
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

EMBEDDED RESOURCE TOOL IN HASKELL

ATTILA GÓBI, TAMÁS KOZSIK, AND BARNABÁS KRÁLIK

Abstract. In our previous work [4], we have created a way to check size
annotations of higher-order polymorphic functional programs supporting
nested lists. By extending the lambda-calculus, these annotations are able
to express the relations between sizes of arguments and those of the corre-
sponding results of functions. These relations are exact, and can be non-
linear and non-monotonic polynomials. We provided a way for verification
condition generation as well. This paper focuses on how it is possible to
implement this extended lambda calculus as an embedded DSL.

1. Introduction

It is a well-known fact that the vast majority of processors are used in
embedded systems, where resource consumption of software is severely limited.
Software development techniques, which enable reasoning about resource use,
are extremely useful for such applications. Analyses on resource consumption
of programs typically rely on size information on program values, such as
length of lists.

There are different approaches to work with size information. A wide-
spread approach is to use sized types [6] and subtypes, which allows us to
compute an upper bound for the possible sizes of values assigned to a variable.

Previously, in [4] a size calculus has been defined to express relations be-
tween sizes of expressions, namely the arguments and result of functions. With
this hypothetical size expression on a function, it is possible to generate veri-
fication conditions using the body of the function. If these verification condi-
tions can be discharged, the function is proved to confirm to the hypothetical
size expression.

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N18, 68N30.
1998 CR Categories and Descriptors. D.1.1 [Programming Techniques]: Applicative

(Functional) Programming – embedding a functional language into a functional language;
D.3.1 [Programming Languages]: Formal Definitions and Theory – syntax, semantics.

Key words and phrases. resource analysis, embedded domain-specific language.
Supported by the Ministry of Human Resources of Hungary, contract No. 18370-

9/2013/TUDPOL.

129

130 ATTILA GÓBI, TAMÁS KOZSIK, AND BARNABÁS KRÁLIK

Our calculus considerably differs from the sized types approach. In our
calculus we can express exact size relations, even in non-linear, non-monotonic
cases. For instance, we can describe the exact size for nested lists, in contrast
to sized types, where the upper bound is determined by the length of the
longest element list.

The size calculus can be introduced as a domain-specific language (DSL),
the primitives of which allow us to describe computations in an extension of
the typed lambda calculus, as well as size information attached to potentially
recursive function definitions. This DSL can be implemented as an embedding
into the non-strict pure functional language Haskell [7].

This embedding exposes a number of challenges. Firstly, we need two dif-
ferent sublanguages, both extending the lambda calculus, and hence, sharing
certain constructs. Secondly, the typing of these two sublanguages are interde-
pendent. Thirdly, function calls should be observable: this is essential for e.g.
the proper generation of verification conditions. Fourthly, we need a design
that facilitates extension of the DSL.

The rest of the paper is structured as follows. In section 2, our earlier work
is revisited to give some insight into the domain specific language defining the
size calculus. Section 3 explains how this DSL can be embedded into Haskell.
Section 4 summarizes related work, and section 5 concludes the paper.

2. DSL for describing resource relations

One of the key constructs in our language is the size expression. Size
expressions are used to describe exact relations between size of return value
and those of the parameters of a function. These expressions are an extension
of the lambda calculus with constructs for expressing the sizes of lists. The
abstract syntactical structure of size expressions can be seen on Figure 1.

Size variables ∈ s, p
Integer literals ∈ n,m
Binary operators ξ ::= + | − | ∗
Size expressions η ::= List | Unsized | Shift | ⊥ | s | n

| λs.η | λ̂sp.η | η1η2 | η1 ξ η2

Figure 1. Syntax of size expressions

The simplest of them all is the Unsized – this is the size of the primitive
values such as values of type Int. The empty list corresponds to the size
expression List 0 (λi.⊥). This means that the empty list has 0 elements and
every element has size ⊥. The bottom is used as a placeholder: it does not
equal to anything else, and its usual interpretation is an error. We saw that

EMBEDDED RESOURCE TOOL IN HASKELL 131

the size expression for Int is Unsized, so one possible size expression for the list
containing a single integer is List 1 (λi.Unsized). The second parameter of the
List expression is a function which maps a size to each index, where the index
is a natural number, and the index of the last item of the list is zero. This
notation might seem unintuitive at first sight, however in [4] we have given a
detailed explanation for this choice. The remaining syntactic constructs can
be best understood by going through the reduction rules of the size calculus,
as shown in Figure 2.

(λp.η1)(η2)→β (η1[p := η2])

(λ̂sp.e)(List η1 η2)→β (e[s := η1, p := η2])

Shift η1 s η2 i→β

{
η1i if i < s

η2(i− s) otherwise

Figure 2. Reduction rules of the size calculus

The first reduction is the usual beta reduction from lambda calculus. The
second rule tells us that λ̂ is the dual of List, that is it can be used to pattern
match on list sizes. The third rule is used to compute the size of an element
of the concatenation of two lists. The combinator Shift is used to concatenate
size functions. The size expression for the concatenation of two lists can be
given with the following formula.

λ̂sxpx .λ̂
sy
py . List (sx + sy) (Shift py sy px)

The expression Shift e1 s e2 gives the size function of the list obtained by
inserting the last s elements of e1 before e2. That is:

η1 = {0 7→ η0
1, 1 7→ η1

1, . . . , n 7→ ηn1 }
η2 = {0 7→ η0

2, 1 7→ η1
2, . . . ,m 7→ ηm2 }

Shift η1 s η2 = {0 7→ η0
1, 1 7→ η1

1, . . . , s− 1 7→ ηs−1
1 , s 7→ η0

2, s+ 1 7→ η1
2, . . .}

Another possible size expression for the singleton integer list can be given
with this Shift operator, namely: List 1 (Shift (λi.⊥) 0 (λi.Unsized)). This,
again, means that the list has one element, and using the reduction rules it is
easy to see that the size of this element is Unsized.

This leads us to the definition of size equality of lists – the size of two lists
are equal, if their length equals, and all of their elements have the same size.

List s1 η1 = List s2 η2 ⇔ s1 = s2 ∧ ∀i ∈ {0, . . . , s1 − 1} : η1 i = η2 i

132 ATTILA GÓBI, TAMÁS KOZSIK, AND BARNABÁS KRÁLIK

The other key component of our DSL is the sublanguage which describes
the computational aspect of a program. This sublanguage is a variation of a
typed lambda calculus, extended with polymorphic homogeneous lists (with
the L() type constructor) and pattern matching on lists (match-with). Top-
level bindings introduce recursive definitions in the computational sublan-
guage, and connect the size expression and computational sublanguages, as
it can be seen on the following example.

concat x y :: L(α)→ L(α)→ L(α)

:: λ̂sxpx .λ̂
sy
py . List (sx + sy) (Shift py sy px)

= match x with nil⇒ y
cons hd tl⇒ cons hd (concat tl y)

Here the concat function has two arguments – x and y; a type declaration
– after the first ::; a size expression declaration – after the second ::; and a
body – after the equality sign.

3. Finally tagless embedding

Now, let us see how to embed our DSL into Haskell. We follow the tech-
nique introduced by [2]. In that paper, the lambda calculus is embedded
into OCaml and Haskell. The advantages of this embedding are that it is
extensible, and interpreting it incurs no significant runtime overhead. This
latter property is the result of eliminating type tags during compilation. The
higher-order abstract syntax of a lambda calculus looks as follows.

class Lambda l where

lam :: (l a -> l b) -> l (a -> b)

app :: l (a -> b) -> l a -> l b

lit :: Int -> l Int

The expressions of this lambda calculus can be lambda abstractions, ap-
plications and integer literals. Observe that the lam function takes a Haskell
function that operates on values of the embedded language, and lifts this func-
tion into the embedded language.

Instances of the type class Lambda are the interpreters of the embedded
language. As a consequence embedded expressions can be polymorphic global
functions, where these functions are polymorphic in the interpreter of the DSL
chosen for evaluation. Such an interpreter can be provided by the following
instance declaration.

newtype Q a = Q { unQ :: a }

instance Lambda Q where

lit = Q

lam a = Q (unQ.a.Q)

app a b = Q $ unQ a (unQ b)

EMBEDDED RESOURCE TOOL IN HASKELL 133

eval :: Q a -> a

eval = unQ

The newtype keyword introduces a tagless algebraic data type (one with
a single possible data constructor). The compiler can optimize away the Q

constructor and the unQ selector. The entry point of the interpreter is the eval
function, which is defined surprisingly simply. It creates a Haskell function
from an expression of the embedded language.

We can now turn our attention to finer details, such as operators. We
introduced syntactic categories for infix operators with different associativity.
This technique is useful for later extension of the embedded language with
new custom binary operators. Note that we used the qualified name of the
operators defined in Prelude, and Prelude is imported with the qualified

qualifier to avoid name clashes.

class (Lambda l) => LOps l where

infixop :: String -> Int -> (a -> b -> c) -> l a -> l b -> l c

infixopr :: String -> Int -> (a -> b -> c) -> l a -> l b -> l c

infixopl :: String -> Int -> (a -> b -> c) -> l a -> l b -> l c

(+) :: (LOps l) => l Int -> l Int -> l Int

(+) = infixopl "+" 6 (Prelude.+)

(-) :: (LOps l) => l Int -> l Int -> l Int

(-) = infixopl "-" 6 (Prelude.-)

(*) :: (LOps l) => l Int -> l Int -> l Int

(*) = infixopl "*" 7 (Prelude.*)

Embedding size expressions of the DSL is carried out in the following way.
The only difference in the syntax is that we used the slam function to represent

λ̂ in order to simplify typing (no pun intended).

class (LOps l) => Size l where

list :: l Int -> l (Int -> a) -> l [a]

slam :: (l Int -> l (Int -> a) -> l b) -> l ([a] -> b)

shift :: l (Int -> a) -> l Int -> l (Int -> a) -> l (Int -> a)

unsized :: l Unsized

bottom :: l a

To illustrate the use of the size expression embedding, consider the follow-
ing definition of concatSize, which gives the size relation for the usual list
concatenation.

concatSize :: Size l => l ([a] -> [a] -> [a])

concatSize = slam $ \s1 f1 -> slam $ \s2 f2 ->

list (s1 + s2) $ shift f1 s1 f2

134 ATTILA GÓBI, TAMÁS KOZSIK, AND BARNABÁS KRÁLIK

Our goal is to make recursion observable. To achieve this, the bind is
introduced as follows.

class (Exp e, Size (SizeExp e)) => SizedFun e where

type SizeExp e :: * -> *

bind :: Infer a b => String -> SizeExp e a -> e b -> e b

Here SizeExp is an associated type constructor synonym – a type function
–, which maps actual interpreter e of the body to the interpreter of the size
expression. Note that due to overlapping instances, type families cannot be
used here to describe the mapping. Therefore, we use a workaround with the
following Infer type class.

class Infer a b where

instance (Infer a b, Infer p q) => Infer (a->p) (b->q)

instance Infer a b => Infer [a] [b]

instance (a~b) => Infer a b

instance Infer Unsized Int

Note that bind corresponds to the type environment by capturing the
name, the type, the size and the body of top-level definitions. For instance, if
we want to print out a DSL expression, the bind function allows us to perform
the printing in a context: if a function is to be printed, either the name or
the body of the function will be output, depending on whether the function
occurs in the outermost bind, or in a nested one.

class SContext s => SBContext s where

bound :: Lens s Bool

instance SBContext s => SizedFun (S s) where

type SizeExp (S s) = S s

bind name size exp = S $ \ctxo -> if getL bound ctxo then

showString name

else let (s1, s2) = S.split2 (getL supply ctxo)

ctx = setL bound True ctxo

in showString name . showString " :: " .

unS size (updateCtx s1 0 ctx) . showChar ’\n’.

showString name . showString " = " .

unS exp (updateCtx s2 0 ctx)

This approach can avoid recursive expansion of definitions. When we print
out concat with this approach, the following output is obtained.
concat :: Λa,b.Λc,d.List (a+c) (Shift b a d)

concat = λe.λf.case e of [] => f; (g:h) => g:concat h f

The same technique can be used when generating verification conditions
from programs written in the EDSL: the binding registers the size expression
for a function, and non-binding occurrences of the same function can retrieve

EMBEDDED RESOURCE TOOL IN HASKELL 135

this size expression from the environment, and use it as an assumption in the
generated VCs.

4. Related work

Papers [1, 3] discuss methods of resource analysis that are the closest to
our approach; however, their style of implementation is more of a library than
that of a domain-specific language.

Brady and Hammond present a dependently typed core language called
TT and define a framework within this language for representing size metrics
and properties thereof. Dependent type systems lend a hand when formulating
type-level statements about the resource usage of a given part of a program.
Here, not only types but values as well can be used as parameters to a type
constructor. The authors exploit this property by encoding size – as a natural
number – into the types as just another type parameter.

Danielsson attacks the problem of execution time analysis in a similar
manner. He expresses ‘ticks’ required by each function as type parameters of
the individual functions’ return types. Regular Agda is then used as a vehicle
of implementation.

A drawback of using general-purpose lazy functional programming lan-
guages is that the behaviour of the garbage collector is very difficult to predict
and that lazy evaluation might skip possible execution paths whatsoever; thus,
the aforementioned implementations only give a not-too-tight upper bound on
resource consumption. In the case of embedded systems, having explicit re-
source management and clearly visible execution paths might even pose as an
advantage from the viewpoint of the engineers. Hughes and Pareto [5] use a
minimal version of ML as a basis for their language embedded ML. This lan-
guage is then extended using the notion of ‘regions’, which can be thought of
short-lived heaps, explicitly introduced and disposed of by the programmer.

5. Conclusion

In this paper we describe a technique to embed a size calculus DSL into
Haskell. This DSL can attach size expressions to functions of a computational
language, and provides reduction rules to simplify such size expressions. Both
the computational language and the size expression language are extensions
of lambda calculus with lists and pattern matching.

The embedding, on the one hand, is tagless, and therefore fairly efficient,
since the host language compiler translates EDSL programs into pure Haskell
functions. On the other hand, it is necessary to explicitly mark function
applications to achieve observability. However, this explicit application symbol
can be turned implicit using Template Haskell [8].

136 ATTILA GÓBI, TAMÁS KOZSIK, AND BARNABÁS KRÁLIK

One of the design goals of our embedding was to allow extensions to the
EDSL to be added. Hence we used higher-order abstract syntax and type
classes in the implementation.

References

[1] Edwin Brady and Kevin Hammond. A dependently typed framework for static analysis
of program execution costs. In In Revised selected papers from IFL 2005: 17th interna-
tional workshop on implementation and application of functional languages, pages 74–90.
Springer, 2005.

[2] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially eval-
uated. In Zhong Shao, editor, Programming Languages and Systems, volume 4807 of
Lecture Notes in Computer Science, pages 222–238. Springer Berlin Heidelberg, 2007.

[3] Nils Anders Danielsson. Lightweight semiformal time complexity analysis for purely func-
tional data structures. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’08, pages 133–144, New York,
NY, USA, 2008. ACM.

[4] Attila Góbi, Olha Shkaravska, and Marko van Eekelen. Higher-order size checking without
subtyping. In Hans-Wolfgang Loidl and Ricardo Peña, editors, Trends in Functional
Programming, volume 7829 of Lecture Notes in Computer Science, pages 53–68. Springer
Berlin Heidelberg, 2013.

[5] John Hughes and Lars Pareto. Recursion and dynamic data structures in bounded space:
Towards embedded ML programming. In Proceedings of the 4th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’99), pages 70–81, Paris, France,
1999. ACM.

[6] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems
using sized types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages (POPL’96), pages 410–423, St. Petersburg Beach,
Florida, USA, 1996. ACM.

[7] Simon Marlow et al. Haskell 2010 language report, 2010.
[8] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. In Pro-

ceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 1–16. ACM, 2002.

Eötvös Loránd University, Budapest, Hungary
E-mail address: {gobi,kto,kralikba}@elte.hu

