
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

FAST ALGORITHM TO SPLIT AND RECONSTRUCT

TRIANGULAR MESHES

GÁBOR FÁBIÁN AND LAJOS GERGÓ

Abstract. In this paper we show a fast and efficient algorithm for cut
and split a triangular mesh by a plane, and fully reconstruct the cutting
surface. After the cut some of new triangular meshes will be created at
the same format as the input mesh. Our approach is not to use complex
data structures, just a vertex stream and an index stream keeping the
algorithm simple, and ensuring the wide range of usability. We suggest a
model for describe the boundary of a solid mesh to obtain advantages as a
consequence of geometric topology. If we suppose the streams satisfy some
reasonable restrictions, we find our algorithm has linear time complexity
including the precomputation, splitting section, reconstruction and the
decomposition.

1. Introduction

Triangular mesh operations play important rules in many applications of
3D graphics. Mesh cutting is often used in surgery simulation [10], physics-
based simulation [3], or computer aided design [13]. Mesh slicing is a robust
technique to take geometry information about the mesh [14], and to do topo-
logical modification [2]. Mesh cut and mesh slice algorithms generally do
not contain reconstruction elements, because it is not needed to reuse the cut
meshes in a new cut iteration. Mesh splitting algorithms are designed to do the
reconstruction steps, but these algorithms usually work with approximation,
and can be used only once for a mesh. Finding good-working mesh splitting
algorithm is common topic on game developer forums. The goal of this paper
to show a mesh splitting algorithm, that is fast enough to be used in real time
applications, and topologically established in the sense that any newly created
mesh has the same topological information as the original mesh before the cut.

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. I.3.5. [Computing Methodologies]: Computer

Graphics – Computational Geometry and Object Modeling .
Key words and phrases. mesh splitting, mesh slicing, topological reconstruction.

90

FAST ALGORITHM TO SPLIT AND RECONSTRUCT TRIANGULAR MESHES 91

2. Overview

There are some known algorithm to perform mesh slicing. The easiest way
is the trivial slicing [4], if every triangle is tested for intersection. There are
several similar methods working on STL files, more information can be found
in [15]. The modern approach is using the triangle’s z-coordinates to find
the intersecting edges instead of triangles. Z-coordinates are used in sweep
plane algorithms [9] and triangle grouping algorithms, see [12]. These algo-
rithms are often use hashtables, complex data structures to minimize number
of intersection tests. Mostly intersecting segments are computed first, after
that the disjoint segments have to be merged to a contour (or edge loop), as
can be seen in e.g. [7]. Our approach is different. Utilizing the topological
properties of the mesh, we can get the edge loop in a single step. We will
suppose that the mesh is a polygonal manifold (see [11] or [14]), and we use
face-based representation [6]. The topological information obtained from an
OBJ-like data structure, mesh is represented by a vertex stream, an index
stream, and a face-adjacency stream. Our streams are arrays, we use low level
operations to make the discussion and the implementation easier. After the
cut, we obtain a set of new meshes, which have all corresponding streams com-
pletely recovered. This can be interpreted as the cut operator is closed respect
to the mesh data structure. It means the new meshes have to be polygonal
manifolds, therefore it is not enough to get the edge loop(s), we need to re-
cover the split surface of the new meshes and decompose them into connected
components. These steps are missing from a common mesh slicing algorithm.
We attempted to design our algorithm enough fast for real time applications,
thus the adjacency-streams are created with the new meshes together. We did
not find this kind of approach in literature.

3. Definitions and Notations

Denote [a..b] the discrete interval from a to b, i.e. [a..b] := [a, b] ∩ N, and
let us define the vertex stream as V : [1..m] → R3, and the index stream
F : [1..n]→ [1..m]3 for some n,m ∈ N. Suppose that (V, F) altogether defines
the boundary of a solid mesh in the sense that any (i, j, k) index triple in F
defines a triangle plate 4(V (i), V (j), V (k)) on the boundary of the mesh. We
would like to follow the convention, that vertex indices of a triangle in F are
counter-clockwise (CCW) ordered, and the normal vector can be obtained by
the right hand rule. Let us introduce the notation for a triangle defined by
the face F (i) as

4F (i) := 4(V (F (i, 1)), V (F (i, 2)), V (F (i, 3)))

92 GÁBOR FÁBIÁN AND LAJOS GERGÓ

We assume the mesh is solid, so its boundary is a non-self-intersecting closed
surface, consequently any edge belongs exactly two triangles [5]. On the other
hand, we will suppose that a solid mesh does not contain cavities. It is not
necessary, but helps to keep the discussion much more simple. If (V, F) satisfies
all the conditions above, we will say (V, F) defines a solid mesh.

Since any cross-section of a closed surface is a closed curve on the cutting
plane, we have

Remark 1. If (V, F) defines a solid mesh, then any of its cross-section defined
by an arbitrary plane is a set of simple polygons.

Consider a plane given by a normal n and a vertex p. Preserving the
uniformity of discussion let us suppose, that there are no vertices in V lying
on the cutting plane, i.e.

∀j ∈ [1..m] : s(j) := 〈V (j)− p, n〉 6= 0

where 〈., .〉 denotes the dot product in R3. We will say, a plane is allowed, if it
satisfies the condition above. In the practice, if we have a not allowed plane,
we will translate it for a small ε > 0 in the normal direction. For example ε
can be defined as below:

ε := min

{
ε0,

1

2
min{|s(j)| : s(j) 6= 0 j ∈ [1..m]}

}
where ε0 is a small fixed positive, the maximal admissible tolerance. The new
allowed plane is given by the normal n, and a new vertex p′ := p + εn. The
triangles in F can be sorted to three sets, triangles completely above or below
the plane, and the intersecting triangles.

We obtain two important remarks by using allowed planes.

Remark 2. If P is allowed cutting plane, then every intersecting triangle has
exactly two edges, that have intersection with P .

Since (V, F) defines a solid mesh, the following is true.

Remark 3. If P is allowed plane, then every intersecting triangle has two
another intersecting adjacent lying on the intersecting edges. The 3rd adjacent
might be intersecting.

4. Generating adjacencies

To take advantages of our conditions we need to know the edge-adjacent
triangles for any triangle. We will define the adjacency stream, but first we
introduce the triadic addition operator to perform operations on triangles
easier.

u : {1, 2, 3} × N→ {1, 2, 3} : j u k := (j + k − 1 mod 3) + 1

FAST ALGORITHM TO SPLIT AND RECONSTRUCT TRIANGULAR MESHES 93

For example if j = 2 we have j u 0 = 2, j u 1 = 3, j u 2 = 1, j u 3 = 2, and
so on. Because our triangles are CCW, F (i, ju 1) is the first vertex of the ith
triangle after the jth vertex in CCW order.

Suppose that (V, F) defines a solid mesh, then we can assign to (V, F) the
A : [1..n]3 → [1..n] adjacency stream, where A(i, j) := k if and only if 4F (i)

adjacent to4F (k) along the edge F (i, j)F (i, j u 1). The assignment is unique
as a consequence of definition of solid mesh.

Our first task is to generate the A adjacency stream. It can be done offline
once and for all before the algorithm starts. We suggest to store the mesh as
(V, F,A), completed by the adjacencies. Now we show a linear time method,
to calculate A.

Construct an m×m matrix N containing zeros. If there is an edge between
the vertices V (i) and V (j) , then exactly two triangles join to this edge, e.g.
4F (k) and 4F (l) . Then let Nij := k and Nji := l or inversely Nij := l

and Nji := k. Then Nij 6= 0 if and only if there exists an edge V (i)V (j),
moreover Nij 6= 0 if and only if Nji 6= 0. Now from N we can construct A

easily. Consider the jth vertex of the ith face, and its edge F (i, j)F (i, j u 1).
There are exactly two triangles joining to this edge, 4F (i) and one another.
Consequently either i′ := NF (i,j),F (i,ju1) or i′′ := NF (i,ju1),F (i,j) is the adjacent
triangle’s index that we are looking for, and obviously the other element is i.
Then let

A(i, j) :=

{
i′ i′ 6= i

i′′ i′′ 6= i

It can be checked, this construction of A corresponds to the definition of
adjacency stream.

5. Sorting vertices and faces

Let us suppose that a (V, F,A) solid mesh is given with its face adjacencies,
and given an allowed plane P := {x ∈ R3 | 〈x− p, n〉 = 0}. As P is allowed
s(j) 6= 0 (j ∈ [1..m]) , where s(j) = 〈V (j) − p,n〉. We need to construct
(V1, F1, A1) and (V2, F2, A2) collections of vertex, index and adjacency streams,
that are obtained below and above the cutting plane, respectively. First we
sort the vertices into two disjoint sets. Put V (j) to V1 if it is below the plane,
else put it to V2. Besides we define the πV permutation. πV assigns the new
indices in V1 or V2 to old indices in V .

Consequently

πV (j) = k ⇔ (s(j) < 0 and V1(k) = j) or

(s(j) > 0 and V2(k) = j)

94 GÁBOR FÁBIÁN AND LAJOS GERGÓ

Next we need to sort the faces. Notice, that a face completely below or
above the cutting plane if and only if its all three vertices below or above the
plane. In all other cases the face is intersecting, this case will be discussed
later. Let us introduce the notation fi,j := F (i, j) . We sort the faces just like
the vertices, and we construct the permutation function πF like before, except
that its value is 0 for an intersecting face. So πF assigns the new face indices
in F1 or F2 to old indices in F . So we have

πF (i) =


0 s(fi,j) = 0

k (s(fi,j) < 0 and F1(k) = i) or

(s(fi,j) > 0 and F2(k) = i)

Notice, that πF can be used to decide if a triangle is intersecting or not.

Remark 4. πF (i) = 0 if and only if 4F (i) ∩ P 6= ∅.

Finally we need to sort the A adjacency stream ensuring that the newly
formed meshes can be cut again. Consider an arbitrary triangle from F1 or
F2. If every three adjacent triangles completely below or above the cutting
plane, our task is easily reindexing the faces by πF . Remark 4 follows that if
there is an intersecting triangle between the adjacencies, then A1 or A2 will
contains a 0. We obtain the following result.

Remark 5. Aα(i, k) = 0 (α = 1, 2) if and only if the ith triangle of Fα
adjacent to an intersecting triangle along the edge Vα(k)Vα(k u 1).

6. Reconstruction of cutting surface

We need to construct new triangles from the intersecting triangles. As we
have an allowed plane, any triangle has two intersecting edges, consequently
after the cut we obtain one new triangle and one quadrilateral. The quadri-
lateral need to be divided into two triangles. Resulting three triangles are not
intersecting, one triangle has the unique non-intersecting edge, two triangles
has a cutting edge (edge lying on the cutting plane).

Due to Remark 1 we know, the cross-section is set of simple polygons.
Consequently if we found an intersecting triangle 4F (i1) then there exist
4F (i2), . . .4F (iL) triangles such 4F (ij) is adjacent to 4F (ij+1) for j =
1, . . . , L − 1, and 4F (iL) adjacent to 4F (i1). Then we say {4F (ij)}Lj=1

triangles define a face loop. Consequently, the cross-section {4F (ij) ∩ P}Lj=1

is an edge loop on the plane P , i.e. an L-vertex polygon. We give an iterative
method to correctly finish the Vα, Fα, Aα streams (α ∈ {1, 2}) to obtain sets
of solid meshes with adjacencies. In every iteration one new vertex, three new
triangles will be created, and some of adjacencies will be set.

FAST ALGORITHM TO SPLIT AND RECONSTRUCT TRIANGULAR MESHES 95

We will follow some conventions, to give a comprehensive discussion about
the possible cases. Let us denote the points below and above the cutting
plane with domain 1 and domain 2, respectively. Now we working only with
intersecting triangles, therefore at least one vertex lies in domain 1, and at
least one another in domain 2. If the third vertex is in domain 1 then we
say the triangle faces upwards, else we say it faces downwards. We need
to examine two adjacent triangles at the same time to set its adjacencies
correctly, consequently there are four possible cases (Up-Up, Up-Down, Down-
Up, Down-Down).

Let us suppose that we are currently processing 4F (i), and the previous
triangle is processed aside from setting its adjacencies with the current triangle,
the non-intersecting edge and the cutting edges. Furthermore, we assume,
that preceding triangles in two steps or more distant from current one now
completely processed aside from the non-intersecting edge and the cutting
edges, except the first one, where the face loop starts. We will follow the next
three rules.

• rule 1: The intersecting edge between vertices fi,j and fi,ju1 processed
in the previous step, and fi,j always lying in the domain 2.
• rule 2: All of vertices fi,j , fi,ju1, fi,ju2 are the first vertex of exactly

one newly created triangle. The new triangle’s vertices are CCW or-
dered.
• rule 3: The last added triangle contains the unique non-intersecting

edge.

Figure 1. Rearrange vertices

6.1. Rearrange vertices. Figure 1 shows how can we label the vertices. No-
tice, rule 1 and rule 2 ensures that there are no way to label the vertices
differently. If the current triangle faces upwards, then the new vertex lies on
edge V (fi,j)V (fi,ju2). Obviously we need to add this new vertex to V1 and V2

as well. V1 and V2 contains m1 and m2 vertices up to know, in this step we

96 GÁBOR FÁBIÁN AND LAJOS GERGÓ

increase the counters, and add the new vertex.

x := V (fi,j)V (fi,ju2) ∩ P
m2 := m2 + 1

V2(m2) := x

m1 := m1 + 1

V1(m1) := x

Notice, that the previous triangle’s intersecting vertex already added to vertex
streams. These are V1(m1 − 1) and V2(m2 − 1), it can be seen in Figure 1.

Next, if the current triangle faces downwards, the only difference is that
the other edge is intersecting.

x := V (fi,ju1)V (fi,ju2) ∩ P
m2 := m2 + 1

V2(m2) := x

m1 := m1 + 1

V1(m1) := x

Figure 2. Rearrange faces

6.2. Rearrange faces. First let us suppose, that the current triangle faces
upwards. Then F2 gets one new triangle, F1 gets two triangles. For example
consider the top triangle. As shown in Figure 1, the triangle’s top vertex is
fi,j in the original F stream. Consequently in F2 its index is πV (fi,j), see
definition of πV . The other two vertices of the triangle is the last added, and
the previous one. These indices in V2 are m2 and m2 − 1. So we need to add
the triangle (πV (fi,j),m2−1,m2), because it is CCW ordered, and starts with
one of the original triangle’s vertices corresponding to rule 2. The other two
triangles’ vertex indices can be read from Figure 1.

n2 := n2 + 1

F2(n2) := (πV (fi,j), m2 − 1, m2)

FAST ALGORITHM TO SPLIT AND RECONSTRUCT TRIANGULAR MESHES 97

n1 := n1 + 2

F1(n1 − 1) := (πV (fi,ju1), m1, m1 − 1)

F1(n1) := (πV (fi,ju2), m1, πV (fi,ju1))

Notice triangles are added to F1 and F2 in order as rule 3 requires, i.e. the
last added triangle has the non-intersecting edge.

If the current triangle faces downwards, we have

n2 := n2 + 2

F2(n2 − 1) := (πV (fi,j), m2 − 1, m2)

F2(n2) := (πV (fi,ju2), πV (fi,j), m2)

n1 := n1 + 1

F1(n1) := (πV (fi,ju1), m1, m1 − 1)

Figure 3. Rearrange adjacencies

6.3. Rearrange adjacencies. Our next task is adjusting the adjacencies for
the newly created faces. Figure 2 shows the indices of the faces created in the
previous and the current step. In Figure 3 can we see the order of the edges,
rule 2 guarantees the uniqueness. The order of the vertices determines the
order of edges, that is important to know creating adjacency stream correctly,
see definition.

Suppose that the current and the preceding triangle faces upwards. Then
the top triangle’s 1st edge is adajcent to the previous top triangle’s 3rd edge.
Set the following adjacencies.

A2(n2, 1) := n2 − 1

A2(n2 − 1, 3) := n2

The 2nd edge of current top triangle is cutting edge, it will be discussed later.
The adjacency on 3rd edge is not defined yet, easy to verify, it will be set in
the next step. The bottom triangle’s adjacencies can be specified using Figure
2 and Figure 3.

A1(n1 − 1, 1) := n1

98 GÁBOR FÁBIÁN AND LAJOS GERGÓ

A1(n1, 2) := n1 − 1

A1(n1 − 1, 3) := n1 − 2

A1(n1 − 2, 1) := n1 − 1

The 2nd edge of (n1 − 1)th triangle is cutting edge. The 1st edge of n1th
triangle will be set in the next step. The 3rd edge of the n1th triangle is the
non-intersecting edge. It can be checked, the adjacencies discussed above will
not change even the preceding triangle faces downwards, thanks to our rules.
It is important to notice, every adjacencies that not defined yet will be set in
the next iteration, except the cutting edges. Let us define the cutting edge
adjacencies to 0.

A2(n2, 2), A1(n1 − 1, 2) := 0

In this case the non-intersecting edge is V (i, j u 1)V (i, j u 2), so the adjacent
triangle’s index is

A1(n1, 3) := πF (A(i, j u 1))

Notice, if the non-intersecting edge-adjacent is intersecting triangle, then
πF (A(i, j u 1)) = 0. We would like to preserve adjacency information, so we
set

πF (i) := n1

It also means, further the ith triangle is considered non-intersecting. Later,
when we will process the A(i, j u 1)th triangle, we will set the inverse of the
adjacency. We only do this change only if πF (A(i, j u 1)) 6= 0.

πF (A(i, j u 1)) 6= 0 ⇒ A1(πF (A(i, j u 1)), 3) := n1

If the current triangle faces downwards regardless to the previous triangle’s
direction we have the following adjacencies.

A1(n1, 3) := n1 − 1

A1(n1 − 1, 1) := n1

A2(n2 − 1, 3) := n2

A2(n2, 2) := n2 − 1

A2(n2 − 1, 1) := n2 − 2

A1(n1, 2), A2(n2 − 1, 2) := 0

A2(n2, 1) := πF (A(i, j u 2))

πF (A(i, j u 2)) 6= 0 ⇒ A2(πF (A(i, j u 2)), 1) := n2

πF (i) := n2

In terms of all possible cases we obtain the following remark.

Remark 6. Aα(i, 2) = 0 if and only if the ith triangle in Fα has cutting edge.

FAST ALGORITHM TO SPLIT AND RECONSTRUCT TRIANGULAR MESHES 99

6.4. Processing a face loop. Let us take attention only one face loop for
present our consideration. Typically we have more face loops after the cut,
this method can easily adapted for this case using the stream indices carefully.
Let us suppose, that we found the first intersecting triangle of a face loop,
4F (s). At this point we need to save the start index and the current size of

vertex and index streams, so let us save s,m
(s)
1 ,m

(s)
2 , n

(s)
1 , n

(s)
2 . First we find

the single intersecting edge going from domain 2 to domain 1. It will define
the first vertex that need to be added to V1 and V2. Now we need to find
the adjacent triangle along the unique intersecting edge, and start the vertex,
face and adjacency rearranging discussed in the preceding subsections. After
processing the ith triangle πF (i) 6= 0, therefore the next triangle is clearly
defined, as one of the intersecting edges now adjacent to a non-intersecting
triangle. Repeat rearranging until we find that the next adjacent triangle’s
index is s. Then we need to close the face loop. The last processed triangle is
4F (s), because its preceding adjacencies are undefined. The only difference
is, that we do not need to add a new vertex to vertex streams, because the

start points V1(m
(s)
1 + 1), V2(m

(s)
2 + 1) has been contained. For setting the

adjacencies we can use n
(s)
1 + 1, n

(s)
1 + 2, n

(s)
2 + 1, n

(s)
1 + 2 indices depending

on the triangle’s orientation. After the last step every vertex and face will
contained in Vα, Fα, and all adjacencies are properly defined in Aα, except the
cutting edges and non-intersecting edges.

7. Completing adjacencies, capping holes, dividing components

Finishing the adjacency streams we need to adjust the missing adjacencies.
Suppose that the length of a face loop started with 4F (s) is L. Since Remark
1, its intersection with P is an L-vertex simple polygon, that can be defined
by a sequence of its vertices.

Vα(m(s)
α), . . . , Vα(m(s)

α + L)

If we rotate these points to the P plane, we obtain a common polygon trian-
gulation problem. Rotation is can be done e.g. by a translation and change
of basis. So let us define e := V (s+ 1)− V (s), and the matrix R

R := (n,−n× e, e)

where × denotes the cross product. Then v′, the image on the plane of vertex
v can be computed by

v′ = R−1(v − e)

Simple polygons can be triangulated easily, many algorithms are known
to solve this problem, see e.g. [1]. After the triangulation is done, we get
an index stream like T : [1..L − 2] → [1..L]3, containing vertex triplets that

100 GÁBOR FÁBIÁN AND LAJOS GERGÓ

define the triangles. First we sort T , such that T (j) triangle contains the
jth edge of the polygon. We need to set the normals correctly, therefore we
calculate the normal of the triangle defined by T (j). If the triangle’s nor-
mal has the same direction as the plane’s normal, then let T1(j) := T (j) and
T2(j) := (T (j, 2), T (j, 1), T (j, 3)). If the normals have opposite directions then
let T1(j) = (T (j, 2), T (j, 1), T (j, 3)) and T2(j) = T (j). The acyclic permuta-
tion of vertex indices reverses the normal vector of the triangle, so after this
transformation the normal of any triangle in T1 has the same direction as the
plane’s normal, and the opposite in T2. Thereafter we only need to shift the
triangulation indices, and add it to the index stream.

Fα(nα + j) := Tα(j) +m(s)
α j = [1..L− 2]

Defining the corresponding adjacencies is quite simple. Notice, that any trian-
gle in Tα is adjacent to two other triangles in Tα, and one from Fα. Therefore
if we generate the adjacencies of Tα (see Section 4), as result we get the ATα
adjacency stream, this indices need to be shifted just like above. Furthermore
ATα(j, k) = 0 if and only if the kth edge of jth triangle has an adjacent from

Fα, and it is can not be other than the jth triangle after the n
(s)
α th triangle

of Fα, which has cutting edge, since Tα is sorted by cutting edges. We only
need to set these triangle pair adjacencies correctly and we are done with
reconstruction.

At this point for a given (V, F,A) solid mesh and a P plane we constructed
two other sets of solid meshes (V1, F1, A1), (V2, F2, A2) below and above the
plane, respectively. Finally we need to find the connected components. It
can be done easily knowing the adjacency streams. Consider a triangle and
mark it, thereafter go to an unmarked edge adjacent triangle, and mark it.
This must be repeated, while exists unmarked triangle. If there are no more
unmarked triangles, we found a connected component of a solid mesh set.
If every triangle has been marked in the set, we have found all connected
components.

8. Summary and Further Works

Our algorithm input is a solid mesh with adjacencies (V, F,A), and its
output a collection of solid meshes (Vi, Fi, Ai) at the same format. In the
previous sections we showed, that all new (Vi, Fi, Ai) triplet defines a solid
mesh indeed with all of its adjacencies. Our algorithm is designed for real
time applications, therefore let us deal with the time complexity. Let us
suppose, that |V | = m, |F | = n, and the any cross-section of the (V, F)
solid mesh contains p polygons at most. Le us assume that the ith polygon
has Li number of edges. We will examine the time complexity respect to the

FAST ALGORITHM TO SPLIT AND RECONSTRUCT TRIANGULAR MESHES 101

face count, because n 6= m for boundary of an arbitrary solid mesh. Sorting
vertices, faces, adjacencies takes linear time. In rearrange section we need to
find a face where a face loop starts, it can be done in linear time. Processing
a face loop depends on its edge count, consequently the ith face loop can
be processed in Li time. Capping this face loop with a common triangulation
algorithm takes Li logLi steps, sorting by cutting edges takes the same amount
of time. If all p face loops are processed, we need to look for connected
components. Decomposition is obviously linear, since we marked the loop
starter faces. The following table summarize the time complexity of different
parts of the algorithm.

Generating adjacencies n
Sorting vertices m
Sorting faces n
Sorting adjacencies n
Rearrange (V,F,A) pn+

∑p
i=1 Li

Capping holes 2
∑p

i=1 Li logLi
Decomposition pn

The characteristic number of loops in a cross-section p depends only on
the topological properties of the mesh, not on n,m. Furthermore if we con-
sider a common model, not some special counterexample, then we find that
any polygon of any cross section has relevantly lesser edges, than n. Hence
Li << n implies Li logLi << n for all i ∈ [1..p], so we can suppose that∑p

i=1 Li logLi < n. On the other hand, it is known, a simple polygon the-
oretically can be triangulated in linear time [5], but the common triangular
meshes used in 3D graphics satisfy our last condition. Consequently rearrange
and capping holes as well can be done less then 2pn steps, i.e. O(n) time. In
this sense our algorithm’s time complexity is linear respect to n, so it is an
asymptotically optimal solution of the problem [12].

The algorithm implemented and tested in MATLAB, we plan high-level
implementation in C# getting information about limitations of real time ap-
plication respect to n and p. We are motivated to modify our algorithm,
empower it to cut meshes with half-planes or triangles, and test it in physics-
based or medical simulations. In the future we would like to handle not only
vertices and indices, but texture coordinates as well, serving the requirements
of real time graphics software developers.

102 GÁBOR FÁBIÁN AND LAJOS GERGÓ

References

[1] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry - Al-
gorithms and Applications, Springer, 2008.

[2] M. Botsch, L. P. Kobbelt A Robust Procedure to Eliminate Degenerate Faces from Tri-
angle Meshes VMV 2001, Stuttgart, Germany, 2001.

[3] C. D. Bruyns, S. Senger, Interactive cutting of 3D surface meshes, Computers & Graphics,
2001.

[4] K. Chalasani, B. Grogan, An algorithm to slice 3D shapes for reconstruction in prototyp-
ing systems, ASME Computers in Engineering Conference, 1991.

[5] B. Chazelle, Triangulate a Simple Polygon in Linear Time Discrete & Computational
Geometry, 1991.

[6] S. Ghali. Introduction to Geometric Computing, Springer, 2008.
[7] X. Huang, Y. Yao, Q. Hu, Research on the Rapid Slicing Algorithm for NC Milling Based

on STL Model AsiaSim 2012 Communications in Computer and Information Science,
2012.

[8] J. M. Lee, Introduction to Topological Manifolds, Springer, 2011.
[9] S. McMains, C. Sequin, A coherent sweep plane slicer for layered manufacturing, Pro-

ceedings of the 5th ACM symposium on Solid modeling and applications - SMA, 1999.
[10] C. Mendoza, C. Laugier, Simulating Cutting in Surgery Applications using Haptics and

Finite Element Models, Proceedings of the IEEE Virtual Reality, 2003.
[11] R. Mukundan, Advanced Methods in Computer Graphics - With examples in OpenGL,

Springer, 2012.
[12] G. Rodrigo, V. Neri, M. Rodrigo, S. Murilo Slicing Triangle Meshes: An Asymptotically

Optimal Algorithm, Proceedings of the 14th International Conference on Computational
Science and Applications, 2014.

[13] E. Sifakis, K. G. Der, R. Fedkiw, Arbitrary Cutting of Deformable Tetrahedralized Ob-
jects, Eurographics/ ACM SIGGRAPH Symposium on Computer Animation, 2007.

[14] M. Szilvási-Nagy, I. Szabó, A Slicing Algorithm for Triangular Meshes, 6th International
Conference on Applied Informatics, Eger, Hungary, 2004.

[15] K. Tata, G. Fadel, A. Bagchi, N. Aziz Efficient Slicing for Layered Manufacturing Rapid
Prototyping Journal vol. 4, no. 4, 1998.

Eötvös Loránd University, Faculty of Informatics, Department of Numeri-
cal Analysis, 1117 Budapest, Pázmány Péter sétány 1/C

E-mail address: robagnaibaf@gmail.com, gergo@inf.elte.hu

