
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 2, 2015

METRICS-BASED REFACTORING STRATEGY AND

IMPACT ON SOFTWARE QUALITY

SIMONA MOTOGNA, CAMELIA ŞERBAN, AND ANDREEA VESCAN

Abstract. Nowadays, software systems become very large and complex
applications. They are the result of a process evolution, undergoing fre-
quent modifications that affect their design quality. Therefore, repeated
assessment of the systems design should be made throughout the develop-
ment lifecycle. This activity is time-consuming, because of design complex-
ity and therefore, methods and techniques being needed to evaluate the
system design in an automatic manner. Software metrics are an alterna-
tive solution, a means for quantifying those aspects considered important
for the assessment.

In this article we propose a case-study for object oriented design (OOD)
assessment using software metrics. Our goal is to identify those design
entities affected by “God Class” design flaw, and to identify possible refac-
torings that could improve the system design and to evaluate the impact
of the applied refactoring on software quality.

1. Introduction

Over an extended period of time software systems are often subject to
a process of evolution becoming very large and complex applications. They
undergo repeated modifications in order to satisfy any requirement regarding
a business change. The result is that the code deviates from its original design
and the system becomes unmanageable. A minor change in one of its parts may
have unpredictable effects in completely other parts [1]. To avoid such risk
a high quality design should be preserved throughout the system life cycle.
This can be achieved by repeatedly assessing the system design, aiming to
identify in due course those design entities that do not comply with the rules,
principles and practices of a good design, and suggesting possible refactorings
or improvements to be performed.

Received by the editors: September 27, 2015.
2010 Mathematics Subject Classification. 68N30, 68T37.
1998 CR Categories and Descriptors. D.2.8. [Software Engineering]: Metric – Product

Metrics; D.2.8. [Software Engineering]: Refactoring – Extract Method ; D.1.5. [Pattern
recognition]: Clustering – Fuzzy Clustering .

Key words and phrases. Software metrics, refactoring, fuzzy clustering.

83



84 SIMONA MOTOGNA, CAMELIA ŞERBAN, AND ANDREEA VESCAN

Due to the complexity of OOD, its assessment becomes a time-consuming
activity. Consequently, methods and techniques are needed in order to eval-
uate the system design in an automatic manner. Software metrics are an
alternative solution, being a means for quantifying those aspects considered
important for the assessment.

Our previous work [2] was focused on developing a methodology for quan-
titative evaluation of OOD. The proposed methodology is based on static anal-
ysis of the source code and is described by a framework of four abstraction
layers. To complete the interpretation of the obtained measurement results, a
new metric, named Design Flaw Entropy (DFE), which measures the distri-
bution of a specified design flaw among the analyzed design entities, was also
proposed [7].

Starting from the above mentioned our previous proposed methodology for
OOD, the current article adds a new step in the process of OOD assessment.
More precisely, after the interpretation of the obtained measurements results
which has the goal of identifying “suspect” design entities, we suggest possible
refactorings and we study their impact regarding the design improvement.
In other words, at this step we apply some refactorings and we repeat the
evaluation for the obtained design, comparatively studying the two sets of
metrics values.

The paper is organized as follows. Section 2 briefly describes the process
of OOD assessment, whereas in Section 3 we present a case-study in order
to validate our approach for design assessment. Section 4 summarizes the
contributions of this work and outlines directions for further research.

2. Object oriented design assessment process

The steps needed to be perform in order to apply our previous proposed
methodology for OOD assessment are described in what follows.

2.1. Setting the assessment objectives. The first step of OOD assess-
ment process is to establish the assessment objectives. In this study we aim
to identify those design entities affected by “God Class” [6] design flaw. Con-
sequently, the assessed entities, are the set of classes from the analyzed design
system.

An instance of God Class does most of the operation tasks, leaving only
minor details to a series of trivial classes; it also uses the data from other
classes. Briefly, God Class design flaw refers to those classes “which tend to
centralize the intelligence of the system” [1]. As a consequence, the principle of
manageable complexity is violated, as god classes tend to capture more than
one abstraction. Another shortcoming of these pathological classes is their



METRICS-BASED REFACTORING AND SOFTWARE QUALITY 85

tendency towards non-cohesion. If we consider the quality attributes, god-
classes also have a negative impact on the reusability and understandability
of that part of the system they belong to. To detect a God Class, Salehie et
al. [5] have related this design flaw to a set of three heuristics [4]:

• distribute system intelligence horizontally as uniformly as possible;
• beware of classes with much non-communicative behavior;
• beware of classes that access directly data from other classes.

Therefore, each class design entity, will be evaluated in respect with the
above mentioned heuristics.

2.2. Metrics identification. Having identified some heuristics which are cor-
related with “God Class” design flaw, our goal is to find for each heuristic
relevant metrics. Looking at the above heuristics the conclusion drawn may
be:

• the first rule suggests that it should be a uniform distribution of intel-
ligence among classes, so it refers to high class complexity;

• the second rule refers to the level of intra-class communication; i.e. to
weak cohesion of classes;

• the third rule refers to classes that use a lot of data from other classes.

Thus, the selected heuristics are then related with the following metrics:

• Cyclomatic complexity [11] is a measure of a module control flow com-
plexity based on graph theory. A control flow graph describes the logic
structure a software module. Each flow graph consists of nodes and
edges. The nodes represent computational statements or expressions,
and the edges represent the transfer of control between nodes [12]. Cy-
clomatic complexity is defined for each module to be e n + 2, where e
are the number of edges and n are the number of nodes in the control
flow graph.

Impact of CC metric value on software quality. A high value for the
cyclomatic complexity metric indicates a low quality code which might
involve difficulties in testing and maintaining.

The CC metric is defined on methods. Adapted to the object ori-
ented world, this metric [10] is also defined for classes and structures
as the sum of its methods CC.

• Lack of Cohesion Of Methods (LCOM) [8]. LCOM is defined by the
difference between the number of method pairs using common instance
variables and the number of method pairs that do not use any common
variables.

Impact of CC metric value on software quality. The single respon-
sibility principle states that a class should not have more than one



86 SIMONA MOTOGNA, CAMELIA ŞERBAN, AND ANDREEA VESCAN

reason to change. Such a class is said to be cohesive. A high LCOM
value generally pinpoints a poorly cohesive class. Looking into LCOM
metric, Henderson-Sellers [9] points out the large number of dissimilar
situations with 0 value of LCOM.

• Efferent Coupling at type level (Ce). The Efferent Coupling for a
particular type is the number of types it directly depends on. Notice
that types declared in third-party assemblies are taken into account.

Impact of CC metric value on software quality. Types where Ce ¿
50 are types that depends on too many other types. They are complex
and have more than one responsibility. They are good candidate for
refactoring.

Thus, at this step of the assessment process, each class can be viewed as
a vector with the corresponding values of the LCOM, CC, Ce metrics.

Analyzing the definitions of these metrics and taking into account the
above mentioned principles and heuristics related with “God Class”, we can
conclude that a possible God Class suspect will have high values for the LCOM,
Ce si CC metrics.

2.3. Fuzzy based God Class Detection and DFE metric. Having com-
puting the metrics values, for each class design entity, the next step is to
identify the list of “suspect”, i.e those classes affected by “God Class” design
flaw. In order to obtain these entities we use fuzzy clustering analysis. This
method overcome the limitations of the existing approaches which use thresh-
olds values for metrics, thus an entity (class) will be place in more than one
group (cluster), having different membership degree. Each cluster of the ob-
tained partition is analyzed in detail, in order to decide if it contains “suspect”
classes.

A metric proposed in our previous work [7], Design Flaw Entropy, provides
an in-depth analysis regarding the distribution of the analyzed design flaw (the
degree of its spread) into the system.

2.4. Proposed Refactorings and their impact. At the step of the assess-
ment process, we aim to identify those refactorings which could be applied in
order to improve the system’s design accordingly with the studied design flaw.
Taking into account that classes with high values of metrics CC and Ce are
hard to understand and maintain, we then identify a set of possible refactor-
ing strategies to be applied on the list of suspect entities. In this paper, our
study refers to ”Extract Method” refactoring method. After the refactoring is
applied, we obtaind a new design of the system, design that will be again eval-
uated. The metrics values obtained before and after applying this refactoring
are comparatively analyzed.



METRICS-BASED REFACTORING AND SOFTWARE QUALITY 87

Table 1. Project 01 - The list of classes’ clusters with the
corresponding metrics

Cluster Class Id CC EC LCOM

1.1
1, 3, 4, 5, 7, 10, 11,15, 16, 17,
19, 21, 23, 24, 25, 26, 27, 28, 30, 31

medium medium high

1.2 2, 6, 9, 12, 20, 29 small small small
2 8, 13, 14, 32, 18, 22 high high high

3. Case Study

A case study was used to validate our metric based approach for identifying
God Class design flaw. Two medium size projects, having 32 classes respec-
tively 52 classes, were analyzed. The selected metrics are those described in
Section 2.2, following the heuristics that characterize the “God Class” design
flaw, i.e. Cyclomatic Complexity (CC), Lack of Cohesion Of Methods (LCOM)
and Efferent Coupling at type level (Ce). The metrics were computed using
NDepend [10] software.

Therefore, the first two steps (setting the assessment objectives and met-
rics identification) that define the proposed methodology for OOD assessment
(Section 2) have already been performed. We have also mention that the
assessment objectives and the selected metrics are the same for both projects.

In what follows we apply Fuzzy Divisive Hierarchic Clustering (FDHC)
algorithm [3], computing also the DFE metric value, and we suggest some
refactorings to improve the design. After the refactorings were applied, the
newly resulted design was also assessed and some comparasions were made.

3.1. Project 01 - Case Study. After applying the FDHC algorithm [3] we
have obtained the clusters briefly described in Table 1.

The analysis of the metric’s values from each cluster reveals the cluster
with “problems” regarding the “God Class” design flaw: in the first cluster,
i.e. 1.1 the CC metric and Ce metric have “good” values, but the LCOM
value indicate a poorly cohesive class, for the 1.2 cluster all the metric values
are “good”, indicating that the classes from this cluster are not candidates
for the “God Class’ design flaw, but the elements from the cluster 2 have the
value for the Cyclomatic Complexity metric greater than 30 (being extremely
complex), Ce metric is high and the LCOM very closed to 1, indicating poorly
cohesive class and have more than one responsibility. Thus, the classes from
the 2 cluster are candidates for “God Class” design flaw, being candidates for
refactoring.



88 SIMONA MOTOGNA, CAMELIA ŞERBAN, AND ANDREEA VESCAN

Table 2. Project 01 - Metrics values before and after applying
refactoring for the analyzed classes.

Before After
Class CC Ce LCOM CC Ce LCOM

DataServer 37 28 0.86 35 28 0.64

IM 59 43 0.96 44 43 0.91

InvForm 52 67 0.94 51 67 0.94

Table 3. Project 02 - The list of classes’ clusters with the
corresponding metrics

Cluster Class Id CC Ce LCOM

1.1 3, 24, 25, 26, 29, 44, 45, 47 medium medium 0

1.2

1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15,
16, 17, 22, 23, 27, 28, 30, 31, 32, 33,
34, 36, 37, 38, 39, 41, 42, 43,
46, 48, 49, 50, 51, 52

small small 0

2.1 20,21,35,40 high high high
2.2 10, 18, 19 medium medium high/0

The value of the DFE metric is 1.33, the minimum value being 0.4 and
the maximum value 1.58, the obtained value suggesting that the “God class”
design flaw is largely studded into the software system.

The suggested refactoring are Extract Method and this should be applied
for the classes in the 2 cluster.

The Extract Method was applied for the following 3 classes: DataServer,
IM and InvForm, respectively 7 methods, and the complexity of some meth-
ods/classes was reduced. See Table 2for more details.

3.2. Project 02 - Case Study. Regarding the second project we analyzed,
after applying the FDHC Algorithm [3] we have obtained the clusters specified
in Table 3.

The analysis of the metric’s values from each cluster reveals the cluster
with “problems” regarding the “God Class” design flaw: in the first (1.1.) and
the second (1.2) cluster the values of the metrics don’t indicate “God Class”
design flaw entities, the third cluster 2.2 has “bad” values for each metric (
high values for CC and Ce, and value near 1 for the LCOM metric), cluster
2.2 hhas “goog’ value for the Ce metric but “bad” values for the other two



METRICS-BASED REFACTORING AND SOFTWARE QUALITY 89

Table 4. Project 02 - Metrics values before and after applying
refactoring for the analyzed classes.

Before After
Class Ce CC LCOM Ce CC LCOM

LinkMemoDbDataSet 35 59 0.82 37 59 0.83

TableAdapterManager 63 43 0.78 66 43 0.81

tbl UrlTableAdapter 55 48 0.9 43 48 0.92

metrics, and the cluster with the isolation points, i.e. IP contains classes with
“good” values for all the metrics, except for the CC metric (but not very high).

The value of the DFE metric is 1.07, having minimum value 0.33 and
the maximum value 1.37, the obtained value suggesting that the “God class”
design flaw is largely studded into the software system.

Extract Method refactoring was applied for three classes from the 2.1
cluster: LinkMemoDbDataSet, tbl UrlTableAdapter, TableAdapterManager.
See Table 4for more details.

Analyzing the results obtained after applying the proposed refactoring for
the second project, we can conclude that:

• there is only one improvement, the class tbl UrlTableAdapter decreases
its complexity

• the value of Ce metric remains unchanged for the refactored classes
• the values of metrics CC and LCOM metrics have higher values (except

for tbl UrlTableAdapter class) which does not improve the design.

So, if for the first project we obtained an improvement after applying refac-
toring, for the second one we have to consider a new analysis to suggest other
refactoring.

The decision of choosing a refactoring and the analysis of the impact of
applying it, is compromise decision, known in literature as “technical debt”
cite Suryanarayana14. Technical debt is a recent metaphor referring to the
eventual consequences of any system design, software architecture or software
development within a codebase. It is possible that choosing a particular refac-
toring, to improve some quality attributes, while others remain the same or
even worse.

4. Conclusion

Software metrics are considered of great importance in software quality
assurance but there is a gap between the things measured and the ones really
important in terms of quality characteristics. The current paper proposes a



90 SIMONA MOTOGNA, CAMELIA ŞERBAN, AND ANDREEA VESCAN

new metric based approach to evaluate the impact of applied refactoring on
software desing.

For future work, we intend to focus our research in the following directions:

• to apply the proposed evaluation framework on more case studies;
• to automate the task of establishing the list of suspect entities and the

list of refactorings that could be applied.

References

[1] R. Marinescu: Measurement and quality in object-oriented design, Ph.D. thesis in
the Faculty of Automatics and Computer Science of the Politehnica University of
Timisoara, 2003.

[2] Camelia Serban, A Conceptual Framework for Object-oriented Design Assessment,
Computer Modeling and Simulation, UKSim Fourth European Modelling Symposium
on Computer Modelling and Simulation, 90–95, 2010.

[3] Dumitrescu, D., Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145–
162, 1988.

[4] A.J. Riel. Object-Oriented Design Heuristics, Addison-Wesley, 1996.
[5] M. Salehie and Li Shimin and L. Tahvildari A Metric-Based Heuristic Framework to

Detect Object-Oriented Design Flaws, Program Comprehension, 2006.
[6] M. Fowler and K. Beck and J. Brant and W. Opdyke and and D. Roberts: Refactoring:

Improving the Design of Existing Code, Addison-Wesley, 1999.
[7] C. Serban and A. Vescan and H.F. Pop Design Flaw Entropy metric for software quality

assessment, Computer Science - Research and Development (submitted)
[8] S.R. Chidamber and C.F. Kemerer. A Metric Suite for Object- Oriented Design. IEEE

Transactions on Software Engineering, 20(6):476493, 1994.
[9] B. Henderson-Sellers. Object-Oriented Metrics-Measures of Complexity. Prentice Hall,

Sydney, 1996.
[10] NDepend, NDepend, http://www.ndepend.com/, 2015.
[11] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,

2(4), pages 308320, 1976.
[12] Arthur H. Watson and Thomas J. McCabe. Structured Testing: A Testing Methodol-

ogy Using the Cyclomatic Complexity Metric. In National Institute of Standards and
Technology NIST Special Publication, pages 500235, 1996.

[13] Suryanarayana G. Refactoring for Software Design Smells (1st ed.). Morgan Kauf-
mann. p. 258. ISBN 978-0128013977. 2014

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: motogna@cs.ubbcluj.ro

E-mail address: camelia@cs.ubbcluj.ro

E-mail address: avescan@cs.ubbcluj.ro


