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COVERS OF GRAPHS BY TWO CONVEX SETS

RADU BUZATU

Abstract. The nontrivial convex 2-cover problem of a simple graph is
studied. We establish the existence of a convex (2, nt)-cover in dependency
of existing convex (2, t)-covers. We prove that it is NP-complete to decide
whether a graph that has convex (2, t)-covers also has a convex (2, nt)-
cover. In addition, we identify some classes of graphs for which there
exists a convex (2, nt)-cover.

1. Introduction

In this work we consider only simple connected graphs. We denote by
G = (X; U) a graph with vertex set X, |X| = n, and edge set U , |U | = m.
The neighborhood of a vertex x ∈ X is the set of all vertices y ∈ X such that
x ∼ y, and it is denoted by Γ(x).

The distance between vertices x and y in G is denoted by d(x, y). We say
that x ∈ X is a simplicial vertex of G if Γ(x) is a clique.

Let us remind some notions defined in [1]: a) metric segment 〈x, y〉 is the
set of all vertices lying on a shortest path between vertices x, y ∈ X; b) a set
S ⊆ X is called convex if 〈x, y〉 ⊆ S for all x, y ∈ S; c) convex hull of S ⊆ X,
denoted d− conv(S), is the smallest convex set containing S.

A set S ⊆ X is called nontrivial if 3 ≤ |S| ≤ n− 1. Otherwise S is called
trivial.

A family of sets P2(G) = {X1, X2} is called convex 2-cover of the graph
G = (X; U) if X1 * X2, X2 * X1 and X1 ∪ X2 = X, where X1 and X2

are convex sets in G. The concept of convex p-cover of a graph for p ≥ 2 is
defined in [2] as a cover of graph by p convex sets. In particular, P2(G) is
called convex 2-partition of graph G if it is a convex 2-cover of G and sets of
P2(G) are disjoint.
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P2,t(G) = {St, Snt} is said to be a convex (2, t)-cover of G if it is a convex
2-cover of G such that St is a trivial set. In the same way, P2,nt(G) = {S1, S2}
is said to be a convex (2, nt)-cover of G if it is a convex 2-cover of G such that
S1 and S2 are nontrivial.

Denote by P̃2,t(G) = {P1
2,t,P

2
2,t, . . . ,P

k
2,t}, k ∈ N , a family of all possible

convex (2, t)-covers of G.
Deciding if a graph has a convex 2-cover was declared an open problem

in [2]. After, we proved its NP-completeness [7]. We know that verifying if a
set is convex can be done in polynomial time [4]. Consequently, determining if
there exists a convex (2, t)-cover also can be done in polynomial time. Thus,
it is NP-complete to decide whether a graph G has a convex (2, nt)-cover.

This paper is organized as follows. In section 2 we establish the existence
of a convex (2, nt)-cover in dependency on existing convex (2, t)-covers. Also,
identification algorithms for some specifical graph classes are developed. In
section 3 we prove that it is NP-complete to decide whether a graph that has
convex (2, t)-covers also has a convex (2, nt)-cover. In section 4 we present
some graph classes, which have a convex (2, nt)-cover.

2. Convex (2, nt)-cover via convex (2, t)-covers

It is clear that every simple connected graph G on n vertices, where n = 2
or n = 3, has a convex (2, t)-cover but has no a convex (2, nt)-cover.

Let us analyze the case n = 4.
Consider a cycle on 4 vertices C4 and the nontrivial convex cover number

ϕcn(G) as the least integer p ≥ 2 for which G has a convex p-cover by nontrivial
convex sets. The next theorem is true.
Theorem 2.1. [7] If G is a simple connected graph on 4 vertices, then
ϕcn(G) = 2 if and only if G 6= C4.

As a consequence of Theorem 2.1, we get the following result.

Corollary 2.2. Let G be a simple connected graph on 4 vertices. Then G has
a convex (2, nt)-cover if and only if G 6= C4.

According to definition of the nontrivial convex cover number, Corollary
2.2 is true.

In the sequel we analyze the case n ≥ 5.

Theorem 2.3. Let G = (X; U), |X| ≥ 5, be a simple connected graph. Then
the following conditions are equivalent:

1) in G there exists a simplicial vertex x ∈ X;
2) in G there exists P2,t(G) = {St = {x}, Snt = X\{x}};
3) in G there exists P2,t(G) = {St = {x, y}, Snt = X\{x}}.



COVERS OF GRAPHS BY TWO CONVEX SETS 7

Proof. Since x is a simplicial vertex in G, it follows that every two
vertices y, z ∈ Γ(x) are adjacent. Further, d − conv(Γ(x)) = Γ(x) and
d− conv(X\{x}) = X\{x}. Thus, G can be covered by a convex (2, t)-cover:

P2,t(G) = {St = {x}, Snt = X\{x}}.
Consequently 1)⇒ 2).

Suppose there exists a convex (2, t)-cover P2,t(G) = {St = {x}, Snt =
X\{x}}. Graph G is connected. Hence, there is at least one vertex y such
that y ∼ x and d − conv({x, y}) = {x, y}. Therefore, G can be covered by a
convex (2, t)-cover:

P2,t(G) = {St = {x, y}, Snt = X\{x}}.
Consequently 2)⇒ 3).

Suppose there exists a convex (2, t)-cover P2,t(G) = {St = {x, y}, Snt =
X\{x}}. Since Snt is convex, Γ(x) is a clique in G. Whence x is a simplicial
vertex. Consequently 3)⇒ 1).

Theorem 2.4. Let G = (X; U), |X| ≥ 5, be a simple connected graph that
contains a simplicial vertex. Then G has a convex (2, nt)-cover.

Proof. It follows from Theorem 2.3 that there is a convex (2, t)-cover
P2,t(G) = {St = {x}, Snt = X\{x}} such that x is a simplicial vertex. We
consider 2 cases.

1) Γ(x) = {y}. Since G is a connected graph and |X| − 1 > 3, there exists
z ∈ Snt such that z ∼ y. Taking into account that 〈x, z〉 = {x, y, z} and
d − conv({x, y, z}) = {x, y, z}, we obtain the nontrivial convex set {x, y, z}.
This yields that G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = {x, y, z}, S2 = Snt}.
2) |Γ(x)| ≥ 2. Select two vertices y, z ∈ Γ(x). Since x is a simplicial vertex,

y ∼ z and {x, y, z} is a triangle that is a nontrivial convex set. This implies
that G has a convex (2, nt)-cover P2,nt(G) = {S1 = {x, y, z}, S2 = Snt}.

Finally, G has a convex (2, nt)-cover.

Theorem 2.5. Let G = (X; U), |X| ≥ 5, be a simple connected graph without
simplicial vertices. Then the following conditions are equivalent:

1) in G there exist two adjacent vertices x, y ∈ X such that A = Γ(x)\{y}
and B = Γ(y)\{x} are cliques in G, where for all vertices a ∈ A, b ∈ B,
the inequality d(a, b) ≤ 2 is satisfied;

2) in G there exists a convex (2, t)-cover P2,t(G) = {St = {x, y}, Snt =
X\{x, y}}.

Proof. Combining Theorem 2.3 with the absence of simplicial vertices in
G, we get that G has no a convex (2, t)-cover such that cardinality of the trivial
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convex set is one, or cardinality of the trivial convex set is two and trivial set
intersects nontrivial set.

Let x, y ∈ X be two vertices, which satisfy the condition 1). Then the
following relations are true:

d− conv({x, y}) = {x, y}, {x, y} ∩ d− conv(A ∩B) = ∅.
It follows that G has a convex (2, t)-cover:

P2,t(G) = {St = {x, y}, Snt = X\{x, y}}.
Consequently 1)⇒ 2)

Suppose there exists a convex (2, t)-cover P2,t(G) = {St = {x, y}, Snt =
X\{x, y}}. According to the theorem conditions G does not contain simplicial
vertices. Because of the connectivity of St and Snt, we have x ∼ y, and sets
A = Γ(x)\{y}, B = Γ(y)\{x} generate cliques in G. Moreover, if there exist
two vertices a ∈ A, b ∈ B such that d(a, b) > 2, then {x, y} ⊆ 〈a, b〉 ⊆ Snt.
This contradicts convexity of Snt. Further, this means that for all vertices
a ∈ A, b ∈ B, we have d(a, b) ≤ 2. Consequently 2)⇒ 1).

Theorem 2.6. Let G = (X; U), |X| ≥ 5, be a simple connected graph without

simplicial vertices and let P̃2,t(G) contains two convex (2, t)-covers such that
intersection of their trivial convex sets is empty. Then G has a convex (2, nt)-
cover.

Theorem 2.6 follows directly from the fact that the nontrivial convex sets
of respective convex (2, t)-covers form a convex (2, nt)-cover of G.

Theorem 2.7. Let G = (X; U), |X| ≥ 5, be a simple connected graph without

simplicial vertices and let |P̃2,t(G)| = k ≥ 2 such that intersection of trivial
sets Si

t, 1 ≤ i ≤ k, of any two convex (2, t)-covers is not empty. Then exactly
one of the following conditions is satisfied:

1) |P̃2,t(G)| = 3 and S1
t ∪ S2

t ∪ S3
t generates a triangle in G;

2) |
⋂k

i=1 S
i
t | = 1.

Proof. G has no simplicial vertices. Further, using Theorem 2.3, we get
that cardinality of trivial convex set for all convex (2, t)-covers of G is two and
trivial convex set does not intersect nontrivial convex set. Let us consider 3
cases.
|P̃2,t(G)| = 2. It follows that |S1

t ∩S2
t | = 1. Hence, condition 2) is satisfied.

|P̃2,t(G)| = 3. If |S1
t ∩S2

t ∩S3
t | = 1, then condition 2) is satisfied. Otherwise

S1
t ∪ S2

t ∪ S3
t generates a triangle in G and condition 1) is satisfied.

|P̃2,t(G)| ≥ 4. Obviously, in this case we have |
⋂|P̃2,t(G)|

i=1 Si
t | = 1. This

means that condition 2) is satisfied.
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Theorem 2.8. Let G = (X; U), |X| ≥ 5, be a simple connected graph, without
simplicial vertices, that satisfies the equality:

P̃2,t(G) = {Pi
2,t(G) = {Si

t , S
i
nt} : 1 ≤ i ≤ 3},

where S1
t ∪S2

t ∪S3
t generates a triangle in G. Then G has a convex (2, nt)-cover.

Proof. Denote S = S1
t ∪ S2

t ∪ S3
t . It is obvious that G can be covered by

one of the three convex (2, nt)-covers:

P1
2,nt(G) = {S1

nt, S}, P
2
2,nt(G) = {S2

nt, S}, P
3
2,nt(G) = {S3

nt, S}.
This proves the theorem.

Theorem 2.9. Let G = (X; U), |X| ≥ 5, be a simple connected graph, without
simplicial vertices, that satisfies the equality:

P̃2,t(G) = {Pi
2,t(G) = {Si

t = {a, bi}, Si
nt} : 1 ≤ i ≤ k, k ≥ 3}.

Then G has a convex (2, nt)-cover.

Proof. According to the theorem conditions, we have |P̃2,t(G)| ≥ 3,⋂k
i=1 S

i
t = {a} and |Γ(a)\{bi}| ≥ 2 for 1 ≤ i ≤ k. Sets Si

nt, 1 ≤ i ≤ k,
are convex nontrivial due to inequality |X| ≥ 5. Since, combining absence of
simplicial vertices in G with Theorem 2.3, we obtain that G has only convex
(2, t)-covers such that the cardinality of the trivial convex set is two and triv-
ial convex set does not intersect nontrivial convex set. Now, bi ∼ bj for all

i, j ∈ {1, 2, . . . , k}, i 6= j, because a 6∈ Si
nt, 1 ≤ i ≤ k. Therefore,

⋃k
i=1 S

i
t is a

nontrivial clique in G. Thus,
⋃k

i=1 S
i
t is a nontrivial convex set. Finally, there

is one of possible convex (2, nt)-covers of graph G:

P2,nt(G) = {{a, b1, b2}, S1
nt}.

This proves the theorem.

Now we give the definition of the graph family F, which will be useful in
the sequel.

Define F as the family of graphs G = (X; U) that satisfy the following
conditions:

a) X = {a, b1, b2, x1, x2, . . . , xm}, m ≥ 1;
b) U = {{a, b1}, {a, b2}}∪{{xi, xj} : 1 ≤ i, j ≤ m; i 6= j}∪{{b1, xi}, {b2, xi} :

1 ≤ i ≤ m}.
It can easily be checked that all graphs G ∈ F on n ≥ 5 vertices have

exactly two convex (2, t)-covers:

P1
2,t(G) = {{a, b1}, {b2, x1, . . . , xm}}, P2

2,t(G) = {{a, b2}, {b1, x1, . . . , xm}}.
Graph family F is presented in Figure 1.



10 RADU BUZATU

b2

b1

x1

x2

xm

Km

a:F

Figure 1. Graph family F

Theorem 2.10. A graph G = (X; U) ∈ F has no a convex (2, nt)-cover.

Proof. By definition, |X| ≥ 4. If |X| = 4, then G = C4. Under the
conditions of Corollary 2.2, G has no a convex (2, nt)-cover.

Suppose |X| ≥ 5. Assume that graph G has a convex (2, nt)-cover. Fur-
ther, one of nontrivial convex sets of this convex (2, nt)-cover contains ver-
tices {b1, b2} or {a, x}, where x ∈ X\{a, b1, b2}. Notice that for every graph
G = (X; U) ∈ F the following conditions hold:

{b1, b2} ⊆ 〈a, x〉, for all x ∈ X\{a, b1, b2};

d− conv({b1, b2}) = X.

This contradiction proves the theorem.

Theorem 2.11. Let G = (X; U), |X| ≥ 5, G 6∈ F, be a simple connected
graph, without simplicial vertices, that satisfies the equality:

P̃2,t(G) = {P1
2,t(G) = {S1

t = {a, b1}, S1
nt},P

2
2,t(G) = {S2

t = {a, b2}, S2
nt}}.

Then G has a convex (2, nt)-cover.

Proof. Suppose b1 ∼ b2. Then G has convex (2, nt)-covers:

P1
2,nt(G) = {{a, b1, b2}, S1

nt},P
2
2,nt(G) = {{a, b1, b2}, S2

nt}.

Now suppose that b1 � b2. Denote A = Γ(a)\{b1}, B = Γ(b1)\{a}. We see
that A,B ⊆ S1

nt. If S1
nt 6= d− conv(A∪B), then G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = {a, b1} ∪ d− conv(A ∪B), S2 = S1
nt}.

Assume that S1
nt = d − conv(A ∪ B). In addition, suppose that |A| ≥ 2.

It follows from Theorem 2.5 that A ∪ {a} is a clique in G. Thus, A ∪ {a} is a
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nontrivial convex set. By the theorem conditions, we have b2 ∈ A, b1 ∈ S2
nt.

Hence, G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = A ∪ {a}, S2 = S2
nt}.

Further assume that A = b2. In accordance with Theorem 2.5, we obtain
that B ≥ 1. Let us consider 2 cases.

Suppose S1
nt 6= A∪B. Then, combining convexity of S1

nt with Theorem 2.5,
there is a vertex x ∈ B that satisfies d(b2, x) = 2 such that there is a vertex
y ∈ 〈b2, x〉, where y 6∈ A ∪ B, y ∈ d − conv(A ∪ B), otherwise S1

nt = A ∪ B.
This implies that G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = {a, b1, x}, S2 = S1
nt}.

Suppose S1
nt = A ∪ B. Then, since |X| ≥ 5 and |A| = 1, it follows that

|B| ≥ 2. If b2 ∼ x for all x ∈ B, then G ∈ F and by Theorem 2.10, it
follows that this graph has no a convex (2, nt)-cover. Conversely, graph G has
a convex (2, nt)-cover:

P2,nt(G) = {S1 = d− conv({b1, b2}), S2 = B ∪ {b1}}.
The theorem is proved.

Let us remark that every simple connected graph, that contains simplicial
vertices, has at least two different convex (2, t)-covers. This follows directly
from Theorem 2.3.

Now we define some families of graphs.
By J denote a family of simple connected graphs on n ≥ 5 vertices that

have at least two different convex (2, t)-covers and not belong to F .
By H denote a family of simple connected graphs on n ≥ 5 vertices that

have exactly one convex (2, t)-cover.

Theorem 2.12. A graph G ∈ J has a convex (2, nt)-cover.

Theorem 2.12 follows directly from Theorems 2.3 - 2.11.

Let H′ be a subfamily of H with the following properties:

a) A∩B = ∅, where A = Γ(x)\{y}, B = Γ(y)\{x} such that {x, y} is the
trivial set of the convex (2, t)-cover of a graph;

b) For each a ∈ A there exists b ∈ B such that a ∼ b and for each b ∈ B
there exists a ∈ A such that b ∼ a;

c) d − conv(A ∪ B) = Snt, where Snt is the nontrivial set of the convex
(2, t)-cover of a graph;

d) Snt 6= A ∪ B. This implies that there exist a ∈ A, b ∈ B, c ∈ C such
that d(a, b) = 2 and c ∈ 〈a, b〉, where C = Snt\(A ∪B).

Let H′′ =H\H′.
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Theorem 2.13. A graph G ∈H′′ has a convex (2, nt)-cover.

Proof. Let P2,t(G) = {St = {x, y}, Snt} be a convex (2, t)-cover of G.

Denote A = Γ(x)\{y}, B = Γ(y)\{x}. Since G ∈ H′′, where H′′ = H\H′,
we have G 6∈ H′ and it follows that at least one property that characterize
the family H′ is not satisfied.

If A ∩B 6= ∅, then G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = {x, y, z}, S2 = Snt},
where z ∈ A ∩B.

Assume that the property a) is satisfied. Conversely, by the above, G has
a convex (2, nt)-cover. If there exists a ∈ A for which does not exist b ∈ B
such that a ∼ b, then G has a convex a (2, nt)-cover:

P2,nt(G) = {S1 = {x, y, a}, S2 = Snt}.
In the same way, if there exists b ∈ B for which does not exist a ∈ A such that
b ∼ a, then G has a convex a (2, nt)-cover:

P2,nt(G) = {S1 = {x, y, b}, S2 = Snt}.
If d− conv(A ∪B) 6= Snt, then G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = {x, y} ∪ d− conv(A ∪B), S2 = Snt}.
If Snt = A ∪B. Then we consider two cases.
1) Suppose |A| ≥ 2 and |B| ≥ 2. Then G has a convex (2, nt)-cover:

P2,nt(G) = {S1 = A ∪ {x}, S2 = B ∪ {y}}.

2) Suppose |A| = 1. Since every graph of the family H′′ has at least
five vertices, we get |B| ≥ 2. Assume that the properties a) and b) are
satisfied. Conversely, by the above, G has a convex (2, nt)-cover. Let A = {v}.
According to the property b), the vertex v is adjacent to all vertices of B and

further G ∈ F. By definition,H′′ is the family of graphs that have exactly one
convex (2, t)-cover but every graph that belongs to the family F has exactly
two convex (2, t)-covers. This implies a contradiction. Similarly, we get a
contradiction if suppose |B| = 1. Thus, |A| ≥ 2 and |B| ≥ 2 but in this case
G has a convex (2, nt)-cover.

Consider simple connected graph G has n vertices and m edges. In the
sequel, we present some algorithms that determine appartenance of G to the
classes: F, J, H′, H′′.

Next we propose the Algorithm 2.14 that determine whether a graph G
belongs to the family F.
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Algorithm 2.14.

Input: Simple connected graph G = (X; U).
Output: YES: G belongs to F, or NO: G does not belong to F.
Step 1) If |X| ≤ 3, then return NO.
Step 2) If |X| = 4, then check whether G = C4. If G = C4, then return

YES; otherwise return NO.
Step 3) Check whether there exists or not a unique vertex x ∈ X such that

Γ(x) = {y, z} and y � z. If not, then return NO.
Step 4) Check whether both {y}∪X\{x, z} and {z}∪X\{x, y} are cliques

in G. If so, then return YES; otherwise return NO.

Theorem 2.15. It can be decided in time O(n2) whether a graph G belongs
to the family F.

Proof. Evidently, steps 1) and 2) run in constant time. The step 3) is
executed in O(n) time. It is clear that it can be verified in O(n2) time if the
given subgraph is a clique or not. Hence the step 4) operates in O(n2). Based
on the mentioned facts, the execution time of the algorithm is O(n2).

Algorithm 2.16 determines whether or not a graph G belongs to one of the
families: J, H′, H′′.

Algorithm 2.16.

Input: Simple connected graph G = (X; U).

Output: FJ: G belongs to J, or FH′: G belongs to H′, or FH′′: G

belongs to H′′, or NO: G does not belong to any of the families.
Step 1) Apply Algorithm 2.14. If Algorithm 2.14 returns YES, then return

NO.
Step 2) Check whether there exists or not a simplicial vertex in G. If there

is a simplicial vertex in G, then return FJ.

Step 3) Search all convex (2, t)-covers of G, i.e., define P̃2,t(G). For this
purpose search all adjacent vertices x, y ∈ X, which satisfy the next equality
d− conv(X\{x, y}) = X\{x, y}.

Step 4) If P̃2,t(G) = ∅, then return NO.

Step 5) If |P̃2,t(G)| ≥ 2, then return FJ.
Step 6) If A∩B 6= ∅ such that A = Γ(x)\{y}, B = Γ(y)\{x}, where {x, y}

is the trivial set of the single convex (2, t)-cover of P̃2,t(G), then return FH′′.
Step 7) Check whether there exist a ∈ A such that, for all b ∈ B the

condition a � b is satisfied or there exist b ∈ B such that, for all a ∈ A the
condition b � a is satisfied. If there exists such a ∈ A or b ∈ B, then return
FH′′.
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Step 8) Compute d − conv(A ∪ B). If d − conv(A ∪ B) 6= Snt, where Snt

is the nontrivial set of the single convex (2, t)-cover of P̃2,t(G), then return

FH′′.
Step 9) If Snt = A ∪B, then return FH′′.
Step 10) Return FH′.

Theorem 2.17. It can be decided in time O(nm2) whether or not a graph G

belongs to one of the families: J, H′, H′′.

Proof. Since complexity of Algorithm 2.14 is O(n2), then it results that
the complexity of the step 1) is O(n2).

A vertex x ∈ X is simplicial if and only if Γ(x) is a clique, but determining
if a given subset is a clique can be done in O(n2). Further, checking every
vertex whether it is simplicial executes in O(n3). So the complexity of the
step 2) is O(n3).

The convex hull of a set S ⊆ X can be computed in O(|d − conv(S)|m)
time [4]. Since |d− conv(S)| can reach value n, we obtain that the complexity
of the step 8) is O(nm).

The family P̃2,t(G) is obtained by applying the convex hull algorithm to
set X\{x, y} for all adjacent vertices x, y ∈ X. Since |d− conv(X\{x, y})| can
reach value n, we obtain that the complexity of the step 3) is O(nm2).

Clearly, steps 4), 5) and 10) run in constant time, steps 6) and 9) run in
O(n) time, but step 7) is executed in O(n2). As a result, we can decide in

O(nm2) time whether or not a graph G belongs to one of the families: J,H′,

H′′.

Theorem 2.18. Let G = (X; U) ∈ H′ be a graph that has a convex (2, t)-
cover P2,t(G) = {St = {x, y}, Snt = X\{x, y}} and has a convex (2, nt)-cover.
Then G has a convex (2, nt)-cover P2,nt(G) = {S1, S2} such that exactly one
of the following conditions is satisfied:

a) x, y ∈ S1 and S2 = X\{x, y};
b) x ∈ S1, x 6∈ S2 and y ∈ S2, y 6∈ S1.

Proof. Let P′2,nt(G) = {S′1, S′2} be a convex (2, nt)-cover of G. Suppose
x, y ∈ S′1. Then, since Snt is nontrivial convex set, we obtain S1 = S′1 and
S2 = Snt. Thus, the condition a) is satisfied. Otherwise the condition b) is
satisfied.

Theorem 2.19. It can be decided in time O(n2m) if a graph G = (X; U) ∈H′
has a convex (2, nt)-cover that satisfies the condition a) of Theorem 2.18. And
for this purpose it is sufficient to determine whether there exists z ∈ A∪B such
that Snt * d− conv({x, y, z}), where P2,t(G) = {St = {x, y}, Snt = X\{x, y}}
is a convex (2, t)-cover of G and A = Γ(x)\{y}, B = Γ(y)\{x}.
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Proof. By definition of H′, G has no simplicial vertices and |X| ≥ 5. Let

P1
2,nt(G) = {S1

1 , S
1
2 = Snt} be a convex (2, nt)-cover of G such that x, y ∈ S1

1 .
It is clear that there exists a vertex z ∈ A ∪ B such that the relation

d − conv({x, y, z}) ⊆ S1
1 is satisfied. Furthermore, graph G has a convex

(2, nt)-cover:

P2
2,nt(G) = {S2

1 = d− conv({x, y, z}), S2
2 = Snt}.

Without loss of generality it is sufficient to determine whether there exists
z ∈ A ∪ B such that Snt * d − conv({x, y, z}). For this purpose we compute
the convex hull of {x, y, z} for all z ∈ A ∪ B. If there is at least one vertex
z ∈ A∪B such that Snt * d−conv({x, y, z}), then G has a convex (2, nt)-cover
that satisfies the condition a) of Theorem 2.18.

Let us remind that computing of the convex hull of a set S ⊆ X can be
done in O(|d − conv(S)|m) time [4]. The decision whether G has a convex
(2, nt)-cover that satisfies the condition a) of Theorem 2.18 can be obtained
by applying the convex hull algorithm at most |A∪B| times. Thus, the overall
complexity is O(n2m).

Theorem 2.20. Let G = (X;U) ∈H′ be a graph that has a convex (2, t)-cover
P2,t(G) = {St = {x, y}, Snt = X\{x, y}} and has no a convex (2, nt)-cover
that satisfies the condition a) of Theorem 2.18, but has a convex (2, nt)-cover
P2,nt(G) = {S1, S2} that satisfies the condition b) of Theorem 2.18, that is,
x ∈ S1, x 6∈ S2 and y ∈ S2, y 6∈ S1. Then the following conditions are satisfied:

a) (Γ(x)\y) ⊆ S1 and (Γ(x)\y) ∩ S2 = ∅;
b) (Γ(y)\x) ⊆ S2 and (Γ(y)\x) ∩ S1 = ∅.

Proof. Assume (Γ(x)\y)∩S2 6= ∅, or (Γ(x)\y) * S1, i.e., (Γ(x)\y)∩S2 6= ∅.
Therefore, we get x ∈ S2. Since x ∈ S1 and y ∈ S2, this means that P2,nt(G)
does not satisfy the condition b) of Theorem 2.18. We have a contradiction.
By the same argument, if we assume (Γ(y)\x) ∩ S1 6= ∅, or (Γ(y)\x) * S2,
then we also get a contradiction.

3. NP-completeness

It is known that determining if a graph has a convex 2-cover is NP-
complete [7]. Generally, knowing all convex (2, t)-covers of a graph G does
not facilitate determining if G has a convex (2, nt)-cover. But it is useful to
know if a graph that has convex (2, t)-covers also has a convex (2, nt)-cover.

In previous section we proved that all graphs of the families J and H′′

have a convex (2, nt)-cover and none graph of F has a convex (2, nt)-cover.
Also, we proved that it can be determined in polynomial time whether or not
a graph belongs to one of the families: F, J, H′, H′′.
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Denote byH′(2, nt) the problem of deciding whether a graph G ∈H′ has
a convex (2, nt)-cover.

Now let us prove that the H′(2, nt) problem is NP-complete. For this

purpose we reduce the NP-complete 1-IN-3 3 SAT problem [5] to theH′(2, nt)
problem.

1-IN-3 3 SAT problem:
Instance: Set V = {v1, v2, . . . , vn} of variables, collectionC = {c1, c2, . . . , cm}

of clauses over V such that each clause c ∈ C has |c| = 3 and no negative lit-
erals.

Question: Is there a truth assignment for V such that each clause in C
has exactly one true literal?

We say that C is satisfiable if there exists a truth assignment for V such
that C is satisfiable and each clause in C has exactly one true variable.

Theorem 3.1. The H′(2, nt) problem is NP-complete.

Proof. H′(2, nt) problem is in NP, because verifying if a set is convex
can be done in polynomial time [4] and nontriviality is verifying in constant

time. Further, we reduce 1-IN-3 3 SAT to the H′(2, nt) problem. First, we

determine the structure of a particular graph G = (X; U) ∈H′ from a generic
instance (V,C) of 1-IN-3 3 SAT. Next, we prove that C is satisfiable if and
only if G has a convex (2, nt)-cover. For this purpose we prove that a convex
(2, nt)-cover of G defines a truth assignment that satisfies (V,C). At the same
time, we prove that a truth assignment that satisfies (V,C) defines a convex
(2, nt)-cover of G.

Let graph G be given by vertex set X and edge set U .
The vertex set X consists of:

a) vertices y and z;
b) V = {v1, v2, . . . , vn}, Y = {y1, y2, y3, y4}, Y ′ = {f, y5, y6, y7, y8, y9},

Z = {z1, z2, z3, z4}, Z ′ = {t, z5, z6, z7, z8, z9};
c) F = {fj |1 ≤ j ≤ m}, T = {tj |1 ≤ j ≤ m};
d) L = {lij |1 ≤ j ≤ m, 1 ≤ i ≤ 3}, L = {lij |1 ≤ j ≤ m, 1 ≤ i ≤ 3},

Q = {qij |1 ≤ j ≤ m, 1 ≤ i ≤ 3}.
We get X = {y, z} ∪V∪ Y ∪ Y ′ ∪Z ∪Z ′ ∪F ∪ T ∪L∪Q∪L. Every variable
vi ∈ V corresponds to vertex vi ∈ V. Every clause cj ∈ C corresponds to

eleven vertices: fj , l
1
j , l2j , l3j , l1j , l

2
j , l

3
j , q

1
j , q2j , q3j , tj .

The edge set U satisfies the conditions:

a) y ∼ z, y4 ∼ zk and z4 ∼ yk for 1 ≤ k ≤ 4;
b) V ∪Q, Y ∪ {y} and Z ∪ {z} are cliques in G;
c) Γ(f) = V ∪Q ∪ F ∪ Y ∪ {y6, y7} and Γ(t) = V ∪Q ∪ T ∪Z ∪ {z6, z7};
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Figure 2. The convex (2, nt)-cover of the graph G for the
instance (V,C) = ({v1, v2, v3, v4}, {{v1, v2, v3}, {v2, v3, v4}})

d) Γ(y5) = F ∪ Y ∪ {y6, y7}, Γ(y6) = Y ∪ {f, y5, y8, y9, z1}, Γ(y7) =
Y ∪ {f, y5, y8, y9, z2} and Γ(z5) = T ∪ Z ∪ {z6, z7}, Γ(z6) = Z ∪
{t, z5, z8, z9, y1}, Γ(z7) = Z ∪ {t, z5, z8, z9, y2};

e) every clause cj = {va, vb, vc}, 1 ≤ j ≤ m, corresponds to eighteen

edges: {l1j , va}, {l2j , vb}, {l3j , vc}, {l1j , fj}, {l2j , fj}, {l3j , fj}, {l
1
j , tj},

{l2j , tj}, {l
3
j , tj}, {q1j , l

1
j}, {q2j , l

2
j}, {q3j , l

3
j}, {l1j , l

2
j}, {l1j , l

3
j}, {l2j , l

1
j},

{l2j , l
3
j}, {l3j , l

1
j}, {l3j , l

2
j}.

We skip the trivial case |C| = 1 of 1-IN-3 3 SAT problem. Consider
|C| ≥ 2.

Firstly, we show that the obtained graph G = (X; U) belongs to H. Let
us remember thatH is a family of simple connected graphs on n ≥ 5 vertices
that have exactly one convex (2, t)-cover. According to Theorem 2.3, G has
no simplicial vertices. It follows easily from construction of G that this graph
really has no such vertices but contains the only one pair of adjacent vertices
{y, z}, which satisfies the conditions of Theorem 2.5. This means that G has
exactly the one convex (2, t)-cover P2,t = {St = {y, z}, Snt = X\{y, z}} and
further G belongs to H.
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Figure 3. Edges between Y and Z

Secondly, we show that G is in H′. To do this we show that all the
properties, which characterize the family H′ are satisfied. Clearly, we see
that properties a), b) are satisfied. Since {y6, y7, z6, z7} ⊆ d − conv(A ∪ B),
d − conv({y6, y7, z6, z7}) = Snt and {A ∪ B} ⊆ Snt, the properties c) and d)

are also satisfied. This means that G is in H′.
Thirdly, we show that G has no a convex (2, nt)-cover that satisfies the

condition a) of Theorem 2.18. By construction of G, Snt ⊆ d− conv({y, z, x})
for all x ∈ A ∪ B, where A = Γ(y)\{z} and B = Γ(z)\{y}. Further, taking
into account Theorem 2.19, we obtain that G has no a convex (2, nt)-cover
that satisfies the condition a) of Theorem 2.18. Thus, if graph G has a convex
(2, nt)-cover, then it satisfies the condition b) of Theorem 2.18 and satisfies
Theorem 2.20.

We prove that C is satisfiable if and only if G has a convex (2, nt)-cover.

If G = (X; U) has a convex (2, nt)-cover, then C is satisfiable.

Let P2(G) = {Sf , St} be a convex (2, nt)-cover of G such that y ∈ Sf ,
y 6∈ St and z ∈ St, z 6∈ Sf . We have d − conv({yi, zj}) = Snt = X\{y, z} for
every i, j ∈ {8, 9}. Further, y8, y9 ∈ Sf , z8, z9 ∈ St and let S1 = Y ∪ Y ′ ∪ F ,
S2 = Z ∪ Z ′ ∪ T .

Let us distinguish some properties:

1) S1 ∩ St = ∅ and S2 ∩ Sf = ∅.

We see what S1 ⊆ d−conv({y8, y9}), S2 ⊆ d−conv({z8, z9}). Consequently
we have S1 ⊆ Sf , S2 ⊆ St.

Moreover, for each u ∈ S1, we get d − conv({u, z8, z9}) = Snt. This
implies that u 6∈ St for each u ∈ S1. Similarly, for each u ∈ S2, we get
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d − conv({u, y8, y9}) = Snt. This implies that u 6∈ Sf for each u ∈ S2. Thus
S1 ∩ St = ∅ and S2 ∩ Sf = ∅.

2) Sets L,V, Q,L are uniquely interdependent.

If vertex lij belongs to St, then Γ(lij) ∩ V ⊆ St and lkj belongs to St for
1 ≤ k ≤ 3, k 6= i.

If vertex vi belongs to St, then Γ(vi) ∩ L ⊆ St and for all laj ∈ Γ(vi) ∩ L

vertices lkj belong to St for 1 ≤ k ≤ 3, k 6= a.

Vertex lij belongs to Sf if and only if qij belongs to Sf . If vertex lij belongs

to Sf , then L′ = {lkj |1 ≤ k ≤ 3, k 6= i} ⊆ Sf and Γ(lkj ) ∩V is contained in Sf

for all lkj ∈ L′.

3) Exactly one vertex of Lj = {l1j , l2j , l3j} belongs to St, for 1 ≤ j ≤ m, and

exactly one vertex of Lj = {l1j , l
2
j , l

3
j} belongs to Sf , for 1 ≤ j ≤ m.

Exactly one vertex of every set Lj = {l1j , l2j , l3j}, 1 ≤ j ≤ m, belongs to St.

In the converse case, if two vertices {laj , lbj} of Lj belong to St, then fj belongs

to St. By Property 1, we get a contradiction. If none vertex of Lj = {l1j , l2j , l3j}
belongs to St, then Lj ⊆ Sf , Lj = {l1j , l

2
j , l

3
j} ⊆ Sf and tj belongs to Sf . Now

by Property 1, we have a contradiction.
In addition, exactly one vertex of every set Lj = {l1j , l

2
j , l

3
j}, 1 ≤ j ≤ m,

belongs to Sf .

We associate V with V and L with C such that convex (2, nt)-cover rep-
resents a truth assignment for V, where the variable vi is true if and only if
the vertex vi ∈ St.

Let us remark that sets Sf , St are nontrivial and disjoint. It follows from
Properties 1 - 3 that if G has a convex (2, nt)-cover P2(G) = {Sf , St}, then
C is satisfiable.

If C is satisfiable, then G = (X; U) has a convex (2, nt)-cover.

Suppose that there exists a truth assignment, which satisfies (V,C). We
construct a convex (2, nt)-cover P2(G) = {Sf , St} as follows:

Step 1. Define St = Z ∪ Z ′ ∪ T ∪ {z};
Step 2. For each true variable vi of V we add vertex vi and the set L′ = Γ(vi)∩L

to St and for each laj ∈ L′ we add vertices qbj , l
b
j to St such that lbj ∼ laj

and qbj ∼ l
b
j ;

Step 3. Define Sf = X\St.
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Figure 4. Edges between L and L

Clearly, for the resulting convex (2, nt)-cover P2(G) = {Sf , St} the Prop-
erties 1, 2 and 3 are satisfied. Note also that sets Sf and St are disjoint.
Hence, if C is satisfiable, then G has a convex (2, nt)-cover.

We represent in Figure 2 the graph G that corresponds to a particular
instance (V,C) = ({v1, v2, v3, v4}, {{v1, v2, v3}, {v2, v3, v4}}). Sets Q∪V∪{f},
Q∪V∪{t}, Y ∪{y} and Z∪{z} generate cliques in G. White vertices belong to
St and black vertices belong to Sf . White vertices of V represent the variables
of V set to true. All edges between Y and Z are represented in Figure 3 but
all edges between L and L are represented in Figure 4.

Finally, we obtain that it is NP-complete do decide whether a graph that
has convex (2, t)-covers also has a convex (2, nt)-cover. Indeed, this follows

from fact that the H′(2, nt) problem is NP-complete.

4. Some graph classes, which have a convex (2, nt)-cover

Let us examine some classes of simple connected graphs, which have a
convex (2, nt)-cover.

Consider Cn a cycle graph on n vertices. Recall that a chordal graph is a
connected graph such that every cycle of length at least 4 has a chord.

Theorem 4.1. A chordal graph G on n ≥ 4 vertices has a convex (2, nt)-cover.

Proof. Every chordal graph G contains at least one simplicial vertex [6].
Also, every chordal graph on n = 4 vertices is not equal to the cycle C4. This
yields that under the conditions of Corollary 2.2 and Theorem 2.4, chordal
graph G on n ≥ 4 vertices has a convex (2, nt)-cover.

Corollary 4.2. A tree and a complete graph on n ≥ 4 vertices have a convex
(2, nt)-cover.
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Corollary 4.2 follows directly from the fact that these types of graphs are
subclusses of chordal graphs.

A power of cycle Ck
n, 1 ≤ k ≤ bn2 c, is a graph such that X(Ck

n) = X(Cn)

and U(Ck
n) = {{ui, uj}|ui, uj ∈ X(Ck

n), dCn(ui, uj) ≤ k}.
In [3] it is established the following theorem, which states conditions to

determine whether Ck
n has a convex 2-partition.

Theorem 4.3. [3] Ck
n has a convex 2-partition if and only if n ≤ 2k + 2 or

n ≡ 0, 1, 2 (mod 2k).

Using Theorem 4.3, we have the following result.

Theorem 4.4. Ck
n has a convex (2, nt)-cover if and only if n ≥ 4, Ck

n 6= C4,
and n ≤ 2k + 2 or n ≡ 0, 1, 2 (mod 2k).

Proof. First, we shall show that Ck
n has a convex 2-partition if and only

if Ck
n has a convex 2-cover. By construction of Ck

n, every convex set of Ck
n

consists of consecutive vertices of Cn. Suppose P2(C
k
n) = {S1, S2} is a convex

2-cover of Ck
n. Subtracting S1 ∩ S2 from S1 or from S2, we get a convex 2-

partition of Ck
n. Therefore, every convex 2-cover of Ck

n can be transformed in
a convex 2-partition. Recall that convex 2-partition is a convex 2-cover.

Let us show that Ck
n has a convex 2-cover if and only if Ck

n has a convex
(2, nt)-cover and conditions n ≥ 4, Ck

n 6= C4 hold.
For n ≤ 3 there is no convex (2, nt)-cover of graph Ck

n. It remains to verify
if Ck

n has a convex (2, nt)-cover for n ≥ 4.
Assume that n = 4. According to power of cycle definition, we have

1 ≤ k ≤ 2. If k = 1, then C1
4 = C4. By Corollary 2.2, it follows that this

graph has no a convex (2, nt)-cover. On the other hand, if k = 2, then C2
4 = K4

and the application of Corollary 4.2 yields that C2
4 has a convex (2, nt)-cover.

Further, assume that n ≥ 5. Suppose P2,t(C
k
n) = {St, Snt} is a convex

(2, t)-cover. If |St| = 1, or if |St| = 2 and St∩Snt 6= ∅, then taking into account
Theorem 2.3 and Theorem 2.4, Ck

n has a convex (2, nt)-cover. Otherwise if
|St| = 2 and St ∩ Snt = ∅, then since the construction of power of cycle is

regular, graph Ck
n has the another convex (2, t)-cover P′2,t(C

k
n) = {S′t, S′nt}

such that S′t consists of two consecutive vertices in Cn and St ∩ S′t = ∅, where
S′t ⊂ Snt and St ⊂ S′nt. Thus, using Theorem 2.6, we get a convex (2, nt)-cover
of Ck

n.

A cactus graph is a connected graph in which any two graph cycles have
at most one vertex in common.

Theorem 4.5. A cactus graph G on n vertices has a convex (2, nt)-cover if
and only if n ≥ 4, G 6= C4.
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Proof. Using Corollary 2.2, we know that a connected graph on 4 vertices
has a convex (2, nt)-cover if and only if this graph is different from C4. This
implies that a cactus graph G on 4 vertices also has a convex (2, nt)-cover if
and only if G is different from C4.

Suppose n ≥ 5. If G contains a simplicial vertex, then taking into account
Theorem 2.4, graph G has a convex (2, nt)-cover. Assume that G has no
simplicial vertices. If G is a cycle Cn = C1

n, then by Theorem 4.4 graph G
has a convex (2, nt)-cover. Otherwise G has a cut vertex v that is adjacent to
k ≥ 2 various connected components S1, S2, . . . , Sk. Further, since G has no
simplicial vertices, we have |X(Si)| ≥ 2 for 1 ≤ i ≤ k. Thus, graph G has a
convex (2, nt)-cover: P2,nt(G) = {{v} ∪

⋃
1≤i≤k−1X(Si), X(Sk) ∪ {v}.

5. Conclusion

The paper is a continuation of computational complexity research of con-
vex two cover problem, declared open in [2]. We proved NP-completness of
this problem in [7]. In the article we establish the existence of a convex (2, nt)-
cover in dependency on existing convex (2, t)-covers. Generally, we prove that
it is NP-complete do decide whether a graph that has convex (2, t)-covers also
has a convex (2, nt)-cover. Finally, we show that some graphs on n ≥ 4 ver-
tices implicitly have a convex (2, nt)-cover. In particular, chordal graphs and
cactus graphs, different from C4, are covered by two nontrivial convex sets.
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