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ENDGAME STRATEGIES AND SIMULATION RESULTS FOR

THE LIAR’S DICE GAME

PÉTER BURCSI AND GÁBOR NAGY

Abstract. The Liar’s dice is a dice game where deception and the ability
to detect the opponents’ deception play a crucial role. We analyze this
game from different perspectives. First, two-player endgames are analyzed
and optimal strategies are calculated. Second, using simulation methods,
we examine heuristic playing strategies based on their success against each
other. In the simulations, we consider mixed strategies that depend on
parameters, populate a parameter space with strategies and perform evo-
lutionary simulation on the strategy population.

1. Introduction

The Liar’s Dice [5] game is a dice game where lying and detecting lies is
the most important element of the play. It is a thrilling game, interesting from
both game theoretical and psychological perspective. There are several known
variants, we briefly describe the game that we will consider in the rest of the
paper. A continuous variant has been analyzed in [2, 3].

The game can be played by an arbitrary number P ≥ 2 of players. Initially,
all players have D ≥ 1 dice, and the game proceeds in rounds. In each round,
everyone rolls their dice secretly – yielding a hand. Then, the player whose
turn it is to start raises a bid. After that, every player raises the bid until
someone calls a “challenge” (or doubts the bid). The hands are shown and
it is counted if the challenge is successful. If the last player to bid fullfils the
challenge then he wins the round, otherwise the player who called the challenge
wins the round. Accounting is done after that – meaning that some players
lose some or all of their dice (the latter ones are out). The players still in play
start a new round with the remaining dice with the starting player position
moving clockwise. The rounds continue until only one player remains who is
declared the winner.
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The bids are of the form: (count – value), e.g. two threes (two of 3),
three fives (three of 5) etc. Two bids are compared as follows: if neither
value is 6, then they are compared lexicographically, first by count, then by
value. If a value is six, it behaves as if it were twice the count of zeroes. We
list the first few valid bids as (count, value) pairs: (1, 1), (1, 2), (1, 3), (1, 4),
(1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), . . . , (3, 5), (2, 6), (4, 1), . . .,
(5, 5), (3, 6), (6, 1), . . .. A bid is checked in case of a challenge the following
way: if the value field is 6, then the bid is successful if and only if there are
at least as many sixes in the hands (altogether) as the bid claimed. If another
value is in the bid, then also the 6s are counted as wildcards (jokers), adding
to the sum. Let d be the difference of the actual count and the count in the
bid. If d > 0 then the challenger loses d dice. If d < 0, then the challenged
player loses |d| dice. If d = 0, then all but the challenged player lose 1 die.

Example 1.1. A two-player example gameplay between Alice and Bob could
proceed as follows. Initially they have 2 dice each. In the first round they roll,
Alice gets two 5s, Bob gets a 3 and a 6. Alice bids (1, 5), then Bob bids (1, 6),
then Alice bids (2, 5) which Bob challenges. The challenge fails because there
are really two fives and a joker. The actual count is 3, one more than the
challenged bid, so Bob loses a die. In the next round, Alice rolls a 3 and a 4,
Bob rolls a 2. It’s Bob’s turn to bid first: he bids (1, 2), then Alice bids (1, 4)
then Bob bids (2, 2) which is challenged and won by Alice. Bob loses his last
die, Alice wins the game.

In this paper we analyze two scenarios of the game. The first analysis is
a game-theoretical analysis of the endgame when two players match up with
one die each. The earlier parts of the game are extremely complex to ana-
lyze. Therefore we chose a largely simplified model. We propose a strategy
which encompasses some of the psychological aspects of the game. In a long
gameplay, the players may be influenced by the observed behavior of their
neighbors. If our right neighbor is known to be a notorious liar (by the game
history), it makes challenging slightly more preferable. Also, if our left neigh-
bor is a bad challenger, this makes raising the bid preferable. We introduce
parameters which determine how bravely a player is expected to react to such
observed behavior of his neighbors.

The paper is built up as follows. In Section 2, the endgame analysis is
presented for general dice with n faces without joker, and for dice with 3 faces
with joker. In Section 3, the strategy used in the simulation is described. In
Section 4, the evolutionary simulation method and the simulation results are
shown.
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2. Two-player endgame with one die each

Let us consider the case when both players have an n-faced die and there
is no joker.

Theorem 2.1. Player II’s probability of win under optimal play by both play-
ers is (

n+1
2

)
− 1

n2
.

An optimal strategy for player I is as follows.

• If the value of his die is 1, then he claims j with probability 1
n−1 ,

2 ≤ j ≤ n;
• if the value of his die is j > 1, then he claims j;
• on the second round (if any), he doubts any claim by player II.

An optimal strategy for player II is as follows.

• If the value of his die j is greater than the bid of player I, then he
claims j, except j = 2, when he doubts;
• if the value of his die is lower than the bid of player I, then he doubts;
• if the value of his die is equal to the bid of player I, then he claims 2

of that value;
• on the second round (if any), he doubts any claim by player I.

Proof: What is the optimal strategy of player II, if player I uses the afore-
mentioned strategy?

• If the value of player II’s die is greater than the bid of player I, then
he wins with the claim of that value.
• If the value of player II’s die is lower than the bid of player I, then the

only possible greater bid is 2 of his die’s value, but it can be true only
if I’s bid was a bluff, so the optimal strategy is to doubt. In this case
the probability of player II’s victory is

1
n−1

1 + 1
n−1

=
1

n
.

• If the value of player II’s die is equal to the bid of player I, then with
doubting the probability of victory is

1
n−1

1 + 1
n−1

=
1

n
,

while claiming 2 of that value makes the probability

1

1 + 1
n−1

=
n− 1

n
,
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so the latter is optimal.

We can store the probabilities of player II’s victory in the matrix W1 with
n− 1 rows (representing the bid of player I: n, n− 1, . . . , 3, 2) and n columns
(representing the value of player II’s die: n, n − 1, . . . , 2, 1). The elements of
W1 are as follows.

• w1ii = n−1
n ;

• w1ij = 1, if i > j;

• w1ij = 1
n , if i < j.

W1 =



n−1
n

1
n

1
n · · · 1

n
1
n

1
n

1 n−1
n

1
n · · · 1

n
1
n

1
n

1 1 n−1
n · · · 1

n
1
n

1
n

...
...

...
. . .

...
...

...
1 1 1 · · · n−1

n
1
n

1
n

1 1 1 · · · 1 n−1
n

1
n


Each bid of player I and each value of player II distributes independently

and uniformly so each case has probability 1
n

1
n−1 . The probability of player

II’s victory is:

1

n(n− 1)

(
(n− 1)(n− 2)

2
· 1 + (n− 1)

(n− 1)

n
+

(n− 1)(n− 2)

2

1

n
+ (n− 1)

1

n

)
=

(
n+1

2

)
− 1

n2
.

Let pij be the probability of player I’s bid is j if his die’s value is i, so∑n
j=1 pij = 1, moreover let Pj =P(player I’s bid is j)=

∑n
i=1 pij/n.

What is the probability of the victory of player II if he uses the aforemen-
tioned strategy?

• If the value of player II’s die is 2 and the bid of player I is 1, then
player II doubts, and he wins if player I bluffed.
• If the value of player II’s die j > 2 is greater than the bid of player I,

then if the value of player I’s die is lower than the value of player II
wins, else player I can claim a greater bid so he wins.
• If the bid of player I is 2 of something, then player II doubts, because

he could claim a valid greater bid only if player I bluffed.
• If the value of player II’s die is lower than the bid of player I, then he

doubts and wins if player I bluffed.
• If the value of player II’s die is equal to the bid of player I, then he

claims 2 of that value and wins if player I’s bid and his die’s value are
the same.
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Let us consider the matrix W2 with 2n rows (representing the bid of player
I: 1, 2, 3, . . . , n−1, n, 2 of 1, 2 of 2, . . . , 2 of n) and n columns (representing the
value of player II’s die: 1, 2,. . . , n). Let w2ij be the sum of pkj for those k for
which player II wins if his die’s value is j and player I’s bid is i for his value
k.

We use the matrix W2, which – due to its size – appears in the Appendix.
The probability of the victory of player II if the bid of player I is i is:

1

n

n∑
j=1

w2ij

n · Pi
.

So the probability of the victory of player II is:∑
i

Pi
1

n

n∑
j=1

w2ij

n · Pi
=

1

n2

∑
i,j

w2ij .

For 2 < j ≤ n we get∑
i<j

w2i,j +
∑
i≥j

w2i,j−1 ≥
j−1∑
k=1

∑
i

pk,i = (j − 1) · 1,

and
n∑

i=1

w2i,i +
n∑

i=2

w2i,1 + w21,2 = n
n∑

i=1

Pi,

so the sum of the elements of W2 is at least:

n +

n−1∑
j=2

j =

(
n + 1

2

)
− 1.

This means that the probability of player II’s victory is at least(
n+1

2

)
− 1

n2
.

Let us consider the case when both players have a 3-faced die where 3 is
joker.

Theorem 2.2. Player II’s probability of win under optimal play by both play-
ers is

4

9
.

An optimal strategy for player I is as follows.

• If the value of his die is i, then he claims 2 of i;
• on the second round (if any), he doubts any claim by player II.

An optimal strategy for player II is as follows.
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• If the bid of player I is 1, 2 or 3, then he claims 2 of the value of his
die;
• if the bid of player I is 2 of 1, 2 of 2 or 2 of 3, then he doubts;
• on the second round (if any), he doubts any claim by player I.

Proof: If player I plays the aforementioned strategy, he wins with proba-
bility 2

3 if his die’s value is 1 or 2 (in the cases player II has the same value or

3) and wins with probability 1
3 if his die’s value is 3. So the probability of the

victory of player II is

1− 1

3

(
2

3
+

2

3
+

1

3

)
= 1− 5

9
=

4

9
.

Let pij be the probability of player I’s bid is j if his die’s value is i, so

pi1 + pi2 + pi3 + pi,11 + pi,22 + pi,33 = 1,

moreover let Pj =P(player I’s bid is j)=p1j/3 + p2j/3 + p3j/3.
Playing with the aforementioned strategy when does player II win?
If the value of the die of player II is 1, and the bid of player I is 1, 2 or 3,

then player II claims 2 of 1 and wins if the value of player I’s die is 1 or 3.
If the value of the die of player II is 1, and the bid of player I is 2 of 1, 2

of 2 or 2 of 3, then player II doubts and loses only if the bid is 2 of 1 and the
value of player I’s die is 1 or 3.

If the value of the die of player II is 2, and the bid of player I is 1, 2 or 3,
then player II claims 2 of 2 and wins if the value of player I’s die is 2 or 3.

If the value of the die of player II is 2, and the bid of player I is 2 of 1, 2
of 2 or 2 of 3, then player II doubts and loses only if the bid is 2 of 2 and the
value of player I’s die is 2 or 3.

If the value of the die of player II is 3, and the bid of player I is 1, 2 or 3,
then player II claims 2 of 3 and wins if the value of player I’s die is 3.

If the value of the die of player II is 3, and the bid of player I is 2 of 1,
then player II can claim 2 of 3 and wins if the value of player I’s die is 3, or
can doubt and wins if the value of player I’s die is 2.

If the value of the die of player II is 3, and the bid of player I is 2 of 2,
then player II can claim 2 of 3 and wins if the value of player I’s die is 3, or
can doubt and wins if the value of player I’s die is 1.

If the value of the die of player II is 3, and the bid of player I is 2 of 3,
then he doubts and wins if the value of player I’s die is 1 or 2.

Assuming that the probability of bidding 2 of 3 when player I’s bid is 2 of
1 and the value of player II’s die is 3 is q1, and the probability of bidding 2 of
3 when player I’s bid is 2 of 2 and the value of player II’s die is 3 is q2, then
we can use the following matrix W3 of 6 rows (representing the bid of player
I: 1, 2, 3, 2 of 1, 2 of 2, 2 of 3) and 3 columns (representing the value of player
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II’s die: 1, 2, 3) to calculate the probability of the victory of player II, which
is similarly to the previous section the sum of the elements of W3 divided by
9.

W3 =


p11 + p31 p21 + p31 p31

p12 + p32 p22 + p32 p32

p13 + p33 p23 + p33 p33

p2,11 3P11 q1p3,11 + (1− q1)p2,11

3P22 p1,22 q2p3,22 + (1− q2)p1,22

P33 3P33 p1,33 + p2,33


The sum of the elements of W3 is

p1,1 + p3,1 + p2,1 + p3,1 + p3,1+

+p1,2 + p3,2 + p2,2 + p3,2 + p3,2+

+p1,3 + p3,3 + p2,3 + p3,3 + p3,3+

+p2,11 + 3P11 + q1p3,11 + (1− q1)p2,11+

+3P22 + p1,22 + q2p3,22 + (1− q2)p1,22+

+3P33 + 3P33 + p1,33 + p2,33 =

p1,1 + p1,2 + p1,3 + p1,11 + (2 + 1− q2)p1,22 + 3p1,33+

+p2,1 + p2,2 + p2,3 + (2 + 1− q1)p2,11 + p2,22 + 3p2,33+

+3p3,1 + 3p3,2 + 3p3,3 + (1 + q1)p3,11 + (1 + q2)p3,22 + 2p3,33 =

1 + (2− q2)p1,22 + 2p1,33+

+1 + (2− q1)p2,11 + 2p2,33+

+1 + 2p3,1 + 2p3,2 + 2p3,3 + q1p3,11 + q2p3,2 + p3,33.

If we choose q1 = q2 = 1, then the sum is

4 + p1,22 + p1,33 + p2,11 + p2,33 + p3,1 + p3,2 + p3,3 ≥ 4.

So the probability of the victory of player II playing the aforementioned strat-
egy is at least 4

9 .

3. Model of the game for simulation

We present simulation result about strategies in the liar’s dice game. In the
following, we describe the simulation’s details. As the game flow is quite com-
plex, we made several simplifying assumptions about the player’s strategies.
When a player has to make a decision about his move, he should compare the
risks of raising the bid with that of challenging the previous bid. The decision
is made more complex by psychological factors, since the bidding strategies
of the previous player and the challenge strategies of the following player also
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influence the decision. In the following we describe a simplified model of the
player’s strategies. The motivation behind the model is that we want to make
challenge slightly more likely against a player who is known to be a frequent
liar, and similarly, we would like to be a bit cautious when raising a bid if the
next player is known to be a good challenger.
Raise. If we raise the bid, we raise it to the one with highest probability of
success. For example, if we have to answer to a bid of “seven threes’, we will
prefer “eight twos” to “seven fours” if we happen to have a hand with several
twos and no fours. The probability of a successful bid is calculated based on
our hand. We do not assume anything about the likeliness of a challenge by
the next player.
Challenge. We calculate the probability of a successful challenge based on
our hand and the bid of the previous player.
Behavior of the previous player. We record the success of our challenges
against the previous player. If the previous challenge against this player was
successful, we slightly increase the probability of a challenge (details are for-
malized later).
Behavior of the next player. We record the success of challenges by the
next player. If the previous challenge against us was successful, we slightly
decrease the probability of a bid raise (details are formalized) later.

The player’s strategy is a mixed strategy, parametrized by a pair (s, t). On
each turn, the player determines the probability p1 that the previous bid was a
lie (if this is the first move, then we always rise). The player also determines the
next preferable bid and its success probability p2. If the last challenge against
the previous player was successful, then let cs ∈ [0, s] uniformly randomly
chosen, otherwise cs = 0. If the last challenge by the next player failed, then
ct ∈ [0, t] is uniformly randomly chosen, otherwise ct = 0. We decide to raise
if and only if p2 − p1 + cs − ct > 0.

The intuition behind this mixed strategy is as follows: it is natural to
assume that we chose out of the two possibilities (raising the bid and chal-
lenging) the one that is more likely to succeed. That’s why we compare p1

and p2. But if the player with the last bid has been caught lying before, then
we slightly increase the possibility of a challenge. Likewise, if the player who
follows after us has a bad challenge to his record, then we are possibly a bit
braver with raising the bid. The parameters correspond to the sensitiveness
of the player to such behavior.

We evaluate the strategies using evolutionary simulation methods in the
following section.
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4. Evolutionary simulation of strategy population

Our simulation methods are inspired by investigations about the iterated
prisoner’s dilemma, see e.g. [1, 4]. Our evolutionary simulation proceeds as
follows. The strategy population S is a mesh of points in a box [0, a] × [0, b]
(E.g. S = {(i/10, j/10) | 0 ≤ i, j ≤ 10, i, j ∈ Z}). Each element s ∈ S holds a
score f(s) which is initially 1. Each simulation is performed in rounds.

We fix the number P of players and D for a simulation run. Each simula-
tion round starts with choosing P strategies from the overall population based
on the strategy’s score – the probability of choosing a strategy is proportional
to its weight. We perform a P -player game with D dice. After the game we
add one to the winner’s strategy. Then a new simulation round is started.
The goal of the simulation is to see which strategies are the most successful
ones. In the following section we discuss how the strategy population’s score
changes.

4.1. Simulation results. In the first group of experiments 300 simulation
rounds were performed with X a 10× 10 mesh on [0, 1]. We performed exper-
iments with P = 2, D = 10, P = 2, D = 30, P = 2, D = 100, P = 3, D = 30,
P = 8, D = 30. We show some of the results in Figure 1. It is apparent in the
figures that the value of y = ct plays a more decisive role in the success of a
strategy than that of x = cs. It is also visible that the exact values of P and
D do not influence the results to a large extent.

Based on the results, in the second group of experiments we refined the
space to [0, 1] × [0, 0.2]. The simulation results can be seen in Figure 2. No
obvious pattern is visible here. Based on evidence so far, it seems reasonable
that a small value of ct ∼ 0.1 is beneficial, that is, being a bit braver with
raises might pay off. An exact quantification of this statement still needs
refined models and further simulation.

5. Summary

In the present paper about the Liar’s dice game, we presented an analysis
of endgame strategies for two players and simulation results using a simplified
model of the game strategies. We plan to extend both the theoretical and
simulation results. In the endgame analysis it would be interesting to give
optimal strategies for more than two players with one die each, and for two
players with several dice. The analysis becomes much more complicated, but
we think it can be carried out. For the simulation, a possible direction is to
model the information that may be hidden in previous calls by a player in
the same round – does someone calling a large number of fives really have a
hand full of fives, or is it just a bluff? Another possibility is to apply learning
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Figure 1. Strategy population growth after 300 matches.
From left to right: (P,D) = (2, 30), (2, 100), (3, 30), (8, 30).

theory and see how good a player a computer program can become when
playing against humans or other programs.
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Appendix

We present matrix W2 from Section 2.

p11 nP1−p11 p11+p21 p11+p21+p31 ...
nP2−p22 p22 p12+p22 p12+p22+p32 ...
nP3−p33 nP3−p33 p33 p13+p23+p33 ...

...
...

...
...

. . .
nPn−1−pn−1,n−1 nPn−1−pn−1,n−1 nPn−1−pn−1,n−1 nPn−1−pn−1,n−1 ...

nPn−pnn nPn−pnn nPn−pnn nPn−pnn ...
nP11−p1,11 nP11 nP11 nP11 ···

nP22 nP22−p2,22 nP22 nP22 ···
...

...
...

...
. . .

nPn−1,n−1 nPn−1,n−1 nPn−1,n−1 nPn−1,n−1 ···
nPnn nPnn nPnn nPnn ···

... p11+p21+···+pn−2,1 p11+p21+···+pn−1,1

... p12+p22+···+pn−2,2 p12+p22+···+pn−1,2

... p13+p23+···+pn−2,3 p13+p23+···+pn−1,3

. . .
...

...
... pn−1,n−1 p1,n−1+p2,n−1+···+pn−1,n−1

... nPn−pnn pnn

··· nP11 nP11
··· nP22 nP22

. . .
...

...
··· nPn−1,n−1−pn−1,(n−1,n−1) nPn−1,n−1

··· nPnn nPnn−pn,(n,n)
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