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DEGREE SETS OF TOURNAMENTS

ANTAL IVÁNYI AND JÁNOS ELEK

Abstract. The score set of a tournament is defined as the set of its
different outdegrees. In 1978 Reid [20] published the conjecture that for
any set of nonnegative integers D there exists a tournament T whose degree
set is D. Reid proved the conjecture for tournaments containing n =
1, 2 and 3 vertices. In 1986 Hager [7] published a constructive proof of
the conjecture for n = 4 and 5 vertices. Yao [27] in 1989 presented an
arithmetical proof of the conjecture, but general polynomial construction
algorithm is not known. In [11] we described polynomial time algorithms
which reconstruct the score sets containing only elements less than 7.

In this paper we present and analyze earlier proposed algorithms Bal-
ancing and Shortening, further new algorithms Shifting and Hole
which together reconstruct the score sets containing elements less than 9
and so give a constructive partial proof of the Reid conjecture.

1. Basic definitions

We will use the following definitions [6].
A graph G(V,E) consists of two finite sets V and E, where the elements

of V are called vertices, the elements of E are called edges and each edge
has a set of one or two vertices associated to it, which are called its endpoints
(head and tail). An edge is said to join its endpoints. A simple graph is
a graph that has no self-loops and multi-edges.

A directed edge is said to be directed from its tail and directed to its
head. (The tail and head of a directed self-loop are the same vertex.)

A directed graph (shortly: digraph) is a graph whose each edge is
directed. If in a directed graph (u, v) ∈ E, then we say that u dominates
v. An oriented graph is a digraph obtained by choosing an orientation
(direction) for each edge of a simple graph. A tournament is a complete
oriented graph. That is, it has no self-loops, and between every pair of vertices,
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there is exactly one edge. Beside the terms of graph theory we will use the
popular terms player, score sequence, score set, point, win, loss etc.

A directed graph (so a tournament too) F = (E, V ) is transitive , if
(u, v) ∈ E and (v, w) ∈ E imply (u,w) ∈ E.

The order of a tournament T is the number of vertices in T . A tour-
nament of order n will be called an n-tournament.

An (a, b, n)-tournament is a loopless directed graph, in which every pair
of distinct vertices is connected with at least a and at most b ≥ a edges.

The score (or out-degree) of a vertex v in a tournament T is the number
of vertices that v dominates. It is denoted by d+

T (v) (shortly: d(v)).
The degree sequence (score sequence) of an n-tournament T is the or-

dered n-tuple s1, s2, . . . , sn, where si is the score of the vertex vi, 1 ≤ i ≤ n,
and

(1) s1 ≤ s2 ≤ · · · ≤ sn.
The score set of an n-tournament T is the ordered m-tuple D = (d1, d2,

. . . , dm) of the different scores of T , where

(2) d1 < d2 < · · · < dm.

2. Introduction

Theorem Landau [12] allows to test potential score sequences in linear
time.

Theorem 1. (Landau [12]) A nonincreasing sequence of nonnegative integers
S = s1, s2, . . . , sn is a score sequence of an n-tournament if and only if

(3)
k∑

i=1

si ≥
k(k − 1)

2
, 1 ≤ k ≤ n,

with equality when k = n.

Proof. See [12, 21].
Beineke and Eggleton [21, p. 180] noted in the 1970’s that not all of

the Landau inequalities need to be checked when testing a sequence S for
realizability as a score sequence of some tournament. One only need to check

(4)

k∑
i=1

si ≥
(
k

2

)
for those values of k for which sk < sk+1. In 2003 Tripathi and Vijay proved
this assertion [24].

To reconstruct a prescribed score set is much harder problem, then com-
puting the score set belonging to the score sequence of a given tournament.
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Therefore surprising is the following conjecture published by Reid in 1978
[20]: if m ≥ 1, D = {d1, d2, . . . , dm} is a set of nonnegative integers, then
there exists a tournament whose score set is D.

In his paper Reid described the proof of his conjecture for score sets con-
taining 1, 2, and 3 elements, further for score sets representing an arithmetical
or geometrical series. In 1986 Hager [7] proved the conjecture for m = 4 and
m = 5.

In 2006 Pirzada and Naikoo [17] gave a constructive proof of a new special
case of Theorem 5.

Theorem 2. (Pirzada and Naikoo [17]) If s1, s2, . . . , sm are nonnegative in-
tegers with s1 < s2 < · · · < sm, then there exists such n ≥ m for which there
exists an n-tournament T with score set

(5) D =

{
d1 = s1, d2 =

2∑
i=1

si, . . . , dm =
m∑
i=1

si

}
.

Proof. See [17].
In [18] Pirzada and Naikoo characterized the score sts of k-partite hyper-

tournaments, and in 2008 the score sets of oriented graphs.

Theorem 3. (Pirzada, Naikoo [19]) Let a, ad, ad2, . . . , adn, where a, d and
n are positive integers with d > 1. Then there exists an oriented graph with
score set A except for a = 1, d = 2 and n > 0 and for a = 1, d = 3 and n > 0.

Proof. See [19].
The following theorem contains a sufficient condition of the existence of

oriented graphs with special prescribed score set.

Theorem 4. (Pirzada, Naikoo [19]) If a1, a2, . . . , an is an increasing sequence
of nonnegative integers, then there exists an oriented graph with an+1 vertices
and score set D, where

(6) ai =

{
ai, if i = 1,

ai−1 + ai + 1, if i > 1

Proof. See [19].
In 1989 Yao proved the conjecture of Reid.

Theorem 5. (Yao [27]) If m ≥ 1, D = {d1, d2, . . . , dm} is a set of nonnegative
integers, then there exists a score sequence S = s1, s2, . . . , sn such, that the
score set of the tournament belonging to S is D.

Proof. See [27].
The proof of Yao uses arithmetical tools and only proves the existence of

the corresponding tournaments, but it does not give a construction.
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In 1983 Wayland [25] proposed a sufficient condition for a set D of non-
negative integers to be the score set of a bipartite tournament. This result
was improved to a sufficient and necessary condition in 1983 by Petrov́ıc [14].

In [10] we proved that the extension of Yao’s theorem is not true for k-
tournaments (where every pair of vertices is connected with k ≥ 2 edges.

Recently we proposed algorithms Balancing and Shortening [11] and
proved Yao’s theorem for score sets containing only elements less then 7. In
this paper we describe new algorithms Shortening and Hole and prove
Theorem 5 for sets containing elements less than 9. Our proofs are constructive
and the reconstruction algorithms require only polynomial time.

Now we present three lemmas allowing a useful extension of Theorem 5.

Lemma 1. If d1 ≥ 1, then the score set D = {d1} is realizable by the unique

score sequence S = d<2d1+1>
1 .

Proof. If |S| = n and S generates D then the sum of the elements of S
equals to nd1 and also to n(n−1)/2 implying n = 2d1 +1. Such tournament is
realizable for example so, that any player Pi gathers one points against players
Pi+1, . . . , Pi+(n−1)/2 and zero against the remaining players (the indices are
mod n taken).

In this lemma and later a<b > means a multiset, in which a is repeated b
times.

Lemma 2. If the score sequence S = s1, s2, . . . , sn corresponds to the score
set D = {d1, d2, . . . , dm}, then n ≥ dm + 1.

Proof. If the score of a vertex v is dm, then v dominates dm different
vertices.

Lemma 3. If m ≥ 2 and the score sequence S = s1, s2, . . . , sn corresponds to
the score set D = {d1, d2, . . . , dm}, then

(7) 2d1 + 2 ≤ n ≤ 2dm,

and both bounds are sharp.

Proof. Every element of D has to appear in S. Therefore the arithmetical
medium of the scores is greater, than d1, and smaller, than dm. From the
other side n-tournaments contain Bn =

(
n
2

)
edges, so the arithmetical medium

of their scores is Bn/n = (n− 1)/2, therefore

(8) d1 <
n− 1

2
< dm,

implying (7).
For example if k ≥ 0 and D = {k, k+ 1}, then according to (8) n = 2k+ 2

imply the sharpness of both the bounds.
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The next extension of Theorem 5 is based on Lemmas 1, 2, 3.

Theorem 6. (Iványi, Lucz, Gombos, Matuszka [11]) If m ≥ 1 and D =
{d1, d2, . . . , dm} is an increasingly ordered set of nonnegative integers, then

• there exist a tournament T , whose score sequence is S and score set is
D;
• if m = 1, then S = s<2d1+1>

1 ;
• if m ≥ 2, then

(9) max(dm + 1, 2d1 + 2) ≤ n ≤ 2dm;

• the bounds in (9) are sharp.

Proof. The assertion follows from the above lemmas (see [11]).
Taking into account the remark of Beineke and Eggleton [21, page 180]

we can formulate Reid’s conjecture as an arithmetical statement without the
terms of the graph theory. Let D = {d1, d2, . . . , dm} be an increasingly ordered
set of nonnegative integers. According to the conjecture there exist positive
integer exponents x1, x2, . . . , xm such that

(10) S = d<x1>
1 , d<x2>

2 , . . . , d<xm>
m

is the score sequence of some (
∑m

i=1 xi)-tournament. Using Landau’s theo-
rem it can be easily seen that Reid’s conjecture is equivalent to the following
statement [16, 27].

For every (0, dm,m)-regular set D = {d1, . . . , dm} there exist positive
integers x1, . . . , xm, such that

(11)
k∑

i=1

xidi ≥
(∑k

i=1 xi
2

)
, for k = 1, . . . , m− 1,

and

(12)

m∑
i=1

xidi =

(∑m
i=1 xi
2

)
.

Commenting Yao’s proof Qiao Li wrote in 1989 [13]: Yao’s proof is the
first proof of the conjecture, but I do not think it is the last one. I hope a
shorter and simpler new proof will be coming in the near future.

However, the constructive proof has not been discovered yet.
Our algorithms investigate only the zerofree score sets, The base of this

approach is the following lemma.
The base of considering only the zerofree sets is the following assertion.

Lemma 4. Let m ≥ 2. A sequence S = s<e1>
1 , s<e2>

2 , . . . , s<em>
n is the score

sequence corresponding to the score set D = {0, d2, d3, . . . , dm} if and only
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if the sequence S′ = (s2 − 1)<e2>, (s3 − 1)<e3>, . . . , (sn − 1)<en> is the score
sequence corresponding to D′ = {d2 − 1, d3 − 1, . . . , dm − 1}.

Proof. If S is the score sequence corresponding to D then s1 = 0 and
e1 = 1 that is all other players won against the player having the score s1 = 0,
so S′ corresponds to D′.

If S′ does not correspond to D′, then we add a new score d1 = 0 to D′,
increase the multiplicity of the other scores by 1 and get D which does not
correspond to S.

3. Reconstruction of score sets of tournaments

Earlier we proposed [11] polynomial approximate algorithms Balanc-
ing and Shortening, further exponential exact algorithms Sequencing and
Diophantine to reconstruct score sets. Now we add approximate algorithms
Shiftening and Hole. The polynomial algorithms are based on Theorem 6.

Since there are quick (quadratic) algorithms constructing n-tournaments
corresponding to a given score sequence, our algorithms construct only a suit-
able score sequence.

If the score sequence of a tournament is S and its score set is D, then we
say, that S generates D, or D corresponds to S. If D is given, then we call
the corresponding score sequence good .

3.1. Concept of the Balancing algorithm. The main idea behind Bal-
ancing algorithm [11] is that each element of D can be classified as a winner,
loser or balanced score. We say that di ∈ D is a winner if it is greater than
half of the number of players. Conversely, it is a loser if it is less than n/2. In
case of equality di is a balanced element. Let plus be the difference between a
winner’s score and its number of lost matches, plusi = di− ((n− 1)− di), and
minus i the difference between its number of won matches and its scores, that
is minusi = ((n−1)−di)−di. It is obvious that the sum of plus i’s and the sum
of minus i’s in a tournament must be equal. Therefore if we choose the number
of losers and the number of winners such that this condition holds, then we
can create a potential score sequence. Notice that a score can be classified only
if the number of players is fixed. For this purpose we use Theorem 6, where
based on the score set D we can find a finite set of possible n’s. Moreover a
potential score sequence must correspond to the Landau theorem.

3.2. Concept of the Shortening algorithm. The Balancing algorithm
successfully finds a good sequence while the greatest element of the score set is
not greater, than 5. If dm > 5, then it seems to be a good idea to remove some
scores from the set and search a sequence corresponding to the shortened set.
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We are listing now the three different shortening procedures which are used
in the Shortening algorithm:

1) Consider a score set D, where dm = n − 1 and the equation dm−k =
dm−k+1 − 1 is also true for every k ≥ 0 and k < m. In that case there
have to be a player with dm score who defeats all the others, so it can be
removed without changing the other’s scores. If k > 0 then, after removing
dm, the largest element of D is also defeats everyone (except the player with
the removed score). So one can remove the last k + 1 elements in such a case
and search a good sequence for the shortened score set. After a valid sequence
is found the discarded elements can be append to the shortened set as those
defeat everyone.

2) The previous procedure can be done also in the other way. If the
first element of D is zero then there have to be a player who is defeated by
everyone. This player can be removed while the other’s scores is decreased by
one. Moreover the first l score can be discarded if d1 = 0 and dj = dj−1 + 1
for every j ≤ l. As before if one can found a good score sequence for the
shortened set, the discarded elements can be inserted based on Lemma 4.

3) If none of the above methods results a valid sequence we can try to
aggressively remove elements from the score set. If we exclude the last element
of D and can find a valid sequence for the shortened set, then there are some
hope that we can construct a sequence corresponding to the original set by
appending the discarded element one or more times to the short sequence. If
the sequence do not conform to the Landau theorem after n − m appended
elements we stop and conclude that the algorithm was not able to find a valid
sequence.

3.3. Concept of the Shiftening algorithm. In some situations one can
find a good sequence for a shortened score set by shifting the scores. Consider
two score sets, the original D = {d1, d2, . . . , dm} and the shortened D′ =
{d1, d2, . . . , dm−1}. If we find a sequence S = {s1, s2, . . . , sn′} corresponding
to the shortened set, then we have three possibilities to construct a sequence
that generates D.

1) dm = n. In this simple case we add one more player that defeats
everyone. As the number of players in S′ equal to the required score dm we
get a valid sequence S = S′ ∪ {dm} generating D.

2) dm > n. Let diff = dm − n then we can add Nnew = 2diff + 1 new
players with score dm. These defeat all the original players by which they
gain n points. The remaining points are obtained by the new players through
defeating each other diff times. So the sequence S = S′ ∪Nnew

i=1 {dm} is valid.
3) dm < n. In this case there is no exact way to find S but we can try to

split the new player’s additional points. Let diff = n − dm be the additional
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points and X ′ = {x1, x2, . . . , xm−1} be the exponents of scores in the set D′.
If we can find an integer i such that di+1− di = i and xi > 1 then we can give
a point to one of the players with si and take away one from the new player.
With our notation this can be written as xi = xi − 1 and xi+1 = xi+1 + 1
while sn+1 = sn+1− 1. Also we can decrease diff by one. This method can be
repeated while diff > 0 and if diff = 0, then we are done and the exponents
X = {x1, x2, . . . , xm−1, 1} generate a corresponding score sequence.

3.4. Concept of the Hole algorithm. While the maximum score in D is
not greater, than 7, the three algorithms above find a corresponding sequence
every time. Moreover if we set this number to 8, then the algorithms return
a sequence for all sets except two. However, these two sets have the common
property of holes. In a score set D = {d1, d2, . . . , dm} there is a single hole at
1 ≤ j ≤ dm−1, if j is missing from D, but j−1 and j+1 are contained by D..
If d1 = 1, then the absence of 0 is also a hole. For the mentioned two sets it is
true that there is no j such that dj+1 − dj > 2 and d1 = 1. So these sets only
differ in holes from the score sequence of the transitive (dm + 1)-tournament
S = {0, 1, . . . ,m} set. Hole compares D with S and handles the hole at 0
by changing the result of the match between the players having 0 and dm + 1
points and increasing the exponents of the scores 1 and dm. The holes at
1 ≤ j ≤ dm−1 are handled by changing the result between the players having
scores j and j + 1 and increasing the exponents ej−1 and ej+1 by 1.

The running time of Hole is Θ(m).

4. Score sequences produced by Balancing, Shortening,
Shiftening, and Hole

In this subsection we present the score sequences produced by the approx-
imate algorithms Balancing, Shortening, Shiftening, and Hole, if their
input data are the zerofree score sets with dm ≤ 8.

Balanced reconstructs each score set characterized by dm ≤ 5, and 30
zerofree score sets characterized by dm = 6 (due to Lemma 4 it is sufficient
to investigate only the zerofree sets). The exceptional score sets are {1, 3, 6}
and {1, 2, 3, 5, 6}, which are reconstructed by Shortening. So these algo-
rithms together reconstruct each score set characterized by dm ≤ 6, but ac-
cording to Tables 1 and 2 they can not reconstruct the score sets {1, 2, 3, 5, 7}
and {1, 2, 3, 4, 6, 7}. According to Table 2 Shiftening reconstructs the set
{1, 2, 3, 5, 7}, and according to [4, 5] Hole finds the sequence of exponents
2,1,1,2,1,2, which determine a score sequence corresponding to {1, 2, 3, 4, 6, 7}.
We received that these three approximate algorithms together reconstruct each
score set satisfying the condition dm ≤ 7.
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Figure 1. The running time of the approximate algorithms.

According to [4, 5] Balanced, Shortening and Shiftening together
reconstruct the majority of the zerofree score sequences with dm ≤ 8. Excep-
tions are only the sets 1, 2, 3, 5, 7, 8 and 1, 2, 3, 4, 6, 7, 8.

Both of these sets contain only single holes, therefore Hole easily recon-
structs them. E.g. 1, 2, 3, 5, 7, 8 contains single holes at j = 3 and j = 5. Using
Hole we get the sequence of exponents 2, 1, 2, 1, 2, 2. D = {1, 2, 3, 4, 6, 7, 8}
contains a single hole at j = 5. Using Hole we get the sequence of exponents
2, 1, 1, 2, 2, 1, 2, which determines a score sequence corresponding to D.

We received that the four approximate algorithms together reconstruct
each score set satisfying the condition dm ≤ 8.

Figure 1 shows the average running time of Balancing, Shiftening,
Shortening and Hole as the function of m (the size of the score set).

5. Enumeration of the reconstructed score sequences

There are 2(n2) different labeled n-tournaments using the same n distinct
labels, since for each pair of distinct labels {a, b}, either the vertex labeled a
dominates the vertex labeled b or b dominates a [6, p. 197].

The following assertion characterizes the number t(n) of non-isomorphic
(unlabeled) n-tournaments.

Theorem 7. (Davis [2, 3, 8, 26]) If n ≥ 1, then

(13) t(n) ≥ 2(n2)

n!
,
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n D Balancing Shortening Shiftening

1 {7} 15 same same
2 {6, 7} 7, 7 same same
3 {5, 7} 9, 3 same same
4 {5, 6, 7} 8, 2, 2 same 7, 2, 1
5 {4, 7} 6, 6 same same
6 {4, 6, 7} 8, 1, 1 same same
7 {4, 5, 7} 6, 2, 3 same same
8 {4, 5, 6, 7} 6, 1, 2, 2 same 3, 6, 1, 1
9 {3, 7} 7, 1 same same

10 {3, 6, 7} 3, 1, 9 same same
11 {3, 5, 7} 5, 1, 5 same same
12 {3, 5, 6, 7} 6, 1, 1, 1 same same
13 {3, 4, 7} 6, 1, 2 same same
14 {3, 4, 6, 7} 5, 2, 1, 1 same same
15 {3, 4, 5, 7} 4, 3, 1, 1 same same
16 {3, 4, 5, 6, 7} 2, 2, 3, 2, 2 same same
17 {2, 7} 5, 5 same 4, 4
18 {2, 6, 7} 5, 2, 2 same same
19 {2, 5, 7} 4, 1, 6 5, 1, 3 same
20 {2, 5, 6, 7} 5, 1, 1, 1 same same
21 {2, 4, 7} 3, 4, 2 same same
22 {2, 4, 6, 7} 1, 1, 5, 6 same 2, 1, 5, 1
23 {2, 4, 5, 7} 4, 1, 2, 2 same same
24 {2, 4, 5, 6, 7} 3, 3, 1, 1, 1 same same
25 {2, 3, 7} 3, 3, 3 same same
26 {2, 3, 6, 7} 3, 3, 1, 1 same 3, 1, 2, 1
27 {2, 3, 5, 7} 2, 2, 2, 5 4, 1, 1, 1 same
28 {2, 3, 5, 6, 7} 1, 1, 1, 2, 8 same same
29 {2, 3, 4, 7} 2, 2, 5, 2 3, 1, 3, 1 4, 1, 1, 3
30 {2, 3, 4, 6, 7} 1, 1, 1, 1, 9 4, 1, 1, 1, 1 same
31 {2, 3, 4, 5, 7} 1, 1, 1, 5, 3 3, 2, 1, 1, 1 same
32 {2, 3, 4, 5, 6, 7} 3, 2, 1, 1, 1 same same

Table 1. Reconstruction results of the score sets beginning
with the score 2 ≤ d1 ≤ 7 and ending with dm = 7.

further

(14) lim
n→∞

t(n)

2(n2)/n!
= 1.
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n D Balancing Shortening Shiftening

1 {1, 7} 3, 9 same same
2 {1, 6, 7} 3, 4, 4 same same
3 {1, 5, 7} 3, 2, 6 same same
4 {1, 5, 6, 7} 1, 1, 5, 6 same 3, 1, 5, 1
5 {1, 4, 7} 2, 2, 8 3, 3, 3 same
6 {1, 4, 6, 7} 1, 1, 4, 7 3, 3, 1, 1 same
7 {1, 4, 5, 7} 2, 2, 2, 5 3, 2, 2, 1 same
8 {1, 4, 5, 6, 7} 2, 4, 1, 1, 1 same 3, 1, 1, 2, 3
9 {1, 3, 7} no 3, 1, 7 same

10 {1, 3, 6, 7} 1, 1, 3, 8 same 2, 2, 5, 1
11 {1, 3, 5, 7} 2, 2, 1, 6 3, 1, 3, 1 same
12 {1, 3, 5, 6, 7} 1, 1, 5, 2, 2 3, 1, 1, 1, 4 1, 1, 1, 6, 3
13 {1, 3, 4, 7} 1, 1, 1, 10 2, 1, 4, 1 3, 1, 1, 5
14 {1, 3, 4, 6, 7} no 2, 3, 1, 1, 1 3, 1, 1, 2, 2
15 {1, 3, 4, 5, 7} 2, 2, 1, 2, 2 3, 1, 1, 1, 3 same
16 {1, 3, 4, 5, 6, 7} no 3, 1, 1, 1, 1, 1 same
17 {1, 2, 7} 2, 2, 7 same same
18 {1, 2, 6, 7} 2, 2, 3, 3 same 1, 3, 4, 2
19 {1, 2, 5, 7} 1, 1, 1, 10 2, 2, 3, 1 same
20 {1, 2, 5, 6, 7} no 2, 2, 1, 1, 4 1, 3, 2, 2, 1
21 {1, 2, 4, 7} no 2, 2, 1, 5 same
22 {1, 2, 4, 6, 7} 2, 2, 1, 2, 2 same 1, 3, 1, 3, 1
23 {1, 2, 4, 5, 7} 1, 1, 1, 4, 4 2, 2, 1, 1, 3 same
24 {1, 2, 4, 5, 6, 7} 2, 2, 1, 1, 1, 1 same same
25 {1, 2, 3, 7} no 2, 1, 2, 5 same
26 {1, 2, 3, 6, 7} no 1, 1, 4, 1, 1 same
27 {1, 2, 3, 5, 7} no no 2, 1, 2, 1, 3
28 {1, 2, 3, 5, 6, 7} 1, 1, 1, 2, 3, 3 2, 1, 2, 1, 1, 1 same
29 {1, 2, 3, 4, 7} 1, 1, 1, 4, 2 1, 1, 2, 3, 1 same
30 {1, 2, 3, 4, 6, 7} no no 1, 1, 1, 2, 4, 1
31 {1, 2, 3, 4, 5, 7} 1, 1, 1, 1, 2, 5 1, 1, 3, 1, 1, 1 same
32 {1, 2, 3, 4, 5, 6, 7} 1, 1, 1, 3, 1, 1, 1 same 1, 1, 1, 1, 2, 3, 1

Table 2. Reconstruction results of score sets beginning with
the score d1 = 1 and ending with dm = 7.

Proof. See [2, 3].
The concrete values of t(n) can be found e.g. in [22] for n = 1, 2, . . . , 76.

(13) gives not only an upper bound, but also a good approximation [5].
We enumerated the following cardinalities.



DEGREE SETS OF TOURNAMENTS 161

1) number of score sets σm(n) belonging to the fixed number n of vertices
and maximal number m of elements of D, further the distribution σm(n, i),
where σm(n, i) gives the distribution of the number of score sets, containing i
elements at fixed n and m;

Table 3 contains σm(n, i) and σm(n) for n = 1, . . . , 12, m = 12, and
i = 1, . . . , 12.

n, i 1 2 3 4 5 6 7 8 9 10 11 12 σ12(n)
1 1 0 0 0 0 0 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 0 0 0 0 0 1
3 1 0 1 0 0 0 0 0 0 0 0 0 2
4 0 3 0 1 0 0 0 0 0 0 0 0 4
5 1 0 6 0 1 0 0 0 0 0 0 0 8
6 0 4 4 10 0 1 0 0 0 0 0 0 19
7 1 0 15 13 15 0 1 0 0 0 0 0 45
8 0 8 12 39 28 21 0 1 0 0 0 0 109
9 1 2 34 55 82 50 28 0 1 0 0 0 253

10 0 7 28 115 150 153 80 36 0 1 0 0 570
11 1 0 57 150 310 327 260 119 45 0 1 0 1270
12 0 13 60 262 502 705 622 412 168 55 0 1 2800

Table 3. Number of score sequences σ12(n, i) and σ12(n).

2) Number of score sequences τm(n) belonging to the fixed number n of ver-
tices and fixed maximal number of the elements of D, further τm(n, i), where
τm(n, i) gives the distribution of the number of score sequences, containing i
elements at fixed n and m;

Table 4 shows τm(n) and τm(n, i) for n = 1, . . . , 12, m ≤ n + 1, and
i = 1, . . . , 12.

3) Number of score sequences δ11(n) belonging to fixed dm and number n of
vertices, further the distribution δ11(n, i), where δ11(n, i) gives the distribution
the number of sequences, containing i elements at fixed dm = 11 and n.

Table 5 shows the values of δ11(n) and δ11(n, i) for n = 1, . . . , 12, dm = 11,
and i = 1, . . . , 11.

6. Summary

Checking all relevant score sets by polinomial time approximate algorithms
we proved Theorem 5 for score sets whose maximal element is less than 9. Our
proof is constructive, since we generated score sequences corresponding to the
investigated score sets.
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n, i 1 2 3 4 5 6 7 8 9 10 11 12 τ(n)
1 1 0 0 0 0 0 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 0 0 0 0 0 1
3 1 0 1 0 0 0 0 0 0 0 0 0 2
4 0 3 0 1 0 0 0 0 0 0 0 0 4
5 1 0 7 0 1 0 0 0 0 0 0 0 9
6 0 4 4 13 0 1 0 0 0 0 0 0 22
7 1 0 21 14 22 0 1 0 0 0 0 0 59
8 0 8 14 70 40 34 0 1 0 0 0 0 167
9 1 2 46 96 204 90 50 0 1 0 0 0 490

10 0 7 34 267 414 511 182 70 0 1 0 0 1486
11 1 0 93 352 1200 1400 1165 332 95 0 1 0 4639
12 0 13 90 741 2252 4525 4068 2420 570 125 0 1 14805

Table 4. Number of score sequences τm(m) and τ(n).

n, i 0 1 2 3 4 5 6 7 8 9 10 11 δ11(n)
1 1 0 0 0 0 0 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 0 0 0 0 0 1
3 0 1 1 0 0 0 0 0 0 0 0 0 2
4 0 0 2 2 0 0 0 0 0 0 0 0 4
5 0 0 1 4 4 0 0 0 0 0 0 0 9
6 0 0 0 3 10 9 0 0 0 0 0 0 22
7 0 0 0 1 10 26 22 0 0 0 0 0 59
8 0 0 0 0 5 33 70 59 0 0 0 0 167
9 0 0 0 0 1 22 103 197 167 0 0 0 490

10 0 0 0 0 0 7 88 321 580 490 0 0 1486
11 0 0 0 0 0 1 43 329 1018 1762 1486 0 4639
12 0 0 0 0 0 0 11 213 1180 3280 5482 4639 14805

Table 5. Number of score sequences δ11(n, i, ) and δ11(n).

The list of parameters and pseudocodes of the four approximating algo-
rithms, further the generated score sequences can be found in [4, 5]:

http://elekjani.web.elte.hu.
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