
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

THE EFFECTS OF USING EXCEPTION HANDLING ON

SOFTWARE COMPLEXITY

GERGELY NAGY AND ZOLTÁN PORKOLÁB

Abstract. Exception handling is the definitive way to handle errors of
any kind and exceptional circumstances in modern software. There has
been a long way before software methodlogy arrived to creating and using
the notion of exceptions. We automatically assume that using exception
handling makes our software more readable, more maintainable and easier
to understand – i.e. less complex than when we use any other error man-
agement (let it be using return values, ERRNO or any other kind). Is this
really the case?

Measuring software complexity can be done using software metrics.
There are several trivial, well-known candidates – lines of code, cyclo-
matic complexity or McCabe-metrics and A-V – for this purpose, however
these metrics do not measure exception contructs, therefor their usage can
lead to distorted results[12]. In this paper, we extend the definitions of
two metrics to the case of exceptions and analyze how these extensions
affects these metrics on different error handling constructs. The extension
are validated by the conformance to Weyuker’s axioms and by real-world
examples. We also examine industrial-sized software to prove that our
definitions have no negative effect on the complexity measured by these
metrics.

1. Introduction

Exceptions are the definitive way to handle errors or other exceptional
circumstances in modern software. The goal of using these techniques is to
make software more readable, more easily apprehensible and easier to main-
tain while supporting a wide range of functionality. The notion of exception
handling was introduced in the 1960s in PL/I and was made more popular and
usable in CLU[2]. Since the dawn of object oriented programming, exception
handling has been used widely in production software.

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N19.
1998 CR Categories and Descriptors. D.1.5 [Software]: Programming techniques –

Object-oriented programming .
Key words and phrases. Exceptions, software metrics.

174

THE EFFECTS OF EXCEPTION HANDLING ON SOFTWARE COMPLEXITY 175

Software metrics are used to measure a given property of a piece of software
with an absoulte numeric value. Applying metrics to software can lead to
better expression of the properties of the software, they can make planning
lifecycle, time and resources required for creating and maintaining the software
product easier. Based on this, the properties they measure can range from
simply length to how complex the task to test or understand software is.

The shortcoming of these metrics is that they simply skip exception han-
dling pieces of code from their analysis, thus we have no solid understanding
of how it affects complexity. Our intuition suggests however that they have a
considerable effect. There has been brought up an interesting problem in the
Guru of The Week[5]: one needed to find all the possible execution branches
in 4 lines of C++ code. According to their classifications, people who find 3
at most are average programmers, who find between 4 and 14 are exception-
aware and the ones finding all 23 are exceptionally knowledgable. The steep
increase in the number of execution branches suggests our intuition regard-
ing exception handling is correct: the common aggreement is that execution
branches highly correlate to software complexity.

In this paper we analyse how using modern error handling techniques
– exception handling – affects software complexity. During our analysis we
make use of complexity measures that are the conclusive units for this type
of investigation, although they are not usually defined for exception handling.
Our results are included for the A-V[4] and cyclomatic complexity[3] measures.

This paper is organised as follows: in section 2 we give a short introduction
to the A-V metrics, then, in section 3 we extend cyclomatic complexity and the
A-V metrics to the case of exception handling. In section 4 we examine how
Weyuker’s axioms for complexity measures hold with the extended definitions.
We evaluate our extensions with synthetic examples as well as analysing a
real-world application, Apache Tomcat[14] version 6 in section 5. Our paper
concludes in section 6.

2. Introducing The A-V Metrics

The basis of our analysis is the A-V software complexity measure, that
has been defined in 2002[4]. The need for this new metrics originates in the
appearance and wide adoption of object-oriented and multiparadigm method-
ologies. While most complexity metrics can be used to analyse structured
programs, in the last decade they have been proven to be unsatisfactory. Cy-
clomatic complexity, for example, was defined in 1976 with Fortran programs
in focus[3]. Software development and languages have changed so much ren-
dering these metrics unmeaningful for most usage nowadays. In this section

176 GERGELY NAGY AND ZOLTÁN PORKOLÁB

we will give a short introduction to A-V and will define terms and methods
required for our extension.

The A-V builds on McCabe’s basic thoughts. The basis for its calcula-
tion is the same control flow graph[8], but instead of using cyclomatic num-
bers to describe this graph, it defines nested deepness for predicates. Later
researches, however showed the importance of nesting deepness of control
statements[9][10].

Definition 2.1 (Nested deepness, ND). This number represents how many
predicates are in scope for a given statement in the program. The formal
definition of nested deepness can be found in [13].

Using nested deepness directly describes how many predicates and branches
need to be understood for a statement in the code: the more branches and
loops you need to apprehend, the more predicates and variables you need to
keep track of.

Using data is the central matter for almost all software. This trend has
been invigorating with the spread of the object-oriented paradigm, where the
core thoughts revolve around objects, how they are represented and what oper-
ations one can apply to them. These factors led to the necessity of considering
how data is handled when one argues about software complexity. The A-V
adheres to this trend with extending the control flow graph with data access
nodes. Edges to these nodes are present from control flow nodes, when a
variable is either written or read. It also allows counting these multiple times
between the same nodes. The weight of these data access nodes is always given
by the nested deepness of the statement they are connected to.

These consideration lead us to the following definitions:

Definition 2.2 (A-V measure of a method f).∑
s∈{Statements of f}

ND(s) +
∑

v∈{Variables of f}

ND(v)

Definition 2.3 (A-V measure of a class C).∑
f∈{Method of C}

AV (f) + |{v : V is a member in C}|

The above definitions make it clear that the A-V metrics is a natural re-
sponse to the issues of cyclomatic complexity. Measuring complexity using
these methods leads to a better description of modern software and also pro-
vides a solid base for our own analysis.

THE EFFECTS OF EXCEPTION HANDLING ON SOFTWARE COMPLEXITY 177

3. Extending Metrics for Exception Handling

In this section we propose extensions to the cyclomatic complexity and
A-V metrics for the case of exception handling. We start with cyclomatic
complexity, because it is the basis of the A-V metrics, then we extended the
latter measure as well.

The basis for the metrics defined by McCabe is the role of predicates in
the code, because these predicates set the execution path of the given code
block. We need to introduce the notion of catching and throwing exceptions
to this model. A trivial consideration is to think of all catch blocks after a
throw as predicates: if there has been an exception, these catch blocks are
predicates on the type of the exception, hence in the extension each catch

branch increases complexity by 1. Throwing exceptions is not this trivial. All
the conditional statements that lead to a throw are of course accounted for,
however we disregard them when calling these functions. The reason for this
is that these function calls do not increase the number of predicates in client
code, thus they should not be considered based on the original thoughts of
McCabe. If these functions are part of our code base, they will increase the
complexity of our software.

The original A-V metrics uses the idea of nested deepness to better char-
acterize complexity, furthermore it registers data access points in the control
flow graph, because data is becoming the central concept of our software. The
extension we propose takes steps further along these lines; it tries to be faith-
ful to the prime considerations of the A-V measure. We utilize the notion of
nested deepness as well as extend the data graph with exceptions.

Most programming languages represent exceptions with a typed object.
We can safely ignore the fact in our analysis if these types have to extend
one root exception type (e.g. most JVM-based languages), thus we make no
differences to the original A-V when it comes to creating, throwing or catching
exception objects. It will be noted as a simple data access, considering the
nested deepness of the statement. The call to the constructor might involve
other variables 1..n, but these would be considered by the original A-V as well.

The most fundamental concept of A-V is to consider all decisions that
need to be made leading to a given point in the program. This is handled
by counting the number of predicates to which a statement belongs. Using
this concept we can better describe throwing exceptions: we consider these
statements with their nested deepness; apart from explicit throw statements,
we also consider function calls as well, because they can potentially throw
exceptions. If a function can throw more than one exception, we register all of
them using the nested deepness of the call. The reason for this is that one needs
to understand all of the conditions that can result in throwing exceptions and

178 GERGELY NAGY AND ZOLTÁN PORKOLÁB

that increases the number of test cases and complexity in general. Of course,
throw statements should be counted only once, since they can only create
one type of exception – they are only responsible of describing one type of
exceptional condition.

Catching exceptions in client code happens in the same method in which
they were raised often times, although there can be significantly complex code
between these. It can easily happen that there are several branches that need
to be evaluated, and this aggravates complexity. Because of these arguments,
we consider the difference of nested deepness between catching and throwing
an exception. Amidst a pair of a try-catch there can be multiple levels of
checks that need to be understood. We naturally adhere to the semantics of
programming languages by matching explicit and implicit throws with their
catches and counting these. These pairs can always made unambigously –
much like balanced parantheses.

Definition 3.1 (A-V measure of the exception e).

∆ND(e) = ND(throw(e))−ND(catch(e))

Contrary to client code, in libraries we cannot properly deal with an ex-
ception at the point of creation, making throwing and catching an exception
far apart. To express this in our extension, we count all non-caught excep-
tions in the given method weighed by their nested deepness, and add it to the
complexity of the method. The sole reason for this is that developers of the
library need to understand the complexity that leads to raising an exception,
but this increases complexity at the point of use of the function.

With these deliberations we arrive to the following definitions:

Definition 3.2 (Extended A-V measure of the function f).

AV (f) +
∑

e∈{Thrown exceptions of f}

ND(e) +
∑

e∈{Exceptions of f}

∆ND(e)+

+
∑

e∈{Uncaught exceptions of f}

ND(e)

Applying these definitions and methods we try to give an answer on how
using exceptions should be considered in software metrics, so we can better
account for software complexity.

4. Weyuker’s Axioms for Software Complexity Measures

The original purpose of Weyuker’s axioms[6] is to filter out all trivially
wrong metrics that will be proven to be usuless in any real application. These
statements are simple sanity checks against newly defined metrics. There have

THE EFFECTS OF EXCEPTION HANDLING ON SOFTWARE COMPLEXITY 179

been examples created though to show that there can be trivial metrics that
meet all requirements[1] without any meaningfulness, although they still stand
as the standard for software metrics. To show that we meet all of the axioms,
we build on the original proofs[4]. In this section, we use the following terms:

• S: the set of all programs, elements are s1, s2, s, s
′, etc.

• m : S→ A: the metrics function
• ⊕ : S × S → S: the extension function (it extends a program with

another one)
• s1 + s2: simple textual concatantion of s1 and s2

(1)

∃s1 ∈ S ∧ s2 ∈ S : s1 6= s2 =⇒ m(s1) 6= m(s2)

It is trivially easy to find two different programs with different com-
plexities: one example can be a more defined catch block that has
more branches than the other.

(2)

Let c ∈ A, c ≥ 0,S1 ⊂ S|∀s ∈ S1 : m(s) = c =⇒ |S1| ≤ ∞
The original A-V only meets this requirement if the data connection
edges are present multiple times when there are multiple uses of the
data[4]. If we keep this constraint while extending the metrics, we will
keep it intact, as we have defined data access for exceptions as regular
variables.

(3)

∃s1 ∈ S ∧ s2 ∈ S : m(s1) = m(s2)

The simplest example here would be the snippet of code that calls two
different functions that can throw the same exceptions (the number of
exeptions can be 0).

(4)

∃s1 ∈ S ∧ s2 ∈ S : s1 6= s2 =⇒ m(s1) = m(s2)

Two programs can meet this axiom if they, for example, differ in the
way where they handle exceptions. If one function catches all possible
exceptions in its body, while another one does not conatin any catches,
their complexity will be the same, while they greatly differ.

(5)

Let s ∈ S, s1 ∈ Ss′ = ⊕(s, s1) =⇒ m(s) ≤ m(s′)

Since all extensions in the original A-V increase the calculated com-
plexity, this monotonic axiom is also true for the extended metrics.

(6)

∃s1 ∈ S∧s2 ∈ S∧s′ ∈ S : m(s1) = m(s2)∧⊕(s1, s
′) = ⊕(s2, s

′) =⇒ m(s1) 6= m(s2)

180 GERGELY NAGY AND ZOLTÁN PORKOLÁB

For the original A-V definition this holds, because the metrics considers
data flow, thus it also depends on the environment of the program.
Since we inserted the exception handling code into this data flow, it
still holds for the extended definition.

(7)

∃s1 ∈ S∧s2 ∈ S : s1 6= s2(only in the order of statements) =⇒ m(s1) 6= m(s2)

Using the notion of nested deepness, it is easy to find programs for this
constraint. Since catch blocks modify nested deepness, if we consider
nested catch blocks and the same ones, but in a linearized way, we
get two programs that meet this axiom.

(8)

∃s1 ∈ S∧s2 ∈ S : s1 6= s2(only in the names of variables) =⇒ m(s1) = m(s2)

Since we have not used these code items in our definitions, we trivially
meet this requirement.

(9)

Let s ∈ S, s1 ∈ S ∧ s2 ∈ S : s = s1 + s2 =⇒ m(s1) ≤ m(s) ∧m(s2) ≤ m(s)

The consideration to prove this statement is the same as for the 6th
axiom: because we consider both the nested deepness and the data
flow while calculating complexity, this becomes true.

5. Evaluation

In this section we will discuss how incorporating exceptions affect the
complexity of the code measured by our extended metrics. We show through a
simple example that exception handling tends to decrease software complexity
compared to older error handling methods. We also analyse an industrial-sized
software product, first accounting for exceptions, then without them, thus we
show that our extension does affect complexity.

In the following example code snippets, we demonstrate two ways of error
handling. On Figure 1. an old-style return value based error handling is
shown, while Figure 2. achieves the same functionality with exceptions.

Based on the previous methods for calculating the extended A-V measure
for the case with exceptions is 17, while the other error handling method
results in 19. This increase does not seem relevant, but considering the size
of the examples, and the fact that we should also examine the result of the
calcNE call on the 12th line, we arrive at a complexity of 23, which is a 18%
increase, being a considerable amount.

Apart from synthesized examples, it is worth to excercise our newly created
complexity measure on a real world example. For this purpose, we have created

THE EFFECTS OF EXCEPTION HANDLING ON SOFTWARE COMPLEXITY 181

1 private HashMap<Integer, String> errors =

2 new HashMap<Integer, String>();

3

4 int calcNE(int x) {

5 if (x == 0) {

6 return 0;

7 }

8 if (x == 1) {

9 return -1;

10 }

11 x--;

12 calcNE(x);

13 return x;

14 }

15

16 void clientNE() {

17 int number = 15;

18 int res = calcNE(number);

19 if (res == 0) {

20 System.out.println(

21 "IllegalArgumentException: " +

22 errors.get(res));

23 }

24 if (res == -1) {

25 System.out.println(

26 "MyExcpetion: " + errors.get(res));

27 }

28 }

Figure 1. Java functions without exceptions

Metrics Not measuring exceptions Measuring exceptions Change
LOC 279830 279830 0%

McCabe 14812 16801 13, 428%
A-V 50438787 52723815 4, 5303%

Table 1. Results of analysing Tomcat

an alayzer tool based on the Eclipse JDK that calculates McCabe and A-
V metrics (both in original and extended forms) for Java code. The tested
software was Tomcat[14] 6. The purpose of this analysis is to show that the
extensions do increase calculated complexity. On Table 1. the end results are
shown.

182 GERGELY NAGY AND ZOLTÁN PORKOLÁB

1 int calcWE(int x) throws

2 IllegalArgumentException, MyException {

3 if (x == 0) {

4 throw new IllegalArgumentException("Zero");

5 }

6 if (x == 1) {

7 throw new MyException("One");

8 }

9 x--;

10 calcWE(x);

11 return x;

12 }

13

14 void clientWE() {

15 int number = 15;

16 try {

17 calcWE(number);

18 }

19 catch(Exception e) {

20 System.out.println(e.getMessage());

21 }

22 }

Figure 2. Java functions with exceptions

The increase in cyclomatic complexity is around 13% being a significant
one, and this exemplifies how widely exception handling is used nowadays.
This amount is exceptionally interesting cosidering that Tomcat is more of
a library, while McCabe’s original deliberations were for client code. This
possibly leads to the conclusion that Tomcat developers use exception handling
within the framework and also to notify users about errors.

The change in the results of the A-V measure is lower than cyclomatic
complexity, around 4%. The probable reason for this smaller change is that
regular object-oriented data usage suppressed what the extension of the met-
rics increased. This is in line with our intuition, since data usage for normal
control flow should be much higher than that of error handling. This also
describes how exception handling is used: when there are no other options,
we throw one with some information about the circumstances, but that is
negligible compared to normal data usage.

THE EFFECTS OF EXCEPTION HANDLING ON SOFTWARE COMPLEXITY 183

6. Conclusion

In this paper we analysed how exception handling affects software complex-
ity. Since current software metrics are unaware of error handling we extended
the cyclomatic complexity and the A-V software complexity measures, and we
were able to gain emprircal results. The extensions were implemented as an
Eclipse plug-in and followed the ideas and thoughts behind the original Mc-
Cabe and A-V metrics. The extensions have been used to analyse synthesized
examples and industrial-sized software.

The first main consideration for the extended definition is registering data
usage in exception handling code – be it reading or writing –, including these in
the original data flow graph of A-V. We also considered the effects of throwing
an exception, either if it is an explicit throw statement or a function call that
can potentially result in exceptions being thrown. For catching exceptions,
we calculated the difference of nested deepness for the throws and catches,
describing the path the exception object needs to take. Uncaught exceptions
are counted for as well, because they tend to put complexity pressure at the
call side of functions, hence we enroll them with the complexity of their cause.

We have shown that Weyuker’s axioms for complexity metrics still hold
for the extended measure, assuring our intention of producing a sensible defi-
nition. Through synthesized examples, we measured the effect of various error
handling methods on complexity. The short examples resulted in a significant
increase of 18%. We have also analyised a real world software – Tomcat 6 –
using our tool created for calculating cyclomatic complexity and A-V account-
ing for exceptions. The results of this analysis proved that exception handling
code does have a serious effect on complexity.

As future work, we will analyse larger code bases in two different versions,
one that uses exceptions and one that does not, while providing the same
functionality. This should enlighten the effects of error handling methods
more. The tool we have created can also be extended for other programming
languages than Java to widen the set of possible candidates for our analysis.

References

[1] J.C. Cherniavksy, C. S. On weyuker’s axioms for software complexity measures. IEE
Trans. Software Engineering, vol. 17, pp.1357-1365 (1991).

[2] Louden, K. C. Programming Languages: Principles and Practice. Course Technology,
2002. [672] ISBN-978-1111529413

[3] McCabe, T. J. A complexity measure. IEE Trans. Software Engineering, SE-2(4),
pp.308-320 (1976).

[4] Porkoláb, Z. Programok Strukturális Bonyolultsági mérőszámai. PhD thesis, Eötvös
Loránd Tudományegyetem, 2002.

184 GERGELY NAGY AND ZOLTÁN PORKOLÁB

[5] Sutter, H. Code complexity - part I. http://www.gotw.ca/gotw/020.htm, September
1997. 9th May 2012.

[6] Weyuker, E. J. Evaluating software complexity measures. IEE Trans. Software Engi-
neering, vol.14, pp.1357-1365 (1988).

[7] Chidamber, S.R., Kemerer, C.F., A metrics suit for object oriented design. IEEE Trans.
Software Engeneering, vol.20, pp.476-498, 1994

[8] Fóthi Á. Nyéky-Gaizler J., Porkoláb Z.: The Structured Complexity of Object-Oriented
Programs, Mathematical and Computer Modelling 38 pp.815-827., 2003

[9] Howatt, J.W., Baker, A.L.: Rigorous Definition and Analysis of Program Complexity
Measures: An Example Using Nesting, The Journal of Systems and Software 10, pp.139-
150, 1989

[10] Piwowarski, R.E.: A Nesting Level Complexity Measure, ACM Sigplan Notices, 17(9),
pp.44-50, 1982

[11] Porkoláb, Z., Sillye, Á.: Towards a multiparadigm complexity measure, In. Proc of
QAOOSE Workshop, ECOOP, Glasgow, pp.134-142, 2005

[12] Seront, G., Lopez, M., Paulus, V., Habra, N.: On the Relationship between Cyclomatic
Complexity and the Degree of Object Orientation, In Proc. of QAOOSE Workshop,
ECOOP, Glasgow, pp. 109-117, 2005

[13] Ádám Sipos, Norbert Pataki, Zoltán Porkoláb: On multiparadigm software complexity
metrics, Pu.M.A vol. 17 (2006), No 3-4, pp. 469-482.

[14] http://tomcat.apache.org

Eötvös Loránd University
E-mail address: njeasus@ceasar.elte.hu, gsd@elte.hu

