
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 2, 2015

SOFTWARE DEFECT DETECTION USING

SELF-ORGANIZING MAPS

ZSUZSANNA MARIAN, ISTVÁN GERGELY CZIBULA, GABRIELA CZIBULA AND
SERGIU SOTOC

Abstract. This paper addresses the problem of software defect detection,
an important problem which helps to improve the software systems’ main-
tainability and evolution. In order to detect defective entities within a
software system, a self-organizing feature map is proposed. The trained
map will be able to identify, using unsupervised learning, if a software
module is defective or not. We experimentally evaluate our approach on
three open-source case studies, also providing a comparison with similar
existing approaches. The obtained results emphasize the effectiveness of
using self-organizing maps for software defect detection and confirm the
potential of our proposal.

1. Introduction

In order to increase the efficiency of quality assurance, defect detection
tries to identify those modules of a software where errors are present. In many
cases there is no time to thoroughly test each module of the software system,
and in these cases defect detection methods can help by suggesting which
modules should be focused on during testing.

We are proposing in this paper an unsupervised machine learning method
based on self-organizing maps for detecting defective entities within software
systems. The self-organizing map architecture was previously applied in the
literature for defect detection, but using a kind of hybrid approach, where
different threshold values for some software metrics were also used [1]. To
our knowledge, there is no approach in the search-based software engineering
literature similar to ours. The unsupervised model introduced in this paper
proved to outperform most of the similar existing approaches, considering the
datasets used for evaluation.

Received by the editors: June 3, 2015.
2010 Mathematics Subject Classification. 68T05, 62H30.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning ; I.5.3 [Computing Methodologies]: Pattern Recognition – Cluster-
ing .

55



56 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

The rest of the paper is structured as follows. Section 2 presents the
fundamentals of self-organizing maps as well as existing similar approaches for
software defect detection. Our proposal for identifying software defects using
self-organizing feature maps is introduced in Section 3. Section 4 provides
an experimental evaluation of our approach, while an analysis of the obtained
results and comparison with existing similar work is given in Section 5. Section
6 contains some conclusions of our paper and indicates directions for further
improvement.

2. Background

In this section we aim at presenting the main characteristics of self orga-
nizing maps as well as similar approaches for software defect detection.

2.1. Self-organizing maps. A self-organizing map (SOM) [15] is a type of
artificial neural network that is trained using unsupervised learning to produce
a low-dimensional (usually two-dimensional) representation of the training
samples, called a map [5]. Self-organizing maps use a neighborhood function
to preserve the topological relationships in the input space and are related
to the category of competitive learning networks. Self-organizing maps are
considered in the neural networks literature as the most innovative form of
unsupervised learning.

The SOM provides a topology preserving mapping from the multi-dimen-
sional input space to the map neurons (units). Each neuron from the input
layer of a SOM is connected to each neuron from the output layer and each con-
nection has an associated weight. The topology preservation property means
that a SOM groups similar input instances on neurons that are close on the
SOM [9]. The map is usually trained using the Kohonen algorithm [15].

The trained self-organizing map is able to provide clusters of similar data
items [12]. This particular characteristic of SOMs makes them appropriate for
data mining tasks that involve classification and clustering of data items [12].
The SOM can be used as an effective tool for clustering as well as a tool for
visualizing high-dimensional data.

2.2. Literature review. A review on unsupervised learning-based approach-
es existing in the defect prediction literature will be provided in the following.

Abaei et al. proposed in [1] a fault prediction method by utilizing self-
organizing maps and thresholds. Two experiments are conducted in this paper:
the first one considers the removal of the modules’ labels and re-computing
them afterwards by taking threshold values into account for some selected
attributes (the ones for which threshold values are known). In the second
experiment, a SOM is used for both clustering and evaluating the input data.



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 57

Threshold values are used as well for labeling the units from the trained SOM.
For this second experiment they report a good Overall Error, and in most cases
their proposed solution improves classification of unlabeled program modules
in terms of FPR (False Positive Rate) and FNR (False Negative Rate). One
drawback to their approach is that they do not obtain good results when the
dataset is very small.

Another approach is presented in [2] that predicts software fault using
a Quad Tree-based K-Means algorithm. The difference to the original K-
Means algorithm is that the cluster centers are found by using Quad Trees.
They evaluate their approach on various datasets, and compute the FPR,
FNR and Overall Error for them. These values indicate that their approach
is slightly better than other cluster center initialization techniques and they
achieve slightly better results from fewer number of iterations.

The method presented in [18] uses the K-Means clustering algorithm as
well, but it uses Hyper Quad Trees for determining the cluster centers. They
present that Hyper Quad Trees are more efficient than simple Quad Trees
because they produce more accurate centroids. After the K-Means algorithm
is run, a threshold value is used to determine which cluster represents the
defective and which represents the non-defective entities. The results for some
public datasets confirm obtaining better outcomes in terms of FPR and Overall
Error when comparing this approach to simple Quad Tree approach.

Tosun et al. used in [17] network measures to identify defective modules
in software systems. Their approach uses the Naive Bayes classifier, together
with a Call Graph Based Ranking (CGBR) framework. The experimental
evaluation was performed on both small and large datasets and for three cases:
complexity metrics only, network metrics only and a combination between
them. The results show a great performance of applying network metrics
for large datasets, but they do not provide significant improvement for small
projects.

A clustering-based approach is presented in [3], where the Xmeans al-
gorithm is used, an algorithm which is similar to K-means, but it can au-
tomatically determine the optimal number of clusters. The authors use the
implementation of this algorithm from WEKA [7], and when the clusters are
created, software metric threshold values are applied to the mean vector of
each cluster in order to decide whether it represents the defective or the non-
defective entities. They claim that this method proved better results than a
simple threshold-based approach, fuzzy c-means and k-means.

Another unsupervised software fault prediction model is given by Park
and Hong in [14] where clustering algorithms that determine the number of
clusters automatically are used. They have a pre-processing step, where at-
tribute selection is performed, using the CfsSubsetEval method from WEKA.



58 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

Results achieved with the Xmeans and EM models from WEKA (which can
automatically determined the optimal number of clusters) were compared to
other results produced with Xmeans (in [3]) and Quad Tree based K-Means
algorithm. They conclude that both Xmeans and EM have good results if
attribute selection is not performed, results that are better than the existing
ones in most of the considered cases.

3. Methodology

In this section we introduce our unsupervised neural network model for
defect identification in software systems.

The main idea of this approach is to represent an entity (class, module,
method, function) of a software system as a multidimensional vector, whose
elements are the values of different software metrics applied to the given entity.
We consider that a software system S is a set of components (called entities)
S = {s1, s2, ..., sn}. We are considering a feature set of software metrics SM =
{sm1, sm2, ..., smk} and thus each entity si ∈ S from the software system can
be represented as a k-dimensional vector, having as components the values of
the software metrics from SM, si = (si1, si2, . . . , sik) (sij represents the value
of the software metric smj applied to the software entity si).

For each software entity, the label of the instance (defect or non-defect)
is known. We mention that the labels will be used only in the pre-processing
step and for evaluating the performance of the model.

3.1. Data pre-processing. The first step before applying the SOM approach
is the data pre-processing step. During this step, the input data is scaled to
[0,1] using the Min-Max normalization method, and then a feature selection
step will be applied. Details about the feature selection step will be given in
the experimental part of the paper (Section 4). After applying the feature
selection step, m software metrics (features) are selected to be further used
for building the SOM.

Regarding the normalization method, we have to mention that in our ap-
proach the minimum and maximum values for the software metrics (features)
from the training data are used for the Min-Max normalization step. We
have focused in this paper only on the unsupervised scenario of grouping the
existing entities from a software system into defective or non-defective. In a
supervised learning scenario, in which new testing data is used, it is not useful
to use for normalization the minimum and maximum values for the features
from the training data. Instead, it would be a good idea to use, for each
software metric, the minimum and maximum values for that software metric.
Further extensions of our approach will investigate this situation.



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 59

3.2. The SOM model. Before designing the SOM model, the input dataset
is pre-processed. For the training step of the SOM, a distance function between
the input instances is required. We are considering the distance between
the high-dimensional representation of two software entities si and sj as the
Euclidean Distance between their corresponding vectors of software metrics
values. We have chosen the Euclidean distance because it is the most often
used distance measure for SOM-based approaches and because, intuitively,
considering them-dimensional instances (preprocessed as mentioned in Section
3.1), the Euclidean distance will assign low distances to similar entities that
are very likely to have the same output class (defect or not). Nevertheless, in
the future we intend to extend our approach to use other distance measures
as well.

The set of pre-processed software entities from the dataset S are grouped
into clusters using a SOM. For the self-organizing map, the torus topology
is used (Figure 1). In geometry, a torus is a surface of revolution generated
by revolving a circle in the three dimensional space about an axis coplanar
with the circle. It is shown in the literature that this topology provides better
neighborhood than the conventional one [11].

Figure 1. A torus

The goal of this step is to obtain two clusters corresponding to the two
classes of instances: defects and non-defects. For grouping the software entities
the following steps are performed.

• Map Construction. For a given number of epochs (training episodes),
perform the following. Eachm-dimensional training instance (software
entity) is fed to the map. For each instance si the following steps are
performed:
(1) Matching. The neuron having its weight vector closest (consid-

ering the Euclidean distance) to instance si is declared the “win-
ning” neuron. This is a competition phase, in which the output
units from the map compete to match the input instance.

(2) Updating. After the “winning neuron” was identified, the con-
nection weights of the winning unit and its neighbors are updated,



60 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

such that are moved in the direction of the input instance by a
factor determined by a learning rate.

• Visualization. After the training phase (the steps described above)
was completed, in order to visualize the obtained map, the U-Matrix
method [8] is used. The U-Matrix value of a particular node from
the map is computed as the average Euclidean distance between the
node and its closest 4 or 8 neighbors. These distances can be then be
viewed as heights giving a U-Matrix landscape. The U-Matrix may be
interpreted as follows [8]: high places on the U-Matrix encode data that
are dissimilar while the data falling in the same valleys represent input
instances that are similar. Thus, instances within the same valley can
be grouped together to represent a cluster. Each cluster visualized on
the map identifies a class of instances.

Once the map was built, it may also be used in a supervised learning
scenario for classifying a new software entity. First, the “winning neuron”
corresponding to this instance is determined (as indicated at the Matching
step above). The cluster (class) to which the winning neuron belongs will
indicate the class membership of the given entity.

3.2.1. Testing. For evaluating the performance of the SOM model, we are us-
ing several evaluation measures from the supervised classification literature.
Since the training instances were labeled, the labels are used to compute the
confusion matrix for the two possible outcomes (non-defect and defect). Con-
sidering the defective class as the positive one and the non-defective class as
the negative one, the confusion matrix [16] for the defect detection task con-
sists of: the number of true positives (TP), false positives (FP), true negatives
(TN ) and false negatives (FN ).

Considering the values computed from the confusion matrix, the following
evaluation measures will be used in this paper:

(1) False Positive Rate (FPR), computed as FP
FP+TN .

(2) False Negative Rate (FNR), computed as FN
FN+TP .

(3) Overall Error (OE), computed as FN+FP
FN+FP+TN+TP .

We have decided to use these measures, because they are used in papers pre-
senting similar approaches, so a direct comparison of the results is possible.
But the datasets used for the experiments are imbalanced, so we have decided
to compute the value of a fourth performance measure as well: the Area Un-
der the ROC Curve (AUC) [6]. The ROC curve is a two-dimensional plot
of sensitivity vs. (1-specificity), which in our case contains one single point,
linked to the (0, 0) and (1, 1) points.



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 61

4. Experimental evaluation

In this section we provide an experimental evaluation of the SOM model
(described in Section 3) on three case studies which were conducted on open
source datasets. We mention that we have used our own implementation for
SOM, without using any third party libraries.

4.1. Datasets. We have used three openly available datasets for the experi-
mental evaluation of our model, called Ar3, Ar4 and Ar5, which can be down-
loaded from [4]. All three datasets come from a Turkish white-goods manufac-
turer embedded software implemented in C. They all contain the value of 29
different McCabe and Halstead software metrics, computed for the functions
and methods from the software systems, and one class label, denoting whether
the entity is defective or not. The Ar3 dataset contains metric values for 63
entities, out of which 8 are defective. The Ar4 dataset contains 107 entities,
out of which 20 defective, while the Ar5 dataset has 36 entities, out of which
8 are defective.

For the SOM used in the experiments, the following parameter setting was
used: the number of training epochs was set to 100000, the learning coefficient
was set to 0.7, the radius was computed as half of the maximum distance be-
tween the neurons and the neighborhood function. We have tried out different
parameter settings and we have achieved the best results with these values.
However, we will perform in the future a thorough study to investigate the
effect of different parameter settings.

4.2. Data pre-processing. In order to analyze the importance of the fea-
tures, we are using the information gain measure. The information gain (IG)
of a feature expresses the expected reduction in entropy determined by parti-
tioning the instances according to the considered feature [13]. More exactly,
the IG measure indicates the relevance of a feature in the defect classification
task. Since the software metrics values (features values) are real numbers, in
order to compute the information gain of the attributes we first discretize their
values by dividing their interval of variation into ten sub-intervals.

For a better data analysis, we have computed the information gain of the
features from the dataset obtained using all three datasets (Ar3, Ar4 and Ar5 )
together. The information gain values for the features are shown in Figure 2.

Starting from the IG values of the software metrics, we have chosen a
threshold value τ and considered only the attributes whose IG was higher than
this threshold. Out of these attributes, we selected those that measure differ-
ent characteristics of the software system. For the threshold τ we have selected
the value 0.163, because we have achieved the best results with this value. Out
of the 18 software metrics whose value was higher than τ , we have selected



62 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

Figure 2. Information gain for the features.

the following 9 metrics: halstead vocabulary, total operands, total operators,
executable loc, halstead length, total loc, condition count, branch count, deci-
sion count. These selected attributes were used in the experimental evalua-
tion on all three considered datasets. We mention that a different, possibly
automatic, attribute selection method can also be implemented considering
the IG values and will be further investigated.

4.3. Results. We are presenting in this section the results we have obtained
by applying the SOM model on the Ar3, Ar4 and Ar5 datasets. For each
dataset considered for evaluation, the experiments are conducted as follows.
First, the data pre-processing step is applied and then the methodology indi-
cated in Section 3 is used for an unsupervised construction of a torus SOM.
The U-Matrix corresponding to the trained SOM will be visualized (the red
labels on the U-Matrix represent the defective entities and the yellow labels
represent the non-defective ones). Then, the evaluation measures presented in
Section 3.2.1 will be computed for evaluating the performance of the obtained
results.

4.3.1. The Ar3 dataset. A torus SOM, consisting of 150x8 nodes, was trained
on the set of software entities from the Ar3 dataset. Figure 3 depicts the
U-Matrix visualization of the trained SOM.

Visualizing the U-Matrix for the resulting map, we have identified the two
clusters, representing the defective and non-defective entities. The cluster with
the defective entities contains 6 defective entities and 1 non-defective entity,
thus we have 1 FP entity and 2 FN ones. All the other entities are placed



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 63

Figure 3. U-Matrix for the Ar3 dataset.

in the correct cluster. The values of the performance measures from Section
3.2.1 are presented in the first three cells of the first row of Table 1.

4.3.2. The Ar4 dataset. A torus SOM, consisting of 150x8 nodes, was trained
on the set of software entities from the Ar4 dataset. The U-Matrix visualiza-
tion of the obtained SOM is illustrated in Figure 4.

Visualizing the U-matrix for the resulting map, we have identified the two
clusters which represent the defective and non-defective entities. The cluster
with the defective entities contains 10 defective entities and 2 non-defective
entities. Consequently we have 10 FN entities and 2 FP ones. The values of
the performance measures are presented in the middle three cells of the first
row of Table 1.

4.3.3. The Ar5 dataset. A torus SOM, consisting of 150x8 notes, was trained
on the set of software entities from the Ar5 dataset. The U-Matrix visualiza-
tion of the trained SOM is presented in Figure 5.

From Figure 5 we can observe that the obtained SOM indicates a good
topological mapping of the input instances, and also identifies subclasses within
the defective and non-defective classes. Most of the defective entities are
grouped together (there is only one FN), but there is also one non-defective
entity in this cluster, so we have 1 FP as well. The values of the performance
measures for this dataset are presented in the last three cells of the first row
of Table 1.



64 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

Figure 4. U-Matrix for the Ar4 dataset.

Figure 5. U-Matrix for the Ar5 dataset.

5. Discussion and comparison to related work

An analysis of the approach we have introduced in Section 3 for detecting
the defective entities from software systems will be provided in the following.
A discussion on the obtained experimental results, as well as a comparison of
them with similar approaches from the literature is conducted.



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 65

As presented in the previous section, our approach was capable of sep-
arating the defective and non-defective entities in two clusters, obtaining a
good topological mapping of the input instances. Even if the separation was
not perfect, for all three datasets we had both false positive and false neg-
ative entities. A major advantage of the self-organizing map is that it does
not require supervision and no assumption about the distribution of the input
data is made. Thus, it may find unexpected hidden structures from the data
being investigated. Moreover, as seen from our experiments (Section 4), it is
interesting that the SOM is able to detect, within the defective/non-defective
class, subclasses of instances. This would be very useful, from a data mining
perspective, since it may provide useful knowledge for the software developers.

As the accuracy of the trained SOMs depends on the choice of some param-
eters (number of training epochs, learning coefficient, neighborhood function),
we have to measure it. One method for evaluating the quality of the resulting
map is to calculate the average quantization error over the input samples, de-
fined as the Euclidean norm of the difference between the input vector and the
best-matching model [10]. Figures 6, 7 and 8 give a graphical representation
of the average quantization error during the training steps, for each case study
considered for evaluation. It can be easily seen that while the error fluctuates
at the beginning of the training phase, it decreases during it, and after the
training is completed, a very small average quantization error of the trained
maps is obtained (1.6× 10−6 for Ar3, 1.7× 10−4 for Ar4 and 6.7× 10−13 for
Ar5 ), which shows the accuracy of the trained maps.

Considering the subclasses identified within the clusters for the defective
and non-defective entities as further work we propose to analyze these sub-
classes to identify the characteristics of the software entities placed in them.

Table 1 presents the values of the FPR, FNR and OE performance mea-
sures computed for the results of our approach, but it also contains values
reported in the literature for some existing approaches, presented in Section
2.2. The Hyper Quad Tree-based approach presented in [18] does not report
FNR values, this is marked with “NR” in the table.

From Table 1 we can see, that even if our approach does not provide the
best results in each case, it has better results than most of the approaches. Out
of 51 cases in total, our algorithm has a better or equal value for a performance
measure in 43 cases, which represents 84.3% of the cases.

The first line of Table 2 presents the value of the AUC measure computed
for our approach. As presented in Section 3.2.1, for computing the value of
the AUC measure we need to compute the sensitivity and specificity of the
classification. Since sensitivity is equal to 1 − FNR and (1 − specificity) is
equal to FPR, we computed the value of the AUCmeasure for those approaches
from the literature which report both of these values. They are presented in



66 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

Figure 6. Average Quantization Error for the Ar3 dataset.

Figure 7. Average Quantization Error for the Ar4 dataset.

Table 2 as well, and for each dataset the best value is marked with bold. Our
approach has the highest AUC value for the Ar5 dataset, the second highest



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 67

Figure 8. Average Quantization Error for the Ar5 dataset.

Ar3 Ar4 Ar5
Approach FPR FNR OE FPR FNR OE FPR FNR OE

Our SOM 0.0182 0.25 0.0476 0.0230 0.5 0.1121 0.0357 0.125 0.0556

SOM and 0 0.25 0.0556 0.1034 0 0.0938 0.0714 0.25 0.1111
threshold [1]
K-means - 0.3454 0.25 0.3333 0.0459 0.45 0.1214 0.1428 0.125 0.1388
QT [2]

K-means - 0.0263 NR 0.0263 0.1875 NR 0.1846 0.0246 NR 0.0246
Hyper QT [18]
XMeans [3] 0.3455 0.25 0.3333 0.4483 0.05 0.3738 0.1429 0.125 0.1389
XMeans [14] 0.0727 0.25 0.0952 0.023 0.6 0.1308 0.149 0.125 0.1389

EM [14] 0.1091 0.25 0.127 0.023 0.6 0.1308 0.149 0.25 0.1667

Table 1. Comparison of the performance of our method to
existing approaches.

value for the Ar3 dataset and the fourth highest value for the Ar4 dataset.
Interestingly, for the Ar3 and Ar4 datasets the best value is achieved by the
other SOM-based approach presented in the literature, suggesting that SOMs
are indeed suitable for this problem.

6. Conclusions and future work

We have introduced in this paper a self-organizing feature map which may
be used for an unsupervised detection of software defects. The experimental
results obtained on three open-source datasets reveal a good performance of



68 ZS. MARIAN, I. G. CZIBULA, G. CZIBULA, S. SOTOC

Approach Ar3 Ar4 Ar5
Our SOM 0.866 0.739 0.92

SOM and threshold [1] 0.875 0.948 0.839
K-means - QT [2] 0.702 0.752 0.866

XMeans [3] 0.702 0.751 0.866
XMeans [14] 0.839 0.689 0.863
EM [14] 0.820 0.689 0.801

Table 2. Comparison of AUC values.

the proposed approach, it provides better results than many of the existing
approaches report in the literature.

Future work will be done in order to extend the evaluation of the proposed
machine learning based model on other open source case studies and real
software systems. We will also investigate the applicability of fuzzy [19] self-
organizing maps for software defect detection, as well as to further consider
techniques for data pre-processing and feature selection.

Acknowledgments

This work was supported by a grant of the Romanian National Authority for
Scientific Research, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-
0082.

References

[1] G. Abaei, Z. Rezaei, and A. Selamat. Fault prediction by utilizing self-organizing map
and threshold. In 2013 IEEE International Conference on Control System, Computing
and Engineering (ICCSCE), pages 465–470, Nov 2013.

[2] P.S. Bishnu and V. Bhattacherjee. Software fault prediction using quad tree-based k-
means clustering algorithm. IEEE Transactions on Knowledge and Data Engineering,
24(6):1146–1150, June 2012.

[3] C. Catal, U. Sevim, and B. Diri. Software fault prediction of unlabeled program modules.
In Proceedings of the World Congress on Engineering (WCE), pages 212–217, Dec 2009.

[4] Tera-promise repository. http://openscience.us/repo/.
[5] N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation

of complex processes. International Journal of Computers, Communications & Control,
III(2):149–160, 2008.

[6] T. Fawcett. An introduction to ROC analysis Pattern Recogn. Lett., 27(8):861–874,
2006.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explorations,
11(1), 2009.

[8] S. Kaski and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. In Neural Networks in Financial Engineering.



SOFTWARE DEFECT DETECTION USING SELF-ORGANIZING MAPS 69

Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498–507. World Scientific, 1996.

[9] Andreas Khler, Matthias Ohrnberger, and Frank Scherbaum. Unsupervised feature se-
lection and general pattern discovery using self-organizing maps for gaining insights into
the nature of seismic wavefields. Computers & Geosciences, 35(9):1757 – 1767, 2009.

[10] Teuvo Kohonen, Ilari T. Nieminen, and Timo Honkela. On the Quantization Error in
SOM vs. VQ: A Critical and Systematic Study. In Advances in Self-Organizing Maps,
7th International Workshop, WSOM, pages 133–144. St. Augustine, FL, USA, 2009.

[11] Peter K. Kihato, Heizo Tokutaka, Masaaki Ohkita, Kikuo Fujimura, Kazuhiko Kotani,
Yoichi Kurozawa, and Yoshio Maniwa. Spherical and torus som approaches to metabolic
syndrome evaluation. In Masumi Ishikawa, Kenji Doya, Hiroyuki Miyamoto, and Takeshi
Yamakawa, editors, ICONIP (2), volume 4985 of Lecture Notes in Computer Science,
pages 274–284. Springer, 2007.

[12] J. Lampinen and E. Oja. Clustering properties of hierarchical self-organizing maps.
Journal of Mathematical Imaging and Vision, 2(3):261–272, 1992.

[13] Thomas M. Mitchell. Machine learning. McGraw-Hill, Inc. New York, USA, 1997.
[14] Mikyeong Park and Euyseok Hong. Software fault prediction model using clustering

algorithms determining the number of clusters automatically. International Journal of
Software Engineering and Its Applications, 8(7):199–205, 2014.

[15] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10:151–159, 1999.

[16] Stephen V. Stehman. Selecting and interpreting measures of thematic classification ac-
curacy. Remote Sensing of Environment, 62(1):77 – 89, 1997.

[17] Ayse Tosun, Burak Turhan, and Ayse Basar Bener. Validation of network measures
as indicators of defective modules in software systems. In Proceedings of the 5th In-
ternational Workshop on Predictive Models in Software Engineering, PROMISE 2009,
Vancouver, BC, Canada, May 18-19, 2009, pages 5–14, 2009.

[18] Swati Varade and Madhav Ingle. Hyper-quad-tree based k-means clustering algorithm
for fault prediction. International Journal of Computer Applications, 76(5):6–10, August
2013.

[19] Lotfi A. Zadeh. A summary and update of ”fuzzy logic”. In 2010 IEEE International
Conference on Granular Computing, GrC 2010, San Jose, California, USA, 14-16 Au-
gust 2010, pages 42–44, 2010.

Department of Computer Science,, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Kogălniceanu 1, Cluj-Napoca, 400084, Roma-
nia.

E-mail address: {marianzsu, istvanc, gabis}@cs.ubbcluj.ro
E-mail address: ssic0977@scs.ubbcluj.ro


