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FIRST PRICE AND SECOND PRICE AUCTION GAMES.

EQUILIBRIA DETECTION.

NOÉMI GASKÓ, RODICA IOANA LUNG, MIHAI SUCIU, AND D. DUMITRESCU

Abstract. Three equilibria concepts - Nash, Aumann (strong Nash) and
t-immune - are analyzed for first price and second price auction games.
An evolutionary algorithm is used to detect these equilibria. Numerical
experiments illustrate our assumptions regarding the equilibrium concepts.

1. Introduction

Game equilibrium detection is an important task in non-cooperative game
theory. Equilibria may predict the outcome of games and can help decision
makers (agents) to choose the ”right” decision. Generally an equilibrium is a
situation which is satisfactory for each player.

The most used equilibrium concept in non-cooperative game theory is the
Nash equilibrium [10], however with some limitations:

• Nash equilibrium assumes that all players are rational - to choose a
strategy which is favorable for another player - even if it would increase
its own payoff - is not allowed, players follow the principle of unilateral
maximization of their own payoff;
• in a game having several Nash equilibria a selection problem arises;

To solve these problems other equilibria were introduced, among which we
mention:

• the t-immune strategies [1] capture the situation where agents are act-
ing in an unpredictable manner; an irrational behaviour occurs in their
choices;
• the strong Nash (Aumann) equilibrium [2], which is a refinement of

the Nash equilibrium that can reduce the set of Nash equilibria of a
certain game;
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The goal of this paper is to study these less known equilibria in a special
class of games, in auction games as to the best of our knowledge only Nash
equilibria was studied in auction games. First price and second price auction
games have several Nash equilibria. The strong Nash and t-immune equilibria
of an auction game can lead to unexpected results and can give some new
interpretations for the auction model.

We use a computational tool, based on an evolutionary algorithm, to com-
pute the Nash, strong Nash, and t-immune equilibria.

This paper has five sections, including this introductory section. The sec-
ond section is concerned with the game theoretical prerequisites. Section three
presents the evolutionary detection method. Section four describes numerical
experiments. Finally, section five concludes the paper.

2. Game theoretical basic notions

2.1. Game equilibria. Mathematically, a finite strategic game is a system
G = (N,Si, ui, i = 1, n), where:

• N represents a set of players, and n is the number of players;
• for each player i ∈ N , Si is the set of actions available,

S = S1 × S2 × ...× Sn

is the set of all possible situations of the game.
Each s ∈ S is a strategy (or strategy profile) of the game;

• for each player i ∈ N , ui : S → R represents the payoff function of
player i.

2.1.1. Nash equilibrium. The most popular and used equilibrium concept is
the Nash equilibrium [10]. Playing in Nash sense means that no player can
improve his payoff by deviating from its strategy only by himself.

Let us denote by (si, s
∗
−i) the strategy profile obtained from s∗ by replacing

the strategy of player i with si : (si, s
∗
−i) = (s∗1, ..., si, ...., s

∗
n).

Definition 1 (Nash equilibrium). A strategy profile s∗ ∈ S is a Nash equilib-
rium if

ui(si, s
∗
−i) ≤ ui(s

∗)

holds ∀i = 1, ..., n, ∀si ∈ Si.

2.1.2. Strong Nash (Aumann) equilibrium. The Aumann (or strong Nash)
equilibrium is a strategy for which no coalition of players has a joint devi-
ation that improves the payoff of each member of the coalition.
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Definition 2 (Strong Nash equilibrium). The strategy s∗ is a Strong Nash
(Aumann) equilibrium if ∀I ⊆ N, I 6= ∅ there does not exist any sI such that
the inequality

ui(sI , s
∗
N−I) > ui(s

∗)

holds ∀i ∈ I.

2.1.3. t-immune equilibrium. The t-immune equilibria [1] describes such a sit-
uations, where player act unpredictable. A strategy profile is t-immune when
less then t player change but without decreasing the payoffs of the other play-
ers.

Definition 3. A strategy s∗ ∈ S is a t-immune if for all T ⊆ N with
card(T ) ≤ t, all sT ∈ ST , and all i 6∈ T we have:

ui(s
∗
−T , sT ) ≥ ui(s

∗).

2.2. Auction games. A considerable amount of literature has been published
concerning auction games, out of which we mention [8], [12].

Auction games can be classified by different characteristics; based on the
information knowledge we can distinguish complete and incomplete informa-
tion games.

Complete information auction games [5] include: all-pay auctions, Ams-
terdam auctions, unique bid-auctions, open ascending-bid auctions (English
auctions), descending-bid auctions (Dutch auctions). Numerical experiments
will concern the following two auction types:

• first-price sealed bid auction - each bidder submits her/his own bid
without seeing other bids, and the object is sold to the highest bidder
at her/his bid, who pays her/his own bid;
• second-price sealed bid auction (Vickrey auctions)- each bidder sub-

mits her/his own bid, the object is sold to the highest bidder, who
pays the second highest price for the object;

3. Evolutionary equilibrium detection

The equilibrium detection problem is similar to a multiobjective optimiza-
tion problem (MOP), where the commonly accepted solution is the Pareto
optimal set. Potential solutions of a MOP are compared by using the Pareto
dominance relation. In a similar manner, different equilibria types can be com-
puted by using different generative relations that will guide the search toward
certain equilibria.

3.1. Generative relations. In what follows the generative relations for the
Nash, Aummann and t-immune equilibria are presented.
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3.1.1. Generative relation for Nash equilibrium. Such a relation has been de-
fined for Nash equilibria in [9] by using a quality measure k(s, q) denoting the
number of players that benefit from unilaterally switching their choices from
s to q:

k(s∗, s) = card{i ∈ N, ui(si, s
∗
−i) > ui(s

∗), si 6= si},
where card{M} denotes the cardinality of the set M .

Definition 4. Let q, s ∈ S. We say the strategy q is better than strategy s
with respect to Nash equilibrium (q Nash ascends s, and we write q ≺N s, if
the following inequality holds:

k(q, s) < k(s, q).

Definition 5. The strategy profile q ∈ S is called Nash non-dominated, if and
only if there is no strategy s ∈ S, s 6= q such that

s ≺N q.

The relation ≺N is a generative relation for Nash equilibrium in the sense
that the set of non-dominated strategies with respect to ≺N is equal to the
set of Nash equilibria [9].

3.1.2. Generative relation for strong Nash equilibrium. A relative quality mea-
sure of two strategies with respect to Aumann equilibrium can be defined as
[4], [6]:

a(s∗, s) = card[i ∈ I, ∅ 6= I ⊆ N, ui(sI , s
∗
N−I) > ui(s

∗), si 6= s∗i ],

where card[M ] denotes the cardinality of the multiset M (an element i can
appear several times in M and each occurrence is counted in card[M ]). Thus,
a(s∗, s) counts the total number of players that would benefit from collectively
switching their strategies from s∗ to s.

Definition 6. Let s∗, s ∈ S. We say the strategy s∗ is better than strategy
s with respect to Aumann equilibrium, and we write s∗ ≺A s, if the following
inequality holds:

a(s∗, s) < a(s, s∗).

Definition 7. The strategy profile s∗ ∈ S is called Aumann non-dominated,
if and only if there is no strategy s ∈ S, s 6= s∗ such that

s ≺A s∗.

The relation ≺A can be considered as the generative relation for Aumann
equilibrium, i.e. the set of non-dominated strategies, with respect to ≺A,
induces the Aumann equilibrium.
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3.1.3. Generative relation for t-immune strategies. Consider a quality measure
t(s∗, s), which denotes the number of players who gain by switching from one
strategy to the other strategies [7]:

t(s∗, s) = card[i ∈ N − T, ui(sT , s
∗
−T ) ≤ ui(s

∗), sT 6= s∗T , card(T ) = t, T ⊆ N ],

where card[M ] represents the cardinality of the set M .

Definition 8. Let s∗, s ∈ S. We say the strategy s∗ is better than strategy s
with respect to t-immunity, and we write s∗ ≺T s, if the following inequality
holds:

t(s∗, s) < t(s, s∗).

Definition 9. The strategy profile s∗ ∈ S is called t-immune non-dominated,
if and only if there is no strategy s ∈ S, s 6= s∗ such that

s ≺T s∗.

The relation ≺T can be considered as the generative relation for t-immune
equilibrium, i.e. the set of non-dominated strategies, with respect to ≺T ,
induces the t-immune strategies.

3.2. Evolutionary detection method. For evolutionary equilibrium detec-
tion the Relational Evolutionary Equilibrium Detection Method (REED) is
used. REED is based on NSGA2 [3] with the only difference that the Pareto
domination relation has been replaced with the appropriate generative rela-
tion.

REED can be described as follows:

REED method

S1. Set t = 0;
S2. Randomly initialize a population P (0) of strategy profiles;

- Repeat until the maximum generation number is reached:
S3. Binary tournament selection and recombination using the simulated

binary crossover (SBX) operator for P (t)→ Q;
S4. Mutation on Q using real polynomial mutation → P ;
S5. Compute the rank of each population member in P (t)∪P with respect

to the generative relation (Nash, Aumman, t-immune). Order by rank
(P (t) ∪ P );

S6. Rank based selection for survival → P (t + 1);

4. Experiments

Parameter settings for the numerical experiments are presented in Table
1.
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Table 1. Parameter settings for the evolutionary algorithm
used for the numerical experiments

Parameter
Population size 100
Max. no. of generations 100
prob. of crossover 0.2
prob. of mutation 0.2

4.1. Experiment 1 - First-price sealed bid auction. In the first-price
sealed bid auction two players cast their bid independently. The value of the
bidding objects is v1 for the first player and v2 for the second one. The winner
is the highest bidder, who needs to pay his own bid. A simple agreement is
specified in case of a tie: if both have equal bids, the winner is the first bidder
(another variant is to randomly choose a winner).

The payoff functions are the following [11]:

u1(b1, b2) =

{
v1 − b1, if b1 ≥ b2,
0, otherwise.

u2(b1, b2) =

{
v2 − b2, if b2 > b1,
0, otherwise.

The game has several Nash equilibria as all v1 ≤ b∗1 = b∗2 ≤ v2 is a Nash
equilibrium of the game. Aumann equilibrium is a refinement of the Nash
equilibrium, therefore reduces the set of Nash equilibria. t-immunity gives a
perturbation of a game, describes a situation in which players act irrational.

Figure 1 shows the evolutionary detected t-immune, Nash and Aumann
equilibria of the game for v1 = 5 and v2 = 4. Figure 2 presents the same
equilibria for v1 = 3 and v2 = 5.

In both cases (v1 = 5,v2 = 4; v1 = 3, v2 = 5) Aumann equilibrium is
the most ”favorable” equilibrium: the strategy profile (4, 4) with the corre-
sponding payoff (1, 0) for the first case, and for the second one is (3, 3) with
the corresponding payoff (0, 2). t-immune equilibrium in both cases proves
the irrational behavior of the players: nobody has a positive gain, one of the
players has a payoff of 0, and the other one has a negative payoff.

4.2. Experiment 2 - Second-price sealed bid auction. In a second-price
auction game the winner needs to pay the second highest bid. In the two
player version of the model the value of the bidding objects is v1 for the first
player and v2 for the second one [11]:
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Figure 1. G1. Detected t-immune, Nash and Aumann payoffs
for the first price auction games, v1 = 5 and v2 = 4
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Figure 2. G1. Detected t-immune, Nash and Aumann payoffs
for the first price auction games,v1 = 3 and v2 = 5

u1(b1, b2) =

{
v1 − b2, if b1 ≥ b2,
0, otherwise.

u2(b1, b2) =

{
v2 − b1, if b2 > b1,
0, otherwise.
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Figure 3. G1. Detected t-immune, Nash and Aumann payoffs
for the second price auction games, v1 = 5 and v2 = 4

In the second-price sealed bid auction also exist multiple Nash equilibria
[11]: every strategy profile (b1, b2) = (v1, v2), (b1, b2) = (v1, 0), or (b1, b2) =
(v2, v1), etc.

Figure 3 presents the evolutionary detected t-immune, Nash and Aumann
equilibria of the game for v1 = 5 and v2 = 4. Figure 4 depicts the evolutionary
detected t-immune, Nash and Aumann equilibria for v1 = 3 and v2 = 5.

In this case the Aumann equilibrium refines the set of Nash equilibria: the
payoff (5, 0) is the unique Aumann payoff in the first case (v1 = 5 and v2 = 4)
and (3, 0), (0, 5) in the second case (v1 = 3 and v2 = 5). Regarding to the
t-immune equilibrium, we can notice the same results as in the case of the
first-price auction game: nobody has a positive gain, one of the players has a
payoff of 0, and the other one has a negative payoff (for both cases).

5. Conclusions

First price and second price auction games are analyzed using different
equilibrium concepts. Nash equilibrium is the standard equilibrium concept,
but we focus on a refinement of the Nash equilibrium: the Aumann (strong
Nash) equilibrium, and on the t-immune equilibrium, which can model irra-
tional behavior. An evolutionary algorithm, based on generative relations, is
used in order to detect these equilibria. Numerical experiments illustrate our
assumptions regarding the three studied equilibria.
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Figure 4. G1. Detected t-immune, Nash and Aumann payoffs
for the second price auction games, v1 = 3 and v2 = 5
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