
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

REDUCTION OF REGRESSION TESTS FOR ERLANG

BASED ON IMPACT ANALYSIS

ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

Abstract. Legacy codes are changed in software maintenance processes
to introduce new functionality, modify existing features, eliminate bugs etc.
or by refactorings while the main original properties and the behaviour of
the system should be preserved. Developers apply regression testing with
highest degree of code coverage to be sure about it, and thus they retest the
software after some modifications. Our research focuses on impact analysis
of changes in applications written in the dynamically typed functional
programming language, Erlang. To calculate the affected program parts,
we use dependence graph based program slicing, therefore we have defined
the Dependence Graphs with respect to the semantics of Erlang. Applying
the results, we may shrink the set of test cases selected for regression testing
for ones which are affected by the changes.

1. Introduction

Impact analysis is a mechanism to find those source code parts that are
affected by a change on the source code, therefore it could help in test case
selection for regression testing.

Erlang [9] is a dynamically typed functional programming language that
was designed for building concurrent, reliable, robust, fault tolerant, dis-
tributed systems with soft real-time characteristic like telecommunication ap-
plications. The language has become widespread in industrial applications in
the last decade.

Our research focuses on selecting the test cases of the Erlang applications
that are affected by a change on the source code. In other words, we want to
calculate the impact of a source code modification. To calculate the affected
program parts, we use dependence graph based program slicing [24, 14], there-
fore we have to define the Dependence Graphs for Erlang.

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N18, 68Q99.
1998 CR Categories and Descriptors. F.3.2 [Theory of Computation]: Logics and

Meaning of Program – Semantics of Programming Languages: Program Analysis.
Key words and phrases. static analysis, impact analysis, Erlang, test case selection,

slicing.

31



32 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

Refactoring [10] is the process of changing and improving the quality of
the source code without altering its external behaviour. Refactoring can be
done manually or using a refactoring tool. We have been developing a refac-
toring tool for Erlang, called RefactorErl [6]. RefactorErl is a source code
analysis and transformation tool [3]. It provides 24 refactoring steps for Er-
lang developers, such as moving, renaming different language entities, altering
the interface of functions or the structure of expressions, parallelisation, etc.
Besides transformations, RefactorErl has different features to support code
comprehension [22].

RefactorErl checks the correctness of transformations using complex static
source code analysis and accurate transformations. On the other hand, due to
the semantics of dynamic languages such as Erlang, the accuracy of checking
the side-conditions by static analysis is limited, which means a regression test
is needed even for refactorings.

Erlang applications are often tested with the property based testing tool
QuickCheck [2]: the tool checks some properties given by the developers with
random generated test inputs. Therefore we want to select those QuickCheck
properties that should be retested after the source code is modified.

The rest of this paper is structured as follows: Section 2 presents our
motivation through an example; Section 3 introduces the used intermediate
source code representations and Section 4 describes how we build the Depen-
dence Graph based on the Control-Flow and Data-Flow Graphs; Section 5
describes the used program slicing technique for test case selection; Section 6
describes an extension of the presented techniques; Section 7 compares the
results with the use of dynamic analysis; Section 8 presents related work; and
finally, Section 9 concludes the paper and contains some future work.

2. Motivating Example

In this section we demonstrate a small example showing how we can select
affected test cases after a modification of the source code. For the sake of
simplicity we use an easy to understand transformation, a refactoring step in
this example.

The following module (test) contains the function add_mul/2 that adds
and multiplies two numbers and returns the results in a tuple. We introduce
two QuickCheck properties to test the function: the property prop_add/0

tests whether the first element of the return value of add_mul/2 is the sum of
the two parameters, and the property prop_mul/0 tests whether the second
element of the return value is the product of the two parameters. The module
test also introduces the function pow to raise X to the power Y and a property
to check the power function: IJ = IJ−1 ∗ I



REGRESSION TEST CASE SELECTION 33

-module(test).

-export([add_mul/2, pow/2]).

-export([prop_add/0, prop_mul/0, prop_pow/]).

add_mul(X, Y) ->

Add = X + Y,

Mul = X * Y,

{Add, Mul}.

prop_add() ->

?FORALL({I, J}, {int(), int()},

element(1, sth(I, J)) == I + J).

prop_mul() ->

?FORALL({I, J}, {int(), int()},

element(2, sth(I, J)) == I * J).

pow(X, Y) ->

math:power(X, Y).

prop_pow() ->

?FORALL({I, J}, {int(), int()},

pow(I, J) == pow(I, J-1) * J).

We can transform this module by the Introduce function refactoring [4].
This refactoring takes an expression or a sequence of expressions as an argu-
ment and creates a new function definition from it, then replaces the selected
expressions with a function application that calls the newly created function.
We can perform this transformation by selecting the X + Y expression:

add_mul(X, Y) ->

Add = add(X, Y),

Mul = X * Y,

{Add, Mul}.

add(X, Y) ->

X + Y.

Our goal is to select those test cases that are affected by the change made
by the Introduce function refactoring. It is obvious that the property prop_pow

is not affected, and neither is the property prop_mul. The refactoring changed
only the value of the variable X that is the first element of the resulted tuple.
Since prop_mul uses only the second element of the result of the function,



34 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

we can deduce that this property is not affected by the change, so we should
recheck only the property prop_add.

It is hard to calculate this manually for a complex source code modification
on a large legacy code consisting of millions of lines. We build a Dependence
Graph containing the data and control dependencies among expressions. Then
we perform static program slicing [14] on the Dependence Graph to determine
the affected code parts after a change on the source code, and finally based on
the program slice, we calculate the properties to recheck.
Note. One can say that calculating the affected test cases for refactorings is not
relevant. Let we give a counterexample. The goal of the ParaPhrase-Enlarged
project [1] is to detect those parts of the source code where parallelism can
be introduced by refactoring. The prior aim of the project is to work with
meaning preserving transformations. It is necessary to carefully define the
side-conditions of these transformations. However these side-conditions have
to be very strict to ensure the meaning preserving transformations, therefore
a huge number of transformations is denied. Using semi-automatic interac-
tive transformations and weakening these side-conditions, we can extend the
applicability of parallelisation. For example, the user can decide whether he
wants to keep the order of “good side-effects” or not (a good side-effect can
be an ets table reading). Although the user applied the transformation, it is
recommended to retest the application after the parallelisation.

3. Intermediate Program Representation

Static program slicing is a technique to calculate the impact of a change
on the source code. In order to calculate the program slices, different levels
of knowledge should be available about the source code: we have to calculate
the data and control dependence/relations among the expressions and we need
static syntactic and semantic information for that. We build different abstract
program representations for efficient calculation of the dependencies. In this
section we briefly introduce the used intermediate representations, such as the
Semantic Program Graph, Data-Flow and Control-Flow Graph [19].

3.1. Semantic Program Graph. The RefactorErl system introduces a Se-
mantic Program Graph (later SPG) [13] to represent syntactic and static se-
mantic information about the source code. The SPG is a rooted, directed,
labelled graph that consists of three layers. The first layer includes the lexical
layer, the middle layer is the Abstract Syntax Tree (later AST) of the program,
and the third layer extends the AST to a SPG by adding different semantic
information, like variable binding structure, function call information etc. Be-
cause of the graph representation and the semantic layer, it is more efficient
to gather information about the source code than traversing the AST.



REGRESSION TEST CASE SELECTION 35

3.2. Data-Flow Graph. Based on the information available in the SPG,
we can build a Data-Flow Graph (DFG). The DFG = (N,E) is a directed,
labelled graph containing the expressions of the Erlang programs as nodes
(N) and the direct data-flow relations between them as edges (E). We have
introduced six types of data-flow edges (ni ∈ N):

• n1
flow−→ n2 – represents that the value of the node n2 can be a copy of

the value of n1.

• n1
call−→ n2, n3

ret−→ n4 – the former one represents data-flow between
the formal parameters of the functions and the actual parameters of
the function calls. The latter one represents the data-flow between
the return value of the function and the function applications. These

edges represent that the values of the nodes are the same as in the
flow−→

edge.

• n1
sel−→ n2, n3

cons−→ n4 – these edges represent the data-flow among a
compound data type and its elements. The former one represents that
we select an element of an expression, and the latter one that we create
a compound expression from elements.

• n1
dep−→ n2 – represents direct dependencies among expressions: the

value of n2 depends on the value of n1.

We build an interfunctional DFG based on syntax driven formal rules
and we have defined a relation on the DFG to express the indirect data-flow
among the expressions of the Erlang programs called First order data-flow

reaching [23]: n1
1f
; n2 means that the value of n1 can flow into n2, so the two

values are the same.

3.3. Control-Flow Graph. We have defined compositional rules [21] for
building the Control-Flow Graph (CFG) of Erlang functions according to the
semantics of the language. The CFG is built by traversing the AST, following
the semantic rules of the language.

The CFG = (N,E) is a directed, labelled graph containing the expressions
of the Erlang programs as nodes (N) and the direct data-flow relations between
them as edges (E). We have introduced six types of control-flow edges (ni ∈
N):

• n1 −→ n2 – represents that before evaluating n2 we have to evaluate
n1

• n1
yes−→ n2, n3

no−→ n4 – represent conditional evaluation in the event of
conditional branching and pattern matching



36 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

• n1
funcall−→ n2 – denotes that we have a function call. We build intrafunc-

tional CFG-s for each function, and we resolve the function calls when
creating a compound control dependence graph (See in Section 4.1).

• n1
ret−→ n2 – represents a return to a previously partially evaluated

expression

• n1
send−→ n2 – represents that before evaluating n2 we send the message

that is the value of n1

• n1
rec−→ n2 – represents that before evaluating n2 we have to receive an

expression

4. Calculating Dependencies

We need both the data-flow and the control-flow graph to calculate the
real dependencies among expressions. However, it is not so efficient to use
them for program slicing because every dependence edge calculation could
require several graph traversals. Therefore we build a Control Dependence
Graph from the CFG and then we add the data dependencies calculated from
the DFG to that graph. The resulted graph is called Dependence Graph and
contains the direct data and control dependencies among expressions. We can
determine indirect dependencies by traversing this graph.

4.1. Control Dependence Graph. The Control-Flow Graph contains every
execution path of a certain function, and it also contains the sequencing among
the evaluated expressions. However, when we want to calculate the impact of
some change on the source code, it is not necessarily true that the evaluation
of an element in a sequence has effect on the next elements of the sequence.
Therefore we have to eliminate the unnecessary sequencing from the CFG and
only the real control dependencies are taken into account.

To build the CDG, we have to build the Post-Dominator Tree [15] of the
function (PDT). We say that a node n2 from the CFG post-dominates the node
n1 if every execution path from n1 to the exit point of the function contains n2.
Using the PDT and the CFG, we can calculate the CDG for a function. Since
the CFGs are intrafunctional, the built CDGs do not contain the dependencies
triggered by the function calls, message passing and message receiving. Such
dependencies will be resolved while composing the intrafunctional CDGs into
a composed CDG [17].

While building the CFGs, we examine the functions, whether a function
may fail or not, and mark the expressions where the CDGs will be connected.
This information is used while composing the CDGs to determine interfunc-
tional dependencies.



REGRESSION TEST CASE SELECTION 37

The function may potentially fail at run-time if it has no exhaustive pat-
terns, it contains an expression that may fail or throws an exception. The
function application may affect the evaluation of the expressions following in
the sequence, thus this dependency must be taken into account. The expres-
sions following the function application node in the execution order will be
directly dependent on the application node. These dependencies apply only
for functions that may fail.

4.2. Dependence Graph. In the composed CDG, the edges of the graph
denote control dependencies among the statements and expressions of the
involved functions. This information in itself is insufficient for performing
impact analysis. To reveal real dependencies among the statements of the
program, data-flow and data dependency information is also required. The
data dependency is calculated from the data-flow graphs of Erlang programs.

We define data dependence between two nodes n1
ddep
; n2 if:

• there is a direct dependency edge between them – n1
dep−→ n2

• n2 is reachable from n1, so the value of n1 can flow to n2 – n1
1f
; n2

The data dependence relation (
ddep
; ) is transitive:

n1
ddep
; n2, n2

ddep
; n3

n1
ddep
; n3

The composed CDG is extended with the additional data dependencies,
thus we obtain the Dependence Graph (DG) and we can perform program
slicing on the DG.

This graph can be extended with some useful information like behaviour
dependencies [20], which provide information how the behaviour of the func-
tion or the entire program is affected if the data at some statement is changed.
With these additional edges we make the DG more accurate.

4.3. Example Graphs. The following function implements the factorial func-
tion in Erlang. When the factorial function takes 0 as an argument, it returns
1, otherwise if the value of the parameter is greater than zero, it returns with
the product of N and the factorial of N-1.

fact(0) ->

1;

fact(N) when N > 0 ->

N * fact(N-1).

Figure 1 shows the Control-Flow Graph of the factorial function. The
evaluation of the function branches on pattern matching (0 and N) and also



38 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

ERROR(form, 1)

RETURN(form, 1)

0

1

YES

N

NO

NO N>0

YES

NO

N

YES

fact

N

1

N-1

fact(N-1)

N*fact(N-1)

funcall

FORM(1)

YES

Figure 1. Control-Flow Graph of the factorial function

on the guard evaluation (N>0). The CFG contains a
funcall−→ edge according to

the function application fact(N-1).
Figure 2 presents the Control Dependence Graph of the factorial function.

The
dd−→ edges represent direct control dependencies among expressions, the

inhdep−→ edges represent the inherited control dependencies based on the function

calls and the
resdep−→ edges denote the resumption dependencies when the called

function could fail.



REGRESSION TEST CASE SELECTION 39

FORM(1)

0

dd

ERROR(form, 1)

RETURN(form, 1) resdep

N*fact(N-1)

resdep

dd

1

dd

N

dd

dd N>0

dd

dd

N

dd

fact

dd

N

dd

1

dd

N-1

dd

fact(N-1)

dd

inhdep

Figure 2. Control Dependence Graph of the factorial function

Figure 3 introduces the Dependence Graph containing both the control
(black coloured edges) and the data dependencies (red coloured and dashed

edges:
ddep−→). Calculating the affect of a change on the source code means to

traverse this graph following the directed dependence edges without regarding
its label. For instance, the expression 1 control depends on the expression 0

and the expression fact(N-1) data depends on the expression 1, and there-
fore starting the slicing from the expression 0 results in a slice that contains
expression 1, expression fact(N-1), etc.

5. Program Slicing for Test Case Selection

While some parts of the program are affected by a transformation of the
source code, others are not. Let us consider the following simple example with
three statements: X = 2, Y = 3, Z = X + Y. Replacing the integer 2 in the
first match expression with another value does not affect the second match
expression, but affects the third one, because of the data dependency among
them (represented by the variable X). Therefore our task is to select a subset
of expressions that depends on the value calculated at some point of interest,
what is called static forward slice of the program.



40 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

FORM(1)

0

dd

ERROR(form, 1)

RETURN(form, 1) resdep

N*fact(N-1)

resdep

dd

1

ddN

dd

fact(N-1)

ddep

dd N>0

dd

N

ddep

N

ddep

dd dd

fact

dddd

1

dd

N-1

dd

dd ddepddep ddep

ddep

ddep

inhdep

ddepddep

Figure 3. Dependence Graph of the factorial function

A forward program slice contains those expressions of the program that
depend on the slicing criteria. The slicing criteria is an expression of the
program. To calculate the program slice we have to build the Dependence
Graph of the program and gather the expressions dependent on the slicing
criteria.

The dependencies (control, data, behaviour, etc) among the expressions of
the observed application are stored in the calculated Dependency Graph (Sec-
tion 4). If expression B depends on expression A then there is a directed edge
in the DG started from node A to node B. Thus, to calculate the expressions
that depend on the value of another expression means to traverse the DG in
forward direction.

We note here that traversing the DG in backward direction results in
the backward program slice of the program containing those expressions that
potentially affect the slicing criteria.

From our point of view, the slicing criteria is the set of expressions changed
by the performed refactorings. The slicing algorithm extended with some
more steps (we assume that the Semantic Program Graph of the program is
available, because RefactorErl performs the refactorings on the SPG of the
programs):



REGRESSION TEST CASE SELECTION 41

skel() ->

Ch_Exprs = get_changed_exprs(),

Ch_Funs = get_changed_funs(Ch_Exprs),

Af_Funs = tr_closure(Ch_Funs,

[{funcall, forward},

{funcall, backward}])

DFG = build_dfg(Af_Funs),

CFG = build_cfg(Af_Funs),

CDG = build_cdg(CFG),

CompDG = resolve_dep(build_CompDG(CDG)),

DG = add_data_dep(DFG, CompDG),

Slice = traverse(DG, forward),

examine(Slice, [{test, qc}]).

Figure 4. Erlang skeleton for the slicing algorithm

• calculate the affected expressions
• determine the functions that contain the changed expressions
• calculate the functions that are potentially affected by the change on

the source : perform a transitive closure calculation on the call graph
in both directions (forward and backward) starting from the changed
functions
• build the Data-Flow and Control-Flow Graphs for the potentially af-

fected functions
• build the Control Dependence Graph
• create the compound DG and resolve the dependencies
• calculate data dependencies between the expressions of the compound

DG based on the DFG
• traverse the DG in forward direction starting from the set of changed

expressions to collect all of the nodes that are affected by them. The
resulted slice is a non-executable slice of the program.
• analyse the resulted slice to select the test cases to be rechecked (see

in Section 5.1)

5.1. Selecting QuickCheck Properties. Since the test cases of Erlang ap-
plications are mainly implemented in Erlang modules (for example in EU-
nit [7], CommonTest [7], TestServer [7], QuickCheck [2]) we have to add those
test cases to the Semantic Program Graph of RefactorErl. The analysis cal-
culates the Dependency Graph based on the contents of the SPG, and the
resulted slice will contain the test cases affected by the change of the source
code.



42 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

Further analysis could evaluate the resulted test case set. For instance, an
empty set of the cases means that the application was not fully tested, and we
can make suggestions for the type of further test cases.

examine(Slice, Props) ->

TestType = get_prop(Props),

Funs = get_funs(Slice),

case TestType of

qc ->

filter(fun is_qc_fun/1, Funs)

ctest -> ...

eunit -> ...

end.

Figure 5. Erlang skeleton for the test case selection algorithm

Based on the resulted slice, we use the following method to select the
affected properties to be rechecked after the transformation: every property
that contains at least one expression from the resulted program slice must
be retested. Therefore, we have to determine the functions containing the
expressions from the program slice and then we have to check the body of
the function whether it defines an Erlang QuickCheck property (eqc property).
Since the programmers define the QuickCheck properties using the well-defined
set of eqc macros that are substituted to eqc* function calls, we can calculate
the affected properties based on the call graph of the preprocessed programs.

Identifying non-QuickCheck test cases is also possible, only some back-
ground knowledge is required about the test suit. That can be a naming
convention (prop *, test *, * test) or the exact set of test cases (name of the
test suits or modules containing the tests).

6. Modifying the Source Code Manually

The introduced method is described in terms of refactoring transforma-
tions as a case of applicability. The analysis can be easily adapted to consider
other modifications as well. The transformations can be performed either
manually or with external tools.

The main challenge is to locate the changes in the source code. It affects
the get changes exprs part of the algorithm (shown on Figure 4). Currently
the external changes are detected on the function level in RefactorErl. This
results in loss of accuracy of the analysis.



REGRESSION TEST CASE SELECTION 43

To get around this the change detection of the tool could be improved in
the future. Comparing the syntax trees or finding the differences in the source
code and locating the changes in the graph could solve the problem.

6.1. Combined Modifications. There are situations when calculating the
set of test cases after each modification is not sensible. It is more realistic
to first perform a sequence of transformations (either refactoring or manual
modifications) and then run the testing.

Logging the modifications results in a set of changes. This set can be used
as input for the analysis, thus extending the applicability.

The analysis is prepared for handling sets of starting points, but in some
cases it needs to be improved.

This approach raises some new questions that will be answered in the
future.

For example:

• How to detect the undone change?
• How to solve overlapping modifications?
• etc.

7. Using Dynamic Analysis

For well-defined input data the dynamic analysis can provide more accu-
rate results. In Erlang the cover [8] tool comes with other dynamic analyser
tools. It provides a coverage analysis for Erlang programs in different levels of
granularity. With this tool the test cases can be verified whether the relevant
code parts are tested.

Compared cover to our analysis, starting the coverage analysis results in a
dynamic slice of the program. The slice contains lines of the source code that
the effect of the change may reach (forward direction in call chain). Usually
the test cases are at the caller side that is in backward direction of the call
chain.

Our analysis determines the effect of changes in both directions. This
means the test cases will be involved in the statically computed slices (as
precisely as it is possible from statically available information).

Our analysis used with cover is a good complement in a testing process.
First we determine the set of test cases with our analysis then check the
coverage of test on changed code parts.

8. Related Work

Program slicing (introduced by Mark Weiser [24]) is a well-known tech-
nique in object-oriented area, and program slices are commonly used to mea-
sure the impact of a change on the source code. There are different kinds



44 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

of slicing techniques [18]. The most popular among them is the dependency
graph based program slicing [14]. These kinds of analysis are not really wide-
spread in functional languages, but control-flow analysis techniques have been
presented [16] for some functional languages.

In order to perform static analysis on the given set of source code an in-
termediate representation for the source code is needed. This representation
should include the expressions, language constructs and the relations/depen-
dencies among them. Such representations are widely used in compiler tech-
niques and source code analysis, but mainly for imperative and object-oriented
programming languages. This representation is the Program Dependence
Graph (later PDG), which includes control dependence and data dependence
information. As a first step in building the PDG a Control Flow Graph (later
CFG) is necessary. By means of the CFG a Post-dominator tree and the
Control Dependence Graph (later CDG) is built based on the well known
techniques used at compilers [15]. Combining the CDG with data dependence
information we obtain the PDG. Our main goal was to develop similar methods
for the functional programming language, Erlang. It was not straightforward
because of the special language elements and semantics of the Erlang language.
The known techniques for imperative languages assume a distinguished main
procedure that is in relation with the other procedures or functions of the pro-
gram. In Erlang, there can be several functions that frame the interface of the
module. Thus we select a function or a set of functions that are affected by the
change of the performed refactoring, and start to build the dependence graph
from these functions. In addition, the language was designed for developing
parallel and distributed applications, thus a detailed analysis is required to
build appropriate CFGs.

Reducing the number of test cases is also an interesting topic [11]. For
instance, there is a paper ([5]) that describes a methodology for regression test
case selection for object-oriented design using the Unified Modelling Language.
This paper gives a mapping among design changes and gives a classification of
test cases: reusable, retestable and obsolete. In another paper [12] the authors
presented a method for data-flow based selection using intraprocedural slicing
algorithms.

Our mechanism is built for the functional programming language, Erlang,
but it could be applicable for other strict functional languages. The main
task is to build a control and a data-flow graph. Both require deep knowledge
about the syntax and semantics of the selected language.



REGRESSION TEST CASE SELECTION 45

9. Conclusions and Future Work

After some program transformations are made on the source code, regres-
sion testing should be performed. In this paper we have presented an impact
analysis mechanism to select a subset of test cases that are affected by a change
on the source code. Rerunning an accurately selected test subset could result
in the same testing coverage as a full regression test, but it takes less time
than the complete test.

In this paper we have briefly described the used mechanism for impact
analysis: dependency graph based program slicing. We have described how to
build Dependence Graph from Erlang programs, and the necessary intermedi-
ate source code representations (Control- and Data-Flow Graph) to calculate
it.

In the future we are going to refine the analysis: adding more Erlang
specific dependency edges to the Dependency Graph, reduce the size of the
resulted slices with more static and maybe also with dynamic information. We
are also planning to analyse methods that can approximate the resulted slice
without building the Dependence Graph, and in this way make the test case
selection faster.

References

[1] ParaPhrase–Enlarged Project homepage, 2013.
[2] Quviq QuickCheck, 2013.
[3] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit Kőszegi, Máté

Tejfel, and Melinda Tóth. RefactorErl – Source Code Analysis and Refactoring in Er-
lang. In In proceeding of the 12th Symposium on Programming Languages and Software
Tools, Tallin, Estonia, 2011.

[4] István Bozó and Melinda Tóth. Restructuring Erlang programs using function related
refactorings. In Proceedings of 11th Symposium on Programming Languages and Soft-
ware Tools and 7th Nordic Workshop on Model Driven Software Engineering, pages
162–176, Tampere, Finland, August 2009.

[5] L. Briand, Y. Labiche, and G. Soccar. Automating impact analysis and regression test
selection based on uml designs. In 18th IEEE International Conference on Software
Maintenance (ICSM’02), 2002.

[6] ELTE-IK, PNYF. Refactorerl Homepage and Tool Manual, 2013.
[7] Ericsson AB. Erlang Documentation, 2013.
[8] Ericsson AB. Erlang Documentation – Cover, 2013.
[9] Ericsson AB. Erlang Reference Manual, 2013.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.

[11] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg Rother-
mel. An empirical study of regression test selection techniques. In ACM Transaction on
Software Engineering and Methodology, volume 10, pages 188–197, 1998.



46 ISTVÁN BOZÓ, MELINDA TÓTH, AND ZOLTÁN HORVÁTH

[12] Rajiv Gupta, Mary Jean, Mary Jean Harrold, and Mary Lou Soffa. An approach to
regression testing using slicing. In Proceedings of the Conference on Software Mainte-
nance, pages 299–308. IEEE Computer Society Press, 1992.

[13] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei, Anikó Vı́g, Tamás Nagy,
Melinda Tóth, and Roland Király. Modeling semantic knowledge in Erlang for refac-
toring. In Knowledge Engineering: Principles and Techniques, Proceedings of the In-
ternational Conference on Knowledge Engineering, Principles and Techniques, KEPT
2009, volume 54(2009) Sp. Issue of Studia Universitatis Babes-Bolyai, Series Informat-
ica, pages 7–16, Cluj-Napoca, Romania, Jul 2009.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
In PhD thesis, University of Michigan, Ann Arbor, MI, 1979.

[15] S.S. Munchnick. Advanced Compiler Design and Implementation . Morgan Kauffmann
Publishers, 1997.

[16] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, 1991.

[17] J.A. Stafford. A formal, language-independent, and compositional approach to control
dependence analysis. In PhD thesis, University of Colorado, Boulder, Colorado, USA,
2000.

[18] Frank Tip. A survey of program slicing techniques. In Journal of Programming Lan-
guages, volume 3, pages 121–189, 1995.

[19] M. Tóth and I. Bozó. Static Analysis of Complex Software Systems Implemented in
Erlang. In Central European Functional Programming Summer School Fourth Summer
School, CEFP 2011, Revisited Selected Lectures, Lecture Notes in Computer Science
(LNCS), Vol. 7241, pp. 451-514, Springer-Verlag, ISSN: 0302-9743, 2012.

[20] M. Tóth, I. Bozó, Z. Horváth, L. Lövei, M. Tejfel, and T. Kozsik. Impact analysis of
Erlang programs using behaviour dependency graphs. In Central European Functional
Programming School. Third Summer School, CEFP 2009. Revised Selected Lectures.,
2010.

[21] Melinda Tóth and István Bozó. Building dependency graph for slicing Erlang programs.
Paper accepted to Periodica Politechnica, 2010.

[22] Melinda Tóth, István Bozó, and Zoltn Horváth. Applying the query language to sup-
port program comprehension. In Proceeding of International Scientific Conference on
Computer Science and Engineering, pages 52–59, Stara Lubovna, Slovakia, Sep 2010.

[23] Melinda Tóth, István Bozó, Zoltn Horváth, and Máte Tejfel. 1st order flow analysis for
erlang. In Proceedings of 8th Joint Conference on Mathematics and Computer Science,
2010.

[24] M. Weiser. Program slices: Formal, psychological, and practical investigations of an au-
tomatic program abstraction method. In ACM Transactions on Programming Languages
and Systems, 12(1):3546, Jan 1990.

Eötvös Loránd University and ELTE-Soft Ltd.
E-mail address: {bozoistvan,tothmelinda,hz}@elte.hu


