
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

ERLANG-LIKE DYNAMIC TYPING IN C++

ANDRÁS NÉMETH AND MELINDA TÓTH

Abstract. Each programming language has its type system. In simple
terms, when the type checking takes place at compile time we call this
language statically typed. On the other hand, if the type checking is done
at runtime, it is a dynamically typed language. In this paper we present
the key differences between the two approaches by choosing two general-
purpose programming languages, one from each category.

Erlang is a dynamically typed language with an infrastructure for devel-
oping highly available, distributed applications. However for computation-
intensive tasks for performance reasons a statically typed language would
be a better choice. This paper introduces a method of interoperability
between Erlang and C++ in the perspective of type systems.

1. Introduction

Each general-purpose programming language has unique properties which
make some more favourable compared to others in the respect of solving spe-
cific problems. We often write big programs using one general-purpose pro-
gramming language that is good enough for the most of our intentions, but
often might not be the best choice on a few but essential areas. To overcome
such complications, we can piece our program together using elements written
in different programming languages, resulting in a mixed construction that
can be an optimal solution for that problem domain.

In this paper, we choose two programming languages: Erlang [9] and
C++ [22]. On one hand, Erlang is a good choice to achieve greater pro-
ductivity, easy cluster communication, or to write soft real-time applications.
On the other hand, with C++, one can produce more efficient programs, since
the emitted machine code is much more optimised and performs better than
interpreted and platform-independent bytecode. Putting these together can

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N15, 68N19.
1998 CR Categories and Descriptors. D.3.3 [Programming Languages]: Language

Constructs and Features – Data types and structures; F.3.1 [Logics and Meanings of
Programs]: Semantics of Programming Languages – Algebraic approaches to semantics.

Key words and phrases. Connecting programming languages, Erlang, C++, interoper-
ability, type system, data mining, static code analysis, graph representation.

185



186 ANDRÁS NÉMETH AND MELINDA TÓTH

be a good choice if the computation-intensive parts of a distributed application
is written in C++ while the rest in Erlang. But there is one fundamental dif-
ference between the two: these have completely different type systems; while
Erlang is dynamically typed, C++ is statically typed. In order to write parts
of our program in C++, modelling the type system of Erlang is needed since
we want to write algorithms in both that can operate on the same data. In
favour of ensuring seamless transitions from one to the other and vice versa,
we should be able to specify the type of data even when we do not know
in advance what the data is. The main goal of this method is to write the
computation-intensive parts of a program in C++ that operates on Erlang
data and thus behave as it is in Erlang.

2. Motivation

RefactorErl [11, 6] is a source code analysis and transformation tool for
Erlang. The tool provides several features to support program development
and maintenance, for example refactorings, software metrics, code browser
and source navigation by semantic queries or bad smell detection. RefactorErl
analyses the Erlang sources in advance, builds a Semantic Program Graph [14]
from it and stores the graph in a database. Later, when some information is
required, it gathers the information from this database.

Implementing computation-intensive parts of a program in C++, and us-
ing it from Erlang aims to deliver faster data access along with more stable
code comprehension capabilities of RefactorErl. It was observed that long
queries can consume much time that can be unacceptable for the end user.
For instance finding function references globally when several millions of func-
tions are parsed would take up long minutes.

The Semantic Program Graph is a directed, labelled graph, and attributes
are assigned to each type of vertex. It has one specific node which has no
incoming edges, this is the root node. The types of vertices and the edge labels
between them are described by the graph schema. This is not known at compile
time, rather when the tool starts, semantic analysers register themselves and
describe the data they want to store and attaching their own parts to the global
graph schema. This way the tool does not know in advance what will be the
type of data it has to store and operate on. There are already existing graph
implementations in C/C++ for RefactorErl using already existing techniques
to connect Erlang and C/C++ [3], but the handling of arbitrary data is not
solved by those, rather these parts of the graph is still written in Erlang.
Consequently to overly optimise the tool we need to start from the bottom first:
to implement the whole Semantic Program Graph along with the traversal



ERLANG-LIKE DYNAMIC TYPING IN C++ 187

algorithm in C++ and utilising hardware resources by executing platform-
specific machine code.

The graph traversal algorithm is used to extract semantic information from
the graph. A starting node (or set of nodes) is given and a graph path which
is mainly a series of edge labels. One part of this path expression can contain
a direction specifier and an additional filtering specification besides the edge
label. These are optional parts, and hence the expression contains different
types of elements. Therefore the exact type of the expression is not known
in advance, additionally a path can contain another path recursively. When
evaluating filters the processed data is influenced by the current graph schema.

3. Type Systems

Price [21] defined type systems in the following way: “A type system is
a tractable syntactic method for proving the absence of certain program be-
haviours by classifying phrases according to the kinds of values they compute.”
He characterises its main purpose as to rule out certain program behaviours
that are undefined or have unpredictable results. These are considered pro-
gramming errors which cause runtime failures in future program executions.
Most of these errors (behaviours) can be checked statically, but not all of
them: the well-known division by zero, bad typecasts or null pointer derefer-
ences are the most common examples. These mistakes cause rather runtime
exceptions, therefore the static type check shall include these as valid results of
the execution: the semantics of these expressions contain whether the current
evaluation is valid or not [12]. Phrases can be classified: a type system can
be imagined as a formal system composed of rules which assign a type to each
language construct of a programming language.

A computer cannot distinguish an integer value from the executable code
of a function, it just sees sequences of bits stored in the memory: it is an un-
typed universe, and operations are carried out on bit sequences. Therefore the
type system is a fundamental aspect of language design [16]: each language
determines its own way how it classifies bit sequences: a type gives the seman-
tic meaning to a particular sequence of bits. These constraints are verified by
the type checker given by the programming language. This checker identifies
the language parts referring to a specific construct (e.g. variable identifier,
function identifier, etc.) and checks if the values used in these expressions
satisfy the type constraints required by that particular construct.

Type check can take place early at compilation time by the compiler. This
method is called static type checking. It requires the programmer to annotate
every identifier in the program with a type keyword depending on the kind of
data it is intended to hold during execution. The types in this method does



188 ANDRÁS NÉMETH AND MELINDA TÓTH

not depend on the possible execution paths since the annotations already re-
strict the potential values a language construct can contain. If type checking
succeeds, the program is considered type safe. For the time of program exe-
cution the type information is not kept since a type safe program has no more
need to verify values during runtime. This results in faster program execution.

On the other hand, dynamic type checking takes place at the time when
the program is executed. The execution environment does the type checking
and type information is inferred based on the exact execution path currently
being evaluated. The evaluation succeeds and execution continues if the type
check succeeds, hence the execution path is type safe. If it fails, the program
execution is stopped and an exception is thrown. On the other hand, it does
not require the written program code to be annotated, rather the programmer
can write code intuitively and often can be more productive. However it
requires the programming errors to be foreseen.

A type checker can only perform semantic verification of program code
on a relatively low level where the language defines the static meaning of
its language constructs, therefore the analysis of algorithmic fulfilment takes
place on a higher abstraction level. This requires other methodologies to prove
program correctness that are out of scope of this paper.

4. Interoperability Between Type Systems

In the introduction the cooperation of programming languages is men-
tioned: writing program code in two different general-purpose programming
languages and attaching them. In this paper these two chosen languages are
Erlang and C++. For this combination interoperability is already available us-
ing several already existing methods [3]. However in these cases the successful
communication requires the types of exchanged data to be consistent between
the program parts participating in the cooperation. For our purpose 2 it is not
sufficient, since there are cases when the type of data is unknown at compile
time. To form the next level of interoperability, an agreement between the
two languages shall be defined that concludes that data must be utilised the
same way on both sides semantically. This includes the semantics of the fun-
damental computational operations such as relational, arithmetic and logical
expressions. Type information is a key concept since it needs to be preserved
at runtime to be able to extract it later if the program execution makes it
necessary. This implies that at some point of the program it might be irrele-
vant what type of data is used. The semantics of a certain value is employed
only when the evaluation of the current expression makes it unavoidable. Al-
gorithms written in both languages leveraging on this agreement facilitate the
seamless interoperability between them. On the type system level, language



ERLANG-LIKE DYNAMIC TYPING IN C++ 189

constructs other than the previously mentioned ones such as control state-
ments are not considered, because these are mainly related to program control
and not to type systems [8]. We consider this part as a different topic and
therefore should be approached differently.

4.1. Key Concepts of the Erlang Type System. In the type system of
Erlang every language construct has a particular type which is inferred by
the runtime system. In type theory terms are the elements of the set of base
values. In any case, when an expression is evaluated its result will be a term
in the Erlang terminology. The static type of this term needs to be preserved
during program execution.

The particular type of a term is deduced runtime when a value is involved
in the evaluation of an expression. Although it is dynamic, it does not allow
automatic type conversions 1, therefore the type system is strict, and type
information is hidden until that data is used in an expression. Type inference
implies the ability to examine the static type of a piece of data at any stage of
execution - this is type introspection - and attach the precise semantics of the
current operation. Both Erlang and C++ uses eager evaluation, therefore it
is sufficient to introspect the terms involved in the current subexpression, the
whole expression is not checked for type safety beforehand. This implies that
shortcut evaluation of logical expressions would succeed in some cases when
the first operand satisfies the type constraints and the other is not. More
importantly, Erlang uses single assignment. When a term is assigned to a
variable for the first time, that value is associated with that identifier. Next
time the assignment acts like a pattern matching, and succeeds if the right
hand side expression evaluates to the same value that is stored in the variable
on the left hand side. Otherwise a runtime exception is thrown indicating that
the pattern matching is failed.

Recursive data structures can be used in Erlang. For example a list can
contain other lists of arbitrary data recursively. Types in C++ cannot be
recursive, since the size of a recursive type is infinite. Similar effect can be
achieved using pointers or STL [7] containers. However these have different
semantics since these use indirection. Although a recursive data structure can
be implemented in C++ as self-referring streams [13], these are not sufficient
for handling arbitrary data.

Erlang is very permissive in data comparison: any kind of data can be
compared regardless of the type of data they actually store. For example a
list of integers can be compared to a floating-point number which yields a
boolean value (to be more specific, a term containing a boolean value). In

1The implicit conversion between floats and integers in an exemption



190 ANDRÁS NÉMETH AND MELINDA TÓTH

order to allow comparison of any kind of data, the ordering between types is
defined:

Binary > List > Tuple > Pid > Port > Function > Reference >
Atom > Numeric types

When the comparison of different types occur, the one having the higher or-
dering considered to be the greater value than the other.

When terms are involved in arithmetic or logical expressions Erlang is not
this permissive. These expressions are defined between certain types having
the same place in the ordering and a runtime type error is raised if this is
not satisfied. For example adding an integer to a string raises a “badarith” or
“badarg” exception during execution if the expression is arithmetic or logical
respectively.

4.2. Formal Definition of the Type System. In this section the formal
semantics of the the Erlang-like type system is written, based on the observa-
tions described in the previous section. Terms are the elements of the set of
base values. All “terms” have a particular type:

T = {int, float, atom, reference, function, port, pid, tuple, list, binary}
T is a set of type categories where each element represents a type. This

is the type information preserved in the runtime system. We have a typing
function type for this purpose, that extracts type information from an arbitrary
term at runtime.

type : term→ T

The helper functions are used to define the operations:

class : term→ int, where int is a constant integer number
float : term→ float, if type(term) ∈ {int, float}
head : termlist → term
tail : termlist → termlist

length : termlist → int
size : termtuple → int
elem : termint × termtuple → term

The class function is used to classify terms. It yields the constant number
that the terms are associated with based on their type category. These con-
stants are numbers that are strictly monotone increasing as the type ordering
is defined. head, tail and length are functions operating on lists. The first
one returns the first element of a list, the second one returns the rest of the
elements except the first of the given list, while length returns the number of



ERLANG-LIKE DYNAMIC TYPING IN C++ 191

elements a list currently contains. The functions size and elem operate on
tuples, size returns the number of elements a tuple contains and elem returns
an element of it based on the given index. Term comparison is done in the
following way:

opc ∈ {<,≤, >,≥,=, 6=}
bool = {true, false} | true, false ∈ atom
C : term× term× opc → termbool

Cl : term× term× opc → termbool

Ct : term× term× opc × int→ termbool

All relational operations return a bool type. Although Erlang does not have
such type, the atoms true and false are returned. Accordingly these two spe-
cial values implicitly produce the set of boolean. This is referred to as bool
type in the followings, although this is not a distinct type in Erlang. The no-
tation of opc refers to a comparison operator and C, Cl, Ct are total functions
that carry out the comparison using the given terms and relational operator.
The semantics of these functions follow:

C(t1, t2, opc) =



Cl(t1, t2, opc) if type(t1) = type(t2) = list
Ct(t1, t2, opc, 1) if type(t1) = type(t2) = tuple
t1 opc t2 if type(t1) = type(t2)
float(t1) opc float(t2) if type(t1) ∈ {int, float} and

type(t2) ∈ {int, float}
class(t1) opc class(t2) otherwise

The first step is to check the type of the operands involved in the comparison.
If both are lists or tuples, then the list or tuple compare function carries out
the operation, respectively. Otherwise if both of them has the same type,
the stored values are compared. If floating point and integer numbers are
compared, the integer is converted to a floating point value. The comparison
without these implicit type casts are not considered here.

length(nil) = 0

Cl(t1, t2, opc) =



length(t1) opc length(t2) if t1 = ∅ or t2 = ∅

Cl(tail(t1), tail(t2), opc) if head(t1) = head(t2) and
t1 6= ∅ and t2 6= ∅

C(head(t1), head(t2), opc) otherwise



192 ANDRÁS NÉMETH AND MELINDA TÓTH

Nil is the list which has the length of 0. Comparing two lists starts with
comparing the its elements one by one, taking the head first. When one of the
lists has no more elements, it is considered having the less value and the other
having the greater. If the elements are equal, the comparison continues taking
the next list element. The last rule is applied when the current elements are
not equal, this case the original comparison function has to be used.

Ct(t1, t2, opc, n) =



size(t1) opc size(t2) if size(t1) 6= size(t2) or
size(t1) = size(t2) = 0

Ct(t1, t2, opc, n+ 1) if elem(n, t1) = elem(n, t2)
and size(t1) > n

C(elem(n, t1), elem(n, t2), opc) otherwise

Tuples with different sizes are compared by comparing the number of ele-
ments they contain. If the size is the same, the elements are compared one by
one. If the currently analysed elements are equal, the comparison continues
with the next elements. Otherwise the original comparison function is used,
this case the current values are equal. Arithmetic operations can be defined
only on numeric types, and has the following signature:

opua ∈ {+,−}
opa ∈ {+,−, ∗, /}
opb ∈ {band, bor, bxor, bsl, bsr}

A : term× opua → termτ ∪ ⊥, where τ ∈ {int, float}
A : term× term× opa → termτ ∪ ⊥, where τ ∈ {int, float}
Arem : term× term→ termint ∪ ⊥
Abin : term× term× opbin → termint ∪ ⊥

Above, the opua denotes a unary arithmetic operator + or −, opa is a
binary operator in the sense that it takes two arguments, and opbin is a bit-
wise arithmetic operator. Integer divisions are not considered here, although
Erlang has a special operator - div - for this purpose. A is a total function
which takes two terms and an operator and evaluates the expression based on
the type of operand(s). It has two special cases: “rem” and “bin” that need
to be handled separately. The return type of this function is merely depend
on the type of operands. If both are integers, the result type is int, else it is
float. The only exception is the division which yields a floating point number
in all cases. If the type of operands are not valid (other than int or float)



ERLANG-LIKE DYNAMIC TYPING IN C++ 193

the operation fails. The same behaviour is expected when the Arem or Abin is
used with terms having a type other than int. Failure means that the evalu-
ation function raises a runtime exception. The evaluating rules of arithmetic
operations are described here in the following:

A(t, opua) =

 opua t if type(t) ∈ {int, float}

⊥ otherwise

Unary arithmetic operations are defined on an int or float operand. In
these cases the operation succeeds and otherwise fails and a runtime exception
is generated.

A(t1, t2, opa) =



t1 opa t2 if type(t1) = type(t2) and
type(t1), type(t2) ∈ {int, float}

float(t1) opa float(t2) if type(t1), type(t2) ∈ {int, float}

⊥ otherwise

In these binary arithmetic operations the types int and float are consid-
ered compatible. If both operands are either integers of floats, the operation
succeeds and the result type will be integer of float respectively. If only one of
the operands is an integer and the other is a float, an implicit type conversion
occurs on the integer number, and the result type is float. The computation of
the remainder of an integer division is a special case and defined only if both
of the operands are integers:

Arem(t1, t2) =

 t1 rem t2 if type(t1), type(t2) = int

⊥ otherwise

Binary arithmetic operators follow: binary and, or, xor, shift left and shift
right:

Abin(t1, t2, opb) =

 t1 opb t2 if type(t1), type(t2) = int

⊥ otherwise

These operations are defined only on integer operands else a runtime ex-
ception is generated.



194 ANDRÁS NÉMETH AND MELINDA TÓTH

Logical expressions are defined in the following:

opul ∈ {not}
opl ∈ {not, orelse, andalso}
L : term× term× opl → termbool ∪ ⊥ Lnot : term→ termbool ∪ ⊥

The operation not negates the result of a logical expression or variable con-
taining a logical value. It is a unary operator, therefore the Lnot evaluates
these expressions. The other two - andalso and orelse are shortcut logical
operations since in C++ we have only one kind of infix operator for each
logical operation, therefore having a regular and a shortcut and operator is
not feasible. In C++, logical operators use shortcut evaluation, these seem
more natural and therefore here only these are the ones considered. The other
exception is that despite Erlang defines a logical xor, C++ lacks such an op-
erator. The function L evaluates the logical operator opl with the two term
operands and returns a bool type term or fails if the operands does not have
the type of bool. In case of shortcut evaluation a valid result is returned if
only the first operand has the type of bool and the second operand need not
to be evaluated.

L(t1, t2, opl) =

 t1 opl t2 if type(t1), type(t2) = bool

⊥ otherwise

Lnot(t) =

 not t if type(t) = bool

⊥ otherwise

The function L evaluates a binary logical expression. It expects bool type
operands. Similarly, the unary Lnot expects a bool type term.

5. Implementation Considerations

5.1. Erlang Term. The concrete type of Erlang data is checked at runtime.
In the Erlang terminology, all element in the set of base values is called a
term: it has an exact type, but it remains hidden until the value contained
has to be extracted. This concept makes straightforward to represent arbitrary
Erlang data object oriented: the term can be an abstract class that exposes all
operations defined on a value (such as the relational operators). The concrete
data types can be derived implementing all these operations. To provide
more flexibility and runtime efficiency, the separation of the required interface
and the concrete data types would be desirable. Another advantage is that
automatic memory management can be done easily if the concrete data is



ERLANG-LIKE DYNAMIC TYPING IN C++ 195

stored in a standard shared pointer inside the term 2. This method is called
a private implementation, or in short pimpl. In this case, there is no explicit
subtyping relation between term and the concrete data. Both exposes the
same interface, therefore this is a special polymorphic relation we call duck
typing [23]. The third advantage is that data immutability can be ensured by
overloading the assignment, copy assignment and move assignment operators.
An empty term stores a piece of data when it is constructed or when a value is
assigned to it for the first time. Since the assignment is fully controllable, at
subsequent assignments the new value can be matched against the contained
data if those are the same, and an exception can be generated if not.

5.2. Type Introspection. C++ does not have a general language feature
that supports runtime type introspection, for example like reflection in Java.
It is necessary to create predicate functions that can be used to obtain runtime
type information and to hide the actual type tags: all concrete Erlang types
need to have a constant unique identifier, the tid, which is checked runtime
to determine the type of a term. Similar functions exist in Erlang, such as
the is number, is atom, is list, etc., yielding true if the static type of the
argument matches. Also the usage of such functions are reasonable because
these hide the actual data representation from the algorithms operating on
them.

5.3. Recursive Data Structures. List and tuple types can be composed re-
cursively (e.g a list containing additional lists). The concrete Erlang list and
tuple classes can contain an implementation-specific container (e.g. an intru-
sive list, array, etc.) which contains instances of terms, just like in Erlang. The
manipulation of container data cannot be done directly using member func-
tions of the container, but with free functions provided by the implementation.
Similar ones are also available in Erlang, like element, hd, etc.

5.4. Type Ordering. When Erlang compares terms of different data types
it does not perform implicit type conversions 3 like scripting languages often
do, for example when a string value is put into an arithmetic expression, it
is implicitly converted to an integer or float, depending on the representation
of the stored value. Instead, to achieve dynamically typed data comparison,
different Erlang types are compared based on the ordering between them: data

2Because a term can be put recursively to a container it is necessary to count references
to the concrete data before allowing the memory deallocation. It shall be permitted only if
the reference count is reached 0.

3There is only one exception: comparing an integer and a floating point number using
the ’==’ operator, the term having the lesser precision will be converted into the type of
the other term. Using the ’=:=’ or ’=/=’, no type conversion is done.



196 ANDRÁS NÉMETH AND MELINDA TÓTH

type on a higher place in the ordering against another which have a lower, is
like comparing a higher number against a lower one: number < atom <
reference < function < port < pid < tuple < list < binary. The number
used for relational operations can be the same as the tid - the unique identifier
introduced in the subsection 5.2. The object-oriented approach is to overload
the relational operators (and also arithmetic) of the concrete types therefore
the runtime behaviour of the current data is altered depending on its static
type using dynamic dispatch.

5.5. Prototype Implementation. The main class hierarchy of the proto-
type implementation of the Erlang type system is depicted on Figure 1.

Term is the class that wraps a value as an instance of the AbstractTerm.
This prevents illegal access to the representation of the encapsulated value,
hence there is no convenient way to extract the data stored inside. Term is
Immutable, it prevents re-binding data to an already assigned one by gen-
erating an exception. An operation on a term can be done only through
AbstractTerm. It stores a type id that can be retrieved runtime to determine
the type of data. This is an abstract class that does not implement the op-
erations. This is the supertype of concrete data types: the TypedTerm which
encapsulates a single value. This is a generic class and has no other role than
to introduce and store typed values. GuardedTerm implements the abstract
interface, and has a Type type parameter which determines what type of data
will be stored in its TypedTerm supertype. TypeId is the constant number
which can be used runtime for type determination. This value is stored in the
AbstractTerm to allow operations to extract runtime type information without
without the need of typecasting. It also has a TermOperator that carries out
an actual operation - relational, arithmetic or logical - on the operands. A
TermOperatorGuard is bound as a type parameter. This ensures that oper-
ations can only be performed on allowed types of data. Type checking and
type exception generation takes place here. Some data types - reference, func-
tion, port and pid - are not shown here, because these represent values that
are interpretable and usable only by the Erlang virtual machine. Although
these could be stored here in a special binary format, these are considered
superfluous in the processing of semantic data.

6. Related Work

First to mention, the type system of Erlang have mostly studied in the area
of static program code analysis. Simon Marlow and Philip Wadler presented
in the paper A Practical Subtyping System For Erlang [19] a type system for
Erlang with the typing rules of Erlang expressions. They created a prototype
type checker that was able to infer the types of expressions of static program



ERLANG-LIKE DYNAMIC TYPING IN C++ 197

Term

AbstractTerm

has-a

Immutable

is-a

TermOperatorGuard

SameTypeGuard

variant

NumericTypeGuard

variant

ListTypeGuard

variant

TupleTypeGuard

variant

TypeId

Type

int
variant

double

variant

long

variant

atom

variant

string

variant

tuple

variant

list

variant

binary

variant

GuardedTerm

bind

bind

TermOperator

has-a

TypedTerm

is-a

bind

is-a

Figure 1. Erlang Types in C++

code. With similar goals, the work of Tobias Lindahl and Konstantinos Sago-
nas was aimed to inspect and verify the correctness of program code by creating



198 ANDRÁS NÉMETH AND MELINDA TÓTH

the TypeEr [18]. They have defined the basic types of the Erlang type system
with the typing rules required to infer and check the types of expressions on
possible execution paths based on the success typing [17]. Sven-Olof Nyström
suggested a soft-typing system for Erlang [20]. This method introduced the
checking of the source code of an Erlang module using data-flow analysis: it
verifies the correctness of the module’s interface described by a specification
language. All of these three are focusing on the static type checking of program
code within the boundaries of Erlang.

Connecting two programming languages often involves a high-level in-
terface description language (IDL). The contract between programming lan-
guages can be described using this IDL. Zoltán Horváth, Zoltán Varga, Viktória
Zsók wrote about this method in Clean-CORBA Interface for Parallel Func-
tional Programming on Clusters [24]. This work introduced the IDL compiler
which was able to translate the objects described in CORBA [2] to the lan-
guage constructs and code stubs of Clean [1]. With this method, the Clean
functional language could be interfaced with others.

The topic of type system interoperability for distributed applications was
also studied by Valérie Issarny and Amel Bennaceur in the paper Compos-
ing Distributed Systems: Overcoming the Interoperability Challenge [15]. The
paper describes various possible techniques of interoperability on the middle-
ware layer including software components running distributively but not in
a closely-related manner. This was based on the usage of ontologies. Simi-
larly Gordon S. Blair, Massimo Paolucci, Paul Grace and Nikolaos Georgantas
represented ontology-based interoperability in large systems in the paper In-
teroperability in Complex Distributed Systems [10]. Their work introduced a
method of connecting different components of a system on a higher level, using
semantic web services and semantic middleware.

7. Conclusions

A prototype implementation exists satisfying the theoretical background
described in this paper. Our assumption said that the same algorithm runs
more optimally in C++ than in Erlang if a similar type system is used. To
confirm this, a measurement is done. Two programs were compared: the first
is written fully in Erlang, using the digraph [4] library. All data is read from
a text file and using this the graph was created in memory using digraph.
Graph data contained the vertices, edges and a piece of data stored by each
vertex. The measurement is started at this point: a shortest path search
was done between the root node of the graph and every other node which
existed. The second program was written in Erlang and C++. The graph and
graph processing algorithm was in C++, using the LEMON [5] graph library.



ERLANG-LIKE DYNAMIC TYPING IN C++ 199

All graph processing was made here, using the Erlang type system model to
build the graph and to store the data there. The measurement involved the
interface usage and data conversion overhead. A function is called in Erlang
from where the control of execution is transferred to the C++ program. The
results are shown on figure 2. Despite of the preprocessing overhead - the

5824Erlang Graph

2998C++ Graph (gcc)

2754C++ Graph (clang)

0 1000 2000 3000 4000 5000 6000
Time consumption of path search (in msec)

Figure 2. Performance Comparison of the Demonstration Applications

type conversion and language change - the C++ program run faster, although
during the measurement just a small amount of data was processed.

In the first part of this paper, the observations of Erlang data types along
with their behavioural attributes were presented. Afterwards a model was
introduced that described the semantics of Erlang terms in relational, arith-
metic and logical expressions. In the last part the implementation details were
covered that was used for the prototype implementation. Studying this topic
showed that it is possible to use dynamic typing in a statically typed environ-
ment and it can be rewarding to use alternative methods to solve computation-
intensive problems in the appropriate domains: accessing and processing graph
data can be carried out more effectively with connecting Erlang with C++.

References

[1] Clean Programming Language. http://wiki.clean.cs.ru.nl/Clean.
[2] Common Object Request Broker Architecture. http://www.corba.org/.
[3] Erlang and C Interoperability. http://www.erlang.org/doc/tutorial/introduction.html.
[4] Erlang Digraph Library. http://www.erlang.org/doc/man/digraph.html.
[5] LEMON Graph Library. http://lemon.cs.elte.hu/trac/lemon.
[6] RefactorErl Homepage. http://plc.inf.elte.hu/erlang.
[7] Standard template library. https://www.sgi.com/tech/stl/.
[8] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a Statically-

typed Language. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, pages 213–227, New York, NY, USA,
1989. ACM.

[9] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.



200 ANDRÁS NÉMETH AND MELINDA TÓTH

[10] Gordon Blair, Massimo Paolucci, Paul Grace, and Nikolaos Georgantas. Interoperability
in Complex Distributed Systems. In Marco Bernardo and Valerie Issarny, editors, 11th
International School on Formal Methods for the Design of Computer, Communication
and Software Systems: Connectors for Eternal Networked Software Systems. Springer,
2011.

[11] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit Kőszegi, Máté
Tejfel, and Melinda Tóth. RefactorErl – Source Code Analysis and Refactoring in Er-
lang. In In proceeding of the 12th Symposium on Programming Languages and Software
Tools, Tallin, Estonia, 2011.

[12] Tobias Gedell and Daniel Hedin. Abstract Interpretation Plugins for Type Systems. In
Proceedings of the 12th International Conference on Algebraic Methodology and Software
Technology, AMAST 2008, pages 184–198, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] Attila Góbi, Zalán Szügyi, and Tamás Kozsik. A C++ pearl – self-referring streams.
Annales Univ. Sci. Budapest., Sect. Comp., pages 157–174, 2012.

[14] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei, Anikó Vı́g, Tamás Nagy,
Melinda Tóth, and Roland Király. Modeling semantic knowledge in Erlang for refac-
toring. In Knowledge Engineering: Principles and Techniques, Proceedings of the In-
ternational Conference on Knowledge Engineering, Principles and Techniques, KEPT
2009, volume 54(2009) Sp. Issue of Studia Universitatis Babes-Bolyai, Series Informat-
ica, pages 7–16, Cluj-Napoca, Romania, Jul 2009.

[15] Valérie Issarny and Amel Bennaceur. Composing Distributed Systems: Overcoming the
Interoperability Challenge. In F. de Boer, M. Bonsangue, E. Giachino, and R. Hähnle,
editors, FMCO 2012, Lecture Notes in Computer Science, pages 168–196. Springer,
2013.

[16] Nykzn Gaizler J. Programming Languages. Kiskapu, 2003.
[17] Tobias Lindahl and Konstantinos Sagonas. Practical Type Inference Based on Success

Typings. In Proceedings of the 8th ACM SIGPLAN International Conference on Prin-
ciples and Practice of Declarative Programming, PPDP ’06, pages 167–178, New York,
NY, USA, 2006. ACM.

[18] Tobias Lindahl and Konstantinos F. Sagonas. TypEr: a type annotator of Erlang code.
In Erlang Workshop, pages 17–25, 2005.

[19] Simon Marlow and Philip Wadler. A Practical Subtyping System For Erlang. In In
Proceedings of the International Conference on Functional Programming (ICFP ’97,
pages 136–149. ACM Press, 1997.

[20] Sven-Olof Nyström. A Soft-typing System for Erlang. In Proceedings of the 2003 ACM
SIGPLAN Workshop on Erlang, ERLANG ’03, pages 56–71, New York, NY, USA, 2003.
ACM.

[21] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002.

[22] Bjarne Stroustrup. The C++ Programming Language, 4th ed. Addison-Wesley, 2013.
[23] Laurence Tratt. Dynamically Typed Languages, 2009.
[24] Viktória Zsók Zoltán Horváth, Zoltán Varga. Clean-CORBA Interface for Parallel Func-

tional Programming on Clusters. In Proceedings of 6th International Conference on
Applied Informatics, pages 27–31, 2004.

Faculty of Informatics, Eötvös Loránd University
E-mail address: {neataai, tothmelinda}@caesar.elte.hu


