
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

EVALUATING COMMENT-TO-AST ASSIGNMENT

HEURISTICS FOR C++ PROGRAMS

TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

Abstract. Comments are integral part of the source code of software.
They preserve the intentions of the developers, document constraints and
highlight implementation details. Good comments help us to understand
the codebase and make maintenance easier. Most of the software tools
ignore comments because they take no part in code generation. However,
there are cases when comments should be taken into account: refactoring
tools need to move code along with their comments and code comprehen-
sion tools need to show comments related to a given context. Since these
tools are working on the abstract syntax tree (AST), comments should be
assigned to the appropriate AST nodes.

Assigning comments to AST nodes is a non-straightforward task. Most
methods use heuristics that place the comment to the proper AST node.
This article improves existing heuristics. We identify corresponding AST
nodes by distance and type. We also manage to contract consecutive con-
nected comments. Macro-related comments are handled in a special way.
We quantify the correctness of comment assignments and evaluate the dif-
ferent solutions on open source C++ projects comparing our method with
existing tools. Our method may be useful for other programming languages
with respective modifications.

1. Introduction

Programming languages offer comments, that allows the programmer to
store arbitrary textual data at almost any point of the source code. Develop-
ers may use comments to store information that can not be expressed using
the constructs of the programming language: intentions behind the code, pre-
conditions or other constraints, and explanation of the implementation details.

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N15, 68N20.
1998 CR Categories and Descriptors. D.1.0 [Software]: Programming Techniques – Gen-

eral ; D.3.3 [Software]: Programming Languages – Language Constructs and Features D.2.7
[Software]: Programming Languages – Distribution, Maintenance, and Enhancement – Doc-
umentation.

Key words and phrases. Source Code Comments, Abstract Syntax Tree.

75

76 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

Carefully crafted comments help future developers to understand the codebase
and make maintenance easier.

Comments are not necessarily structured textual data that most software
tools skip during the processing of source code because they take no part
in code generation. However, there are tools that are required to deal with
comments. Refactoring tools are used to change the source code to increase
maintainability, without changing the observable behaviour of the program.
This sometimes needs moving segments of the source code to different location.
Good refactoring tools not only move the code, but also move referring com-
ments along. Code comprehension tools help users to understand and maintain
complex systems. As comments carry important supplementary information,
code comprehension systems benefit of understanding where a comment be-
longs and display them for the users at the appropriate places [12].

The compiler processes the source code in several steps. First, the char-
acter sequence of the source code is transformed to tokens by the lexer. In
the optional next step the preprocessor (in case of languages like C or C++)
resolves includes, macros and other preprocessor directives. Then the parser
component of the compiler coverts the preprocessed token sequence into a tree
that describes the structure of the code. This tree is called abstract syntax
tree, or AST for short. The AST is the canonical representation of the source
code. Most program analysis tools work on the AST of the program because
they are interested in the structure of the code and not the formatting details
(like indentation, spacing, etc.) [11]. In a later step the semantic analyzer
decorates the AST with various semantical information.

Refactoring and code comprehension tools also work with the AST. To
handle comments, these tools first must map the comments to the AST [14].
For example, using a comment-to-AST mapping, refactoring tools can move
the AST nodes and the comments describing them together. As an example,
Eclipse CDT, one of the most widespread tools for C++ coding with refactor-
ing support [1], work in this way. Sommerlad et al. present the mapping used
by Eclipse CDT in [19].

In this article we examine the comment-to-AST mapping problem in C++
from a code comprehension view: whereas refactoring tools usually need to
find only a single anchor point for comments so that source code operations
(e.g. moving) keep code and the comments referring to a code together, our
goal is to find all relevant AST nodes for a given comment.

We will use the open source Clang compiler of the LLVM toolchain to
analyze the C++ source code. We chose Clang because it has a modular
well-documented architecture, and it can be used as a library to create tools.
[18].

COMMENT-TO-AST ASSIGNMENT FOR C++ 77

This paper is organized as follows: in Section 2 we present a brief overview
about comments in general and in the C++ programming language. In Section
3 we classify the comments into different categories. In Section 4 we introduce
our algorithm to map comments to AST nodes. In Section 5 we elaborate on
some important implementation details. Finally, in Section 6 we evaluate our
method. Our paper concludes in Section 7.

2. Comments in the C++ language

2.1. Comment notations. In the C programming language [16] comments
start with /* and end with */. These comments are usually referred as block
comments or C-style comments. Block comments are sometimes called multi-
line comments, because they can spread over multiple lines. C99 [7] and C++
[20] adds another notation for comments: everything between // and the end
of the line is also threated as comment. We will refer them as line comments
throughout the article.

By the standard, block comments can not be nested, however some com-
piler extensions allow this. In the rest of the paper we suppose that comments
are compliant to the standard. Block and line comments can contain each
other, in this case the content is formed as the union of the contents of the
two components.

Throughout the article we call block or line comments that have content
before and/or after them in the same line inline comments.

Line comments and block comments are the two kind of comments in most
programming languages, therefore some of our results are applicable to other
languages as well. Some programming languages lack the one or the other.

Preprocessor conditional statements are sometimes also used for comment-
ing: lines between #if 0 and the following #endif are ignored by the compiler
completely. Contrary to block comments, preprocessor conditional statements
can be nested, this makes this construction ideal for commenting out large
blocks of code. Other uses of this commenting technique is rare.

2.2. Comments during the compilation of C++ programs. From the
compiler point of view, the C++ standard specifies that during the 3rd phase
of the translation, where the source file is decomposed into preprocessing to-
kens, “each comment is replaced by one space character” [8]. This allows the
compiler to skip any comment during this very early phase, usually in the
lexer component. Newer compilers, however, tend to retain comments during
compilation. This allows compiler writers to emit more precise error location
information that contains not only a line number but a column number as
well.

78 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

3. Categorization of comments

As a first step, we group the comments into different categories. We ob-
served that the two main types of comments are local comments that describe
neighbouring entities and separator comments that describe subsequent code
until the next separator comment. Additionally, we also distinguish code com-
ments, which contain source code, and the mandatory copyright comments,
which hold legal information about the file.

3.1. Local comments. Local comments describe neighbouring entities of the
source code. Most comments in the examined projects are local comments.

As it can be seen in Figure 1, local comments come in various forms.
They may appear before or after the referred content, they may be block or
line comments, they may stand either in the same line of the referred content
or in an adjacent line. Also, they may refer to multiple statements right

// local comment for (1-a)

// the main function (1-b)

int main() {

//local comment for variable x1 (2)

int x1;

/* still a local comment */ (3)

int x2;

int y; //local comment for variable y (4)

int i1 /* inline */; int i2; (5)

int z1; int z2; //last letter in (6-a)

//the alphabet (6-b)

//swap with helper variable (7)

int tmp = z2;

int z2 = z1;

/}

Figure 1. Examples for local comments. (1), (2) and (3) are
preceding line and block comments on their own lines. (4) is
post comment, (5) is an inline comment, (6) is a post comment
for multiple statements, also spanning multiple lines, (7) is a
group comment for the three statements below.

COMMENT-TO-AST ASSIGNMENT FOR C++ 79

before or right after them. In this section we provide heuristics to describe
the characteristics of a local comment.

Our first notice is that block and line comments can be handled the same
way as they do not behave differently.

Our next observation is that consecutive line comments (or block com-
ments that are used like line comments) should be handled as a single comment
if

• they are located in adjacent lines
• they start in the same column
• they have only whitespace characters in between

In Figure 1 we threat comments both (1-a) and (1-b) and (6-a) and (6-b)
as a single comment.

We call local comments standing on lines of their own group comments
if an empty line or a line ending with a block opening symbol ({) precedes
them. Group comments refer to every statement following it, until the end of
the current semantic block or an empty line.

Local comments that stand alone in a line but are not group comments
refer to all AST nodes of the next line.

Comments standing the end of a line refer to preceding AST nodes. In
Figure 1 (4) and (6) fall into this category. If the line contains multiple
AST nodes (e.g. statements), there is no easy way to determine whether the
comment refers to the whole line or only the last AST node. We applied the
following guess: if there is more than one whitespace between the comment and
the last non-whitespace character then it refers to the whole line, otherwise it
refers to the last AST node only.

Comments in the middle of the line refer either to the AST node before or
after them. We examine the whitespace before and after the inline comment
and assign to the AST node on the side that is closer.

3.2. Documentation comments. A special case of local comments are doc-
umentation comments. Documentation comments document functionality of
classes, functions and other names entities. The primary purpose of documen-
tation comments is to provide information about the external interface of a
function and describe its functional and non-functional behaviour.

Documentation comments are marked using a special notation: they usu-
ally begin with /** or ///. External tools like Doxygen [22] parse these
comments to generate a cross-referenced documentation of a project.

Although Doxygen allows comments for an entity to be written far from
the described entity, this feature is rarely used [2]. Usually documentation
comments are placed right before the explained function or class declaration.
As this is sometimes inconvenient for member variables with short name and

80 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

/** (1)

* Documentation for class X

*/

class X {

int x2; ///< special syntax for postfix commnents (2)

};

/*! \class X

Also documentation for class X (3)

*/

Figure 2. Documentation comments in the source code.

comment, we may use a marked line comment (e.g. starting with ///<) after
the entity it documents.

Doxygen comments are well studied and existing parsing solutions can be
used to map the comment to the AST node it documents. The Doxygen tool
itself is the most complete implementation, recognizing several widespread for-
mats, like the standard notation of Java [9] and C# documentation comments
[10]. The C++ language has no recommended documentation style but Java
and C# style comments are widely used along with own the comment notation
of the Qt Framework ([5]).

Because of the aforementioned explicit notations, placing documentation
comments in the AST is a well-defined problem, the heuristics we used for local
comments are generally not needed. Whether a documentation comments refer
to the following AST node and/or the previous AST node is encoded in its
syntax. Inline documentation comments are not supported.

As a recent addition, Clang also implements documentation comment pars-
ing [15]. Their goal is to emit warnings during compilation if the documen-
tation is not consistent with the documented entity. For example if in a
documentation comment we refer to a function parameter that does not exist
in the function itself we get a warning (if the -Wdocumentation compile flag
is on).

3.3. Separator comments. The source code is often organized by hierar-
chies that the programming language cannot express. For example if we have
a class, we may want to express grouping on the methods. One way of this
grouping is using comments to separate groups of code. An example is shown
in Figure 3. We call these comments separator comments.

Some comments are marked explicitly as separator comments, for example
comments centered by dashes or little boxes with some content centered inside.
(Examples are (1) and (4) in Figure 3). We recognized them by the excess

COMMENT-TO-AST ASSIGNMENT FOR C++ 81

class point

{

[...]

public:

/******************************/ (1)

/* Getters */

/******************************/

//non-const getters (2)

int get_x();

int get_y();

//constant getters (3)

int get_x() const;

int get_y() const;

/******************************/ (4)

/* Setters */

/******************************/

void set_x(int x);

void set_y(int y);

};

typedef XPtr *X;

Figure 3. Separator comments with multiple levels. (1) and
(4) are section separator comments, (2) and (3) are simple sep-
arators. Note that the typedef in the last line is outside the
class scope and therefore (4) does not refer to it.

repetition of a single character and call them section separator comments. It
is uncommon, but section separators may have multiple levels: e.g. different
boxes for different levels. The recognition of different levels of section separator
comments are project-specific expansions of our model.

We call simple separator comments the comments we recognize as separa-
tors because of the surrounding empty lines around them. More precisely, we
assume that a comment is a simple separator comment if it is followed by an
empty line – because if the comment would refer to the next statement only
there would be no reason for the empty line – and is not a section separator

82 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

comment nor a documentation comment. All simple separator comments have
the same level, which is greater than the level of the section separators.

3.4. Code comments. People often comment out legacy or not yet functional
code. Although it is ofter considered to be a bad practise, we can encounter
it in almost all examined projects.

One approach for distinguishing code comments from regular comment
types is to try to parse them as source code and if we succeed it was a code
comment. However, examples show that this is a too strict restriction – code
comments may contain invalid code – e.g. because the commented code was
never working or it may depend on code in another code comment to be valid.

Therefore, most comment analyzer tools take the approach of defining
heuristics when a code should be considered code comment. Our algorithm
uses this approach. We use the following heuristics, that we designed for
recognizing code that look like C++ language.

We consider a comment to be a code comment suspect if either

• a comment ends with a block opening or closing symbol or a semicolon
• a valid preprocessor directive if found either at the beginning in of a

line comment or at the first column of a line of a multiline comment.

This yields a high number of false positives e.g. it finds comments ending
with LATEX documentation or multiline comments accidentally breaking at a
documented preprocessor directive.

To reduce false positives we use the fact that three consecutive identifiers
are rare in C++ source1 but quite common in written text, so code comment
suspects containing three consecutive identifiers will be threated as regular
comments.

Code comments does not give information about the surrounding AST
nodes, but we know that the code should be at the location of the comment,
therefore we assign them to the encapsulating AST node.

3.5. Copyright comments. Due to legal requirements, in most projects ev-
ery file begins with a copyright comment that provides a brief description on
what the file does, a short extract of the license with a pointer to the full one
and some additional metadata [2]. These comments refer to the whole file.

1Three consecutive identifiers are only possible to write in C++ code because of macro
expansion. Considering possibly defined macros may yield even better results. Two consec-
utive identifiers are possible in any declarations, e.g. Foo bar;.

COMMENT-TO-AST ASSIGNMENT FOR C++ 83

4. Comment-to-AST mapping algorithm

In this section we describe our algorithm that maps the comments to the
relevant AST nodes using the comment categories described in the previous
section.

4.1. Collect comments and group them together if needed. First we
extract comments with location information from the source code. We also
contract consecutive comments to a single comment using the algorithm in
Section 3.1.

4.2. Analyze comments and measure the surrounding whitespaces.
Next we analyze the comments. As the first step, if it contains three or more
successive special characters (*, -) we mark it as a section separator comment.

Otherwise we check if it is a documentation comment or it matches our
code comment heuristics described in Section 3.4.

Next we count whitespaces around the comment: we count all whitespaces
before and after the comment. We count newline characters separately to know
the number of preceding and following empty lines. We use these numbers to
decide whether it refers to the preceding or the following nodes for a single
node, the whole line or until the next section comment having the level greater
or equal to the level of the current section comment.

• Case 1: The comment on its own line(s). If it has an empty line after,
we threat it as simple separator comment. If it has no empty line after,
but an empty line before, it is a local group comment. Otherwise it is
a local comment that is expanded for all the AST nodes of the next
line.
• Case 2: The comment is in the end of the line. It refers to the preceding

AST node. Whether a single node or the whole line is described in
Section 3.1
• Case 3: The comment is inline. It refers to the nearest single AST

node in the same line.

4.3. Assign comments to the AST. Our final step is to assign the com-
ments to the AST nodes. We use breadth-first search to traverse the AST of
the program. To take the structure of the code into account, for each comment
we only consider the children of the deepest AST node that completely encap-
sulates our comment. From these child nodes we select the ones preceding or
succeeding our comment (depending on the result of the analysis described in
Section 4.2). We filter the selected AST nodes based on the category of the
comment.

84 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

• For section comments we keep all nodes until the next section com-
ment.
• For group comments we keep all nodes until the next empty line.
• For comments referring to a whole line we keep all nodes located in

the current line.
• For other comments we keep the nearest match only.

This algorithm yields the relevant AST nodes for each comment.

4.4. Comments for macros and preprocessor symbols. The AST of
the program contains neither the preprocessor directives nor macros, so our
algorithm can not associate comments with them.

For preprocessor directives we introduce virtual AST nodes in the cor-
rect enclosing context. This way these virtual AST nodes get matched when
looking for an AST node for a nearby comment.

For macros our algorithm works almost correctly as the comments can be
associated with the AST nodes generated by the macro expansion. The only
problem is when the expansion of a macro yields two or more sibling AST
nodes and the algorithm associates the comment with only one of them. Our
algorithm can cut macro expansions in half when it keeps only the first node
while filtering the possible result list. Therefore we modify our algorithm to
include the whole expansion.

5. Implementation

We implemented our comment-to-AST mapping algorithm using the Clang
library as our backend for analyzing C++ source code and a plugin created
for our code comprehension tool as the frontend to visualize our results.

5.1. Prerequisites. Although it is a bad programming practise to mix tabs
and spaces but as open source projects are edited by a number of authors and
the inconsistency is hidden by modern editors, we often found both indenta-
tion characters used in files. To ensure that our contraction algorithm works
correctly, one should convert tabs to spaces using the correct project-specific
tab-space ratio. Unix-based systems contain the expand utility for this task
[6].

5.2. Backend. We built our backend based on Clang, the C/C++/Objective
C compiler of the LLVM toolchain. We used Clang for extracting comments
from the source code and we mapped the comments to the AST provided by
Clang [17].

The Clang AST module has a RawComment structure that is suitable for
representing comments. A vector of RawComment objects is stored along with
the AST context of Clang in form of a RawCommentList object. Although its

COMMENT-TO-AST ASSIGNMENT FOR C++ 85

name suggests otherwise, the RawCommentList object stores only RawComment

objects of the documentation comments, as the Clang compiler currently
parses the documentation comment only. Although there is a switch to parse
all comments as documentation comments but RawCommentList also does
merging of comments (which we want to control explicitly) and parsing the
comments (which is not pointless for non-documentation comments). There-
fore we patched the RawCommentList class of Clang to store every comment
untouched as a RawComment object.

Using this complete list of RawComment objects as a starting point we im-
plemented the algorithm described in Section 4. After our algorithm calculates
the comment groups and their mapping to the AST we store the comments,
comment groups and the AST mapping into a database.

5.3. Frontend. We visualized the results using the frontend of the code com-
prehension tool developed at Eötvös Loránd University in cooperation with
Ericsson Hungary. We created a plugin that interactively highlights the whole
comment group and the associated AST nodes upon clicking a comment. A
screenshot of the tool highlighting a comment and the AST node the comment
refers to can be seen in Figure 4.

Figure 4. A screenshot of the visualization interface. The
“fixme” comment on the right is selected and the AST node it
refers to is highlighted on the left.

6. Evaluation

We evaluated our heuristics in the following way: we selected sample files
from five open source projects, four implemented in C++ and one in pure C.
A group of three C++ experts reviewed these projects with the help of the

86 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

frontend program presented in Section 5.3. In every comment occurrence the
group of experts made a consensus decision whether the assignment suggested
by our algorithm was correct.

The following five open source projects were evaluated:
TinyXML-2 [21] – TinyXML version 2 is a small XML parser library for

C++. As it contains only three source files, we were able to analyze the whole
project.

Xerces-C++ [13] – Xerces-C++ is another XML parser library for C++,
with more complete XML support (e.g. schemas, XPath queries etc.).

Clang 3.4 [18] – We analyzed some files of the Clang compiler itself. We
selected the files that extract comments from the C++ source.

GTest 1.7.0 [3] – Google Test is a unit testing library for C++. We
analyzed its main header file and two additional source files.

libgit2 0.20 [4] – libgit2 is a new reimplementation Git as a portable
C library. We were interested if our methods apply to the very similar C
programming language.

Project File Name LOC DC DCC C CC Percentage

Tinyxml2 tinyxml2.h 2075 159 159 113 110 97%
Tinyxml2 tinyxml2.cpp 2187 66 63 95%
Tinyxml2 xmltest.cpp 1427 4 4 51 33 65%
Xerces-C AbstractDOMParser.cpp 1778 79 66 84%
Xerces-C DefaultHandler.hpp 807 49 49 4 3 80%
Xerces-C ValueStackOf.hpp 156 14 13 93%
Clang Stmt.h 2122 149 147 125 122 98%
Clang Preprocessor.cpp 829 6 6 103 101 98%
Clang RawCommentList.cpp 265 1 1 15 15 100%
GTest gtest.h 2291 322 302 94%
GTest gtest-filepath.cc 382 39 37 95%
GTest gtest-messaging.h 250 31 30 97%
libgit2 blob.h 227 14 14 1 1 100%
libgit2 commit.c 350 9 8 89%
libgit2 tree.c 952 1 28 28 100%

Table 1. Evaluation results. Legend: LOC – lines of code,
DC – number of documentation comments, DCC – number of
correctly assigned documentation comments, C – number of
non-documentation comments, CC – number of correctly as-
signed non-documentation comments, Percentage – percentage
of correctly assigned non-documentation comments

COMMENT-TO-AST ASSIGNMENT FOR C++ 87

Table 1 shows the results of our evaluation. Our comment-to-AST match-
ing algorithm matches most of the comments to the referred AST nodes prop-
erly in open source programs. We found that each comment category defined
in Section 3 appears in the inspected source code. In the examined Clang files
we could see that our multi-level section comment recognition works correctly
as well (e.g. between lines 1420 and 1509 of Stmt.h).

Most of the errors were due to the fact that local group comments standing
at the beginning of a block sometimes refer to the whole block. This was also
the cause of the high error rate in xmltest.cpp: each test case had its own
block, and the summary of the test case was the first comment in this block.
While these comments were referring to the whole test case, our algorithm
categorized these comments as local group comments and assigned only the
AST nodes until the first empty line, not the whole block of the test case.
Assigning local group comments at the beginning of a block to the whole
block would not work either: we found even more cases where the comment
really referred to the first group only and not the whole block. Moreover, local
group comments sometimes refer to the next line only, especially in member
variable declaration lists.

Another common source of the mistakes (especially in Xerces-C++ and
GTest) was that we could not correctly determine where a code section started
by a section comment terminates. People often use section comments that refer
only to some of the following AST nodes. A human reader can automatically
“close” those comments upon seeing unrelated code, but the computer only
sees the beginning section comment, and as there is no notation for closing
a section comments, our algorithm assigns the section comment to unrelated

(Stmt.h - member functions of the CompoundStmt class)

00627 // Iterators

00628 child_range children() {

00629 return child_range(Body, Body + CompoundStmtBits.NumStmts);

00630 }

00631

00632 const_child_range children() const {

00633 return child_range(Body, Body + CompoundStmtBits.NumStmts);

00634 }

Figure 5. Incorrect placement of comment due to the lack of
semantic information of its content. The human reader recog-
nizes the plural form and that both methods return iterators
and assigns the comment for both methods.

88 TAMÁS CSÉRI AND ZOLTÁN PORKOLÁB

parts of the AST as well. We even found simple section comments being used
in a nested way.

There were various other reasons for the incorrect assignments as well. For
example, Figure 5 shows a comment that our algorithm interprets as a local
comment for a function, but it clearly refers to both functions. We found
similar erroneous usage of documentation comments as well.

The errors described above can only be recognized by understanding the
meaning of the comment. Our comment-to-AST mapping uses only the place-
ment information of the comment which allowed us to create a well-defined
deterministic algorithm. However, due to the unstructured nature of these
comments, sometimes more advanced techniques are needed for proper com-
ment handling. By analyzing the contents of the comments we might be able
to improve the percentage of correctly mapped comments.

Extending coding style guides with exact comment positioning and for-
matting instructions and adherence to these stricter commenting conventions
would help future programs to be processed more accurately. The program-
mers might adopt to the stricter standards if they see that they get better
refactoring results and code comprehension in return.

Finally, we must also note, that the coding guidelines of open source pro-
grams are very strict and low quality code is often rejected during code review.
In companies without strict authoring policies we expect lower comment match
percentage.

7. Conclusion

Comments preserve the intentions of the developers, document constraints
and highlight implementation details and therefore they are a crucial key for
understanding programs. While many software tools ignore comments, there
are use cases where the proper assignment of comments to the abstract syntax
tree is essential. In this paper first we categorized comments then we provided
an algorithm based on heuristics that maps each kind of comment to the proper
AST node(s) they refer to. We also addressed problems specific to the C++
language like comments for macros and other preprocessor-related elements.

To validate our algorithm, we created an implementation to assign com-
ments to AST nodes using the Clang open source C++ compiler and a graph-
ical frontend to show the resulted mapping. We evaluated our algorithm on
different open source C++ codebases. We experienced that our heuristics were
mostly correct. By analyzing our mistakes we noticed that positional informa-
tion is not enough to correctly assign the comments to the AST nodes. Our
further research will target these situations analyzing semantic connections
between comment text and program elements.

COMMENT-TO-AST ASSIGNMENT FOR C++ 89

References

[1] Eclipse CDT (C/C++ development tooling).
http://www.eclipse.org/cdt/.

[2] Google C++ style guide.
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml.

[3] Google C++ testing framework.
https://code.google.com/p/googletest.

[4] libgit2 – a portable, pure C implementation of the Git core methods.
http://libgit2.github.com.

[5] QDoc manual.
http://doc-snapshot.qt-project.org/qdoc/qdoc-index.html.

[6] expand: convert tabs to spaces. In Commands & Utilities Reference, The Single UNIX
Specification, Issue 7. The Open Group.

[7] ISO/IEC 9899:1999 – Programming languages – C. ISO, Geneva, Switzerland, 1999.
[8] ISO/IEC 14882:2011 – Programming Language C++. ISO, Geneva, Switzerland, 2003.
[9] Javadoc 5.0 tool.

http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/index.html, 2010.
[10] C# language specification 5.0.

http://www.microsoft.com/en-us/download/details.aspx?id=7029, 2012.
[11] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley, 1977.
[12] T. Cséri, Z. Szügyi, and Z. Porkoláb. Rule-based assignment of comments to AST nodes

in C++ programs. In Proceedings of the Fifth Balkan Conference in Informatics, BCI
’12, pages 291–294, New York, NY, USA, 2012. ACM.

[13] A. S. Foundation. Xerces-c++ xml parser. http://xerces.apache.org/xerces-c/.
[14] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
[15] D. Gribenko. Parsing documentation comments in Clang. LLVM Developers’ Meeting,

2012.
[16] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, 1978.
[17] M. Klimek. The Clang AST – a tutorial. LLVM Developers’ Meeting, 2012.
[18] C. Lattner et al. Clang: a C language family frontend for LLVM.

http://clang.llvm.org/.
[19] P. Sommerlad, G. Zgraggen, T. Corbat, and L. Felber. Retaining comments when refac-

toring code. In Companion to the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications, OOPSLA Companion ’08, pages 653–
662, New York, NY, USA, 2008. ACM.

[20] B. Stroustrup. The C++ Programming Language: Special Edition. Addison-Wesley,
Reading, MA, 2000.

[21] L. Thomason. TinyXML-2.
http://www.grinninglizard.com/tinyxml2/.

[22] D. van Heesch. Doxygen – source code documentation generator tool.
http://www.stack.nl/~dimitri/doxygen/.

The URLs were retrieved at: 1 May 2014.

Department of Programming Languages and Compilers, Faculty of Infor-
matics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest,
Hungary

E-mail address: {cseri,gsd}@caesar.elte.hu

