nt)-cover.

Further, assume that $n \geq 5$. Suppose $\mathcal{P}_{2,t}(C_n^k) = \{S_t, S_{nt}\}$ is a convex (2, t)-cover. If $|S_t| = 1$, or if $|S_t| = 2$ and $S_t \cap S_{nt} \neq \emptyset$, then taking into account Theorem 2.3 and Theorem 2.4, C_n^k has a convex (2, nt)-cover. Otherwise if $|S_t| = 2$ and $S_t \cap S_{nt} = \emptyset$, then since the construction of power of cycle is regular, graph C_n^k has the another convex (2, t)-cover $\mathcal{P}'_{2,t}(C_n^k) = \{S'_t, S'_{nt}\}$ such that S'_t consists of two consecutive vertices in C_n and $S_t \cap S'_t = \emptyset$, where $S'_t \subset S_{nt}$ and $S_t \subset S'_{nt}$. Thus, using Theorem 2.6, we get a convex (2, nt)-cover of C_n^k . \Box

A cactus graph is a connected graph in which any two graph cycles have at most one vertex in common.

Theorem 4.5. A cactus graph G on n vertices has a convex (2, nt)-cover if and only if $n \ge 4$, $G \ne C_4$.

Proof. Using Corollary 2.2, we know that a connected graph on 4 vertices has a convex (2, nt)-cover if and only if this graph is different from C_4 . This implies that a cactus graph G on 4 vertices also has a convex (2, nt)-cover if and only if G is different from C_4 .

Suppose $n \geq 5$. If G contains a simplicial vertex, then taking into account Theorem 2.4, graph G has a convex (2, nt)-cover. Assume that G has no simplicial vertices. If G is a cycle $C_n = C_n^1$, then by Theorem 4.4 graph G has a convex (2, nt)-cover. Otherwise G has a cut vertex v that is adjacent to $k \geq 2$ various connected components S_1, S_2, \ldots, S_k . Further, since G has no simplicial vertices, we have $|X(S_i)| \geq 2$ for $1 \leq i \leq k$. Thus, graph G has a convex (2, nt)-cover: $\mathbf{\mathcal{P}}_{2,nt}(G) = \{\{v\} \cup \bigcup_{1 \leq i \leq k-1} X(S_i), X(S_k) \cup \{v\}$. \Box

5. Conclusion

The paper is a continuation of computational complexity research of convex two cover problem, declared open in [2]. We proved NP-completness of this problem in [7]. In the article we establish the existence of a convex (2, nt)-cover in dependency on existing convex (2, t)-covers. Generally, we prove that it is NP-complete do decide whether a graph that has convex (2, t)-covers also has a convex (2, nt)-cover. Finally, we show that some graphs on $n \ge 4$ vertices implicitly have a convex (2, nt)-cover. In particular, chordal graphs and cactus graphs, different from C_4 , are covered by two nontrivial convex sets.

References

- V. Bolteansky, P.Soltan, Combinatorial geometry of the various classes of convex sets, Chişinău, 1978. (in Russian)
- [2] D. Artigas, S.Dantas, M.C.Dourado, J.L.Szwarcfiter, Convex covers of graphs, Matemática Contemporânea, Sociedade Brasileira de Matemática, vol. 39 (2010), 31– 38.
- [3] D. Artigas, S.Dantas, M.C.Dourado, J.L.Szwarcfiter, Partitioning a graph into convex sets. Discrete Mathematics, vol. 311 (2011), pp. 1968–1977.
- [4] M.C. Dourado, J.G.Gimbel, F.Protti, J.L.Szwarcfiter, On the computation of the hull number of a graph, Discrete Mathematics, vol. 309 (2009), 5668–5674.
- [5] T. J. Schaefer, *The complexity of satisfiability problems*, Proceeding STOC '78 Proceedings of the tenth annual ACM symposium on Theory of computing, ACM New York, NY, USA, 1978, 216–226.
- [6] C. B. Lekkerkerker, J.C.Boland, Representation of finite graphs by a set of intervals on the real line, Fund. Math. 51 (1962), 45–64.
- [7] R. Buzatu, S.Cataranciuc, *Convex graph covers*, Computer Science Journal of Moldova, vol. 23, no.3(69), 2015, 251–269.

FACULTY OF MATHEMATICS AND INFORMATICS, STATE UNIVERSITY OF MOLDOVA, CHIŞINĂU, REPUBLIC OF MOLDOVA

E-mail address: radubuzatu@gmail.com