
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

SOME IMPROVEMENTS OF THE EXTENDED

BREADTH-FIRST SEARCH ALGORITHM

TAMÁS KÁDEK AND JÁNOS PÁNOVICS

Abstract. Extended breadth-first search (EBFS) is an algorithm devel-
oped to give remedy to some problems related to the classical state-space
representation used in artificial intelligence. This algorithm was initially
intended to give us the ability to handle huge state spaces. The authors
have shown a number of examples of the practical use of EBFS since it was
developed. Based on their experiences, they found some ways for improv-
ing the algorithm. This paper presents the new algorithm, which contains
these improvements.

1. Introduction

The most basic problem representation technique used by artificial intelli-
gence is state-space representation. However, it can be used to describe only
a certain small subset of problems conveniently. For example, even a simple
chess puzzle may have too many ways to continue from a particular situation
because each piece can move in quite a few directions and potentially more
than one square. Of course, we do not have to deal with all the possible moves
in a particular situation, provided we have a means to mark the cases that
are relevant regarding the solution’s viewpoint. This can only be done only if
we have some additional knowledge about the problem, which is usually rep-
resented by a heuristic function. In case we have this additional knowledge,
however, it may still be difficult to describe it as a function. For example,
in the 8-puzzle game, the heuristic function evaluates a situation as being
more appealing if it has more pieces on their correct places, but this measure
will fail in some cases. To handle this problem, we introduced the extended
breadth-first search algorithm in [1].

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68T20.
1998 CR Categories and Descriptors. I.2.8 [Computing Methodologies]: ARTIFI-

CIAL INTELLIGENCE – Problem Solving, Control Methods, and Search.
Key words and phrases. artificial intelligence, state-space representation, extended model,

breadth-first search.

165



166 TAMÁS KÁDEK AND JÁNOS PÁNOVICS

2. The Extended State-Space Model (ESSM)

The EBFS algorithm can be defined after introducing an extended state-
space model [2], which allows us to discover the representation graph starting
from several different states and possibly in more than one direction. Using
state-space representation, solutions to problems are obtained by executing
a series of well-defined steps. During the execution of each step, newer and
newer states are created, which form the state space. States are distinguished
from one another based on their relevant properties. Relevant properties are
defined by the sets of their possible values, so a state can be represented as an
element of the Cartesian product of these sets. Let us denote this Cartesian
product by S. Possible steps are then operations on the elements of S. Let
us denote the set of operations by F . The state space is often illustrated
as a graph, in which nodes represent states, and edges represent operations.
This way, searching for a solution to a problem can be done actually using a
path-finding algorithm.

We keep the basic idea (i.e., the concepts of states and operations on states)
also in the extended state-space model (ESSM). The goal of this generalization
is to provide the ability to model as many systems not conforming to the
classical interpretation as possible in a uniform manner.

A state-space representation over state space S is defined as a 5-tuple of
the form

⟨K, initial, goal, F,B⟩,
where

• K is a set of initially known (IK) states, such that K ⊆ S and K ̸= ∅,
• initial ∈ {true, false}S is a Boolean function that selects the initial
states,
• goal ∈ {true, false}S is a Boolean function that selects the goal states,
• F = {f1, f2, . . . , fn} is a set of “forward” functions, fi ∈ (2S)S ,
• B = {b1, b2, . . . , bm} is a set of “backward” functions, bi ∈ (2S)S .

The “forward” and “backward” functions represent the direct connections be-
tween states. For more details, see [1].

Some notes:

• The number of initial and goal states is not necessarily known initially,
as we may not be able to or may not intend to generate the whole set
S before or during the search.
• The n +m = 0 case is excluded because in that case, nothing would
represent the relationship between the states.
• Although the elements of the sets F and B are formally similar func-
tions, their semantics are quite different. The real set-valued functions



SOME IMPROVEMENTS OF THE EBFS ALGORITHM 167

in F are used to represent nondeterministic operators, while there may
be real set-valued functions in set B even in case of deterministic op-
erators.

Let us now introduce a couple of concepts:

• Initial state: a state s for which s ∈ S and initial(s) = true.
• Goal state: a state s for which s ∈ S and goal(s) = true.
• Known initial state: an initial state in K.
• Known goal state: a goal state in K.
• Edge: an ⟨s, s′, o⟩ ∈ S × S × (F ∪ B) triple where if o ∈ F , then
s′ ∈ o(s), and if o ∈ B, then s ∈ o(s′).
• Path: an ordered sequence of edges in the form

⟨s1, s2, o1⟩, ⟨s2, s3, o2⟩, . . . , ⟨sk−1, sk, ok−1⟩,

where k ≥ 2.

General objective: determine a path from s0 to s∗, where s0 is an initial
state, and s∗ is a goal state.

3. The EBFS Algorithm

The EBFS algorithm extends the BFS algorithm with the ability to run
more than one breadth-first search starting from more than one state (the
initially known states). It is particularly useful if the subtrees explored reach
one another as illustrated by Fig. 1. The dashed line denotes the subtree that
is discovered by the standard BFS algorithm starting from i1 if the nearest
goal state is g1. However, in case we give also the states k1, k2, k3 besides i1
as potentially useful states, then the discovered part of the graph is smaller,
even if k1 did not prove to be useful for finding the solution as the illustration
shows.

The EBFS algorithm stores a subgraph of the representation graph during
the search. The main difference from BFS at this point is that in case of
EBFS, the relationship between the nodes and each IK state is stored.

The full pseudocode of the EBFS algorithm can be found in [1]. The
database of the algorithm stores for each node the state represented by the
node as usual, the forward and backward status (open, closed, or not relevant),
forward and backward parents, forward and backward children of the node, as
well as the distance from and to each of the IK states.

The main algorithm begins with an initialization step, which adds all IK
states to the database as open states in both directions, i.e., they are all
waiting to be expanded. Like BFS, the algorithm continuously expands a
state in one of the directions until the goal condition is satisfied, or there are
no more open states left. Checking the goal condition means that we have to



168 TAMÁS KÁDEK AND JÁNOS PÁNOVICS

i1 k2 k3

k1

g1

Figure 1. Subtrees reaching one another. [1]

procedure EBFS(K)

begin

nodes ← INITIALIZE(K)

while true do

if { n | n ∈ nodes ∧ STATUS[n] = open } = ∅ then

terminate unsuccessfully

end if

curr ← SELECT(nodes)

EXPAND(curr, nodes)

if GOAL-CONDITION(nodes) then

terminate successfully

end if

end while

end procedure

Figure 2. The pseudocode of the controller.

determine whether there is an initial state s0 and a goal state s∗ such that
s∗ can be reached from s0 via an initially known state. Similarly to the BFS
algorithm, the state selected for expansion is the one with the smallest depth
level. Remember that each state has as many depth levels as many IK states
we have in the database, i.e., these depth levels are the distances to and from
each IK state.



SOME IMPROVEMENTS OF THE EBFS ALGORITHM 169

During expansion, we apply all the operators as usual and update the
information in the database about the expanded state and the generated state.
A recursive update of the stored information about the nodes is also required
whenever an initially known state becomes reachable from another one during
the search.

As you can see from the algorithm description, the initially known states
play a very significant role in the algorithm. They form a point of reference
among all the states explored during the search, as the relationship between
each state and these IK states are stored in the database: for each state s
(including the IK states themselves), we store the minimum number of steps
in which each IK state can be reached from s in the already explored part of
the graph, and the minimum number of steps in which s can be reached from
each IK state. This way, some properties of the already explored part of the
graph can be mapped to the IK states. For example, in the original algorithm,
the termination condition only requires the IK states and their relationships
with the initial and goal states, and not the whole database. There is only one
limitation: at least one of the IK states should be on a path representing a
solution. Whenever an initial state is included in K, this condition is satisfied.

4. Improving the EBFS Algorithm

To show the benefits of the EBFS, earlier we showed a state-space repre-
sentation that suffers from the presented problems, so the state space is big
enough. It was a representation for the well-known n-queens problem. In this
representation, a state is defined by an n × n Boolean matrix, the cells of
which represent the squares of a chessboard. An element of the matrix is true
if there is a queen on that square and false if it is empty. We had as many op-
erators as many squares on the chessboard. We know that this representation
is far from the best choice, we only chose this because it has the drawbacks
described earlier.

Later, we tried to get better results and wanted to support the ESSM
model as much as possible, so we also enabled to use forward and backward
functions together. Unfortunately, we were unable to use the benefits of having
both forward and backward operators. The original EBFS algorithm works
well if we use it on a state space that contains only forward functions. In the
case of the original algorithm, we can only recognize the connection between
two initially known states if the path between them was discovered in one
direction only, i.e., we only used either forward or backward functions during
the exploration. As you can see in Fig. 3, we could have recognized the con-
nection between k2 and k3 when the first state s is reached that is accessible
both from k2 using forward functions and from k3 using backward functions.



170 TAMÁS KÁDEK AND JÁNOS PÁNOVICS

k2 s k3

Figure 3. Subtrees reaching one another using the improved algorithm.

Comparing the total area covered by the two dashed lines in the figure
with the total area covered by the two solid lines, we find that we have to
explore much less states using the improved algorithm. Note that the areas
try to show the radii of the subtrees explored starting from each of the initially
known states.

4.1. Using an Extended Neighborhood Matrix. To improve our algo-
rithm, the controller will maintain an extended neighborhood matrix and two
vectors storing the accessibility of the initial and goal states from the initially
known states: 

0 q1,2 . . . q1,n
q2,1 0 . . . q2,n
...

...
. . .

...
qn,1 qn,2 . . . 0



v1
v2
...
vn



w1

w2
...
wn


qi,j represents the number of function applications required to reach kj

from ki, where ki, kj ∈ K. When a state like s is reached, which is accessible
from ki using n forward operators and accessible from kj using m backward
operators, then qi,j is set to n + m if qi,j > n + m. Initially, qi,j is set to
0 if i = j and ∞ otherwise. Note that we also need to store s, the state
providing the best connection between ki and kj , so that later we can recover
the solution from the database. Consider the following example:



SOME IMPROVEMENTS OF THE EBFS ALGORITHM 171


0 5 ∞ ∞
∞ 0 4 ∞
∞ ∞ 0 ∞
3 ∞ ∞ 0




1
∞
∞
∞



∞
∞
2
∞


Here, we have a solution of length 12, including k1, which is accessible

from an initial state using one operator, k2, which is accessible from k1 using
five operators, k3, which is accessible from k2 using four operators, and a goal
state, which is accessible from k3 using two operators. Remember that the
algorithm can stop in two different ways:

• If we have no more open nodes, the algorithm terminates without
finding a solution. In this case, the problem is said to be unsolvable if
the initial state was also initially known.
• If we find a solution, the algorithm terminates successfully, and the
solution can be recovered based on the information stored in the data-
base. To recognize that a solution is found, we have to run a search
algorithm on the extended neighborhood matrix. We can consider this
search as a search on a “metagraph.” Note that this search increases
the time complexity of the algorithm, but it is necessary only if the
matrix has changed after the last expansion.

4.2. Results. We ran the EBFS and the classical BFS algorithms with the n-
queens problem using the representation described earlier with different values
of n and summarized the results in the table 1.

Problem IK BFS original
EBFS

improved
EBFS

5-queens (4, 1,−, 5, 2) 453 372 172
6-queens (−, 6, 2,−, 1, 4) 2 632 1 405 385
7-queens (4, 1,−,−, 2,−,−) 16 831 11 409 11 409
8-queens (8, 6, 4, 2,−, 5, 3,−) 118 878 118 878 118 878

Table 1. Comparing the algorithms.

The last three columns show the number of states explored during the
search until successful termination. In the case of EBFS, we use two IK states,
the initial state and the state described in the second column. Each of the
numbers shows the column containing a queen in each rows.

In the first example, the additional IK state is very close to a goal. It
shows well the idea behind the improvement. The gain of the original EBFS
algorithm is relatively small, because it has to find a full path to the additional



172 TAMÁS KÁDEK AND JÁNOS PÁNOVICS

IK state, which needs four forward or four backward operator. The improved
algorithm needs only two forward and two backward function.

In the case of the 7-queens problem, four forward operators required to
access a goal state. Even though the improved algorithm recognise the con-
nection between the initial state and the additional IK state earlier, it has to
continue the search until to a goal state appears.

In the last case, the the additional IK state is not a part of any solution,
so the algorithms work in the same way.

5. When to Use the EBFS Algorithm?

The goal of EBFS is to decrease the number of generated nodes by in-
troducing the set of initially known states and starting to explore the rep-
resentation graph from each of these states. This way, we can explore more
than one small subgraph having less nodes together than one bigger subgraph
explored by BSF (as illustrated in Fig. 1). The theory works well in cases
when we are able to select some useful states from the representation graph,
potentially those which appear in the path from an initial state to a goal
state. This presumes that we have some extra heuristic knowledge regarding
the problem. In other words, we can say that the heuristic knowledge is repre-
sented by selecting useful states instead of classifying the states by their worth
using a heuristic function. In several cases, enumerating the initially known
states is an easier way to represent the heuristic knowledge because there is
no need to estimate the worth of all the states, particularly if we only have
this information about a few of them.

As we mentioned earlier, the EBFS algorithm is similar to running several
BFS algorithms starting from different initial states. However, this has the
consequence that the database will now store a part of the representation graph
as a graph, not as a tree as in standard BFS. With the standard BFS algorithm,
the database can only be reused during a repeated search if the initial state
remains the same. In case the initial state changes, the BFS algorithm will
build a new tree, discovering edges that have no direct connection with the
tree that was built during the previous search. It would be difficult to find out
what could be reused from the result of the previous search, even if nearly the
same nodes are now discovered. The subgraph stored by the EBFS algorithm
is independent of the initial and goal states; it can be reused in its entirety in
all cases when the initially known states remain the same. Of course, we can
mention several situations when a single run of the EBFS algorithm is much
less efficient than the BFS algorithm, but if the discovered subgraph can be
reused a number of times, we can gain some execution time. The authors



SOME IMPROVEMENTS OF THE EBFS ALGORITHM 173

showed in [3] that in case of the route planning problem based on the real-
world public transportation of Budapest, we had to generate much less nodes
of the representation graph when using EBFS than by using BFS, despite the
fact that we were not able to create the set of initially known states so that
EBFS would yield a better result after a single run.

It is important to emphasize that EBFS can only find a solution that con-
tains at least one initially known state. Even in this case, it is not guaranteed
that the solution found will be optimal. (Of course, heuristic algorithms are
usually not able to find an optimal solution without any restrictions regarding
the heuristic estimation. For example, A algorithm does not guarantee to find
an optimal solution unless it is actually an A∗ algorithm.) Our investigation
is focused on the number of explored states rather than on finding an optimal
solution.

To summarize, the EBFS algorithm is useful in cases when it is difficult to
generate states and/or hard to store them because of their size, and thus, we
are highly motivated to keep the number of states low. The time complexity
of the controller is significantly higher than that of the BFS algorithm.

6. Acknowledgments

The publication was supported by the
TÁMOP-4.2.2.C-11/1/KONV-2012-0001
project. The project has been supported
by the European Union, co-financed by
the European Social Fund.

Many thanks to the reviewer for the insightful comments on this paper.

References

[1] Kádek Tamás, Pánovics János: Extended Breadth-First Search Algorithm, International
Journal of Computer Science Issues (2013) 10 (6), No. 2, pp. 78–82.

[2] Kádek Tamás, Pánovics János: Általános állapottér modell, 23rd International Confer-
ence on Computers and Education 2013, Alba Iulia, Romania, pp. 294–299.

[3] Kádek Tamás, Pánovics János: Extended Breadth-First Search in Practice, 9th Interna-
tional Conference on Applied Informatics, Eger, Hungary, January 29–February 1, 2014.

Faculty of Informatics, University of Debrecen, 26 Kassai Way, H–4028,
Debrecen, Hungary

E-mail address: {kadek.tamas,panovics.janos}@inf.unideb.hu


