
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML

DATA

CHRISTIAN SĂCĂREA AND VIORICA VARGA

Abstract. As XML becomes a popular data representation and exchange
format over the web, XML schema design has become an important re-
search area. Discovering XML data redundancies from the data itself be-
comes necessary and it is an integral part of the schema refinement (or
re-design) process. Different authors present the notion of functional de-
pendency in XML data and normal forms for XML data. Yu and Yagadish
(2008) give the definition of the Generalized Tree Tuple (GTT) and XNF
normal form. They present also a hierarchical and a flat representation
of XML data. The hierarchical representation of XML data from the pa-
per of Yu and Yagadish (2008) is used to define a triadic FCA approach
for a conceptual model of XML data. The formal tricontext of functional
dependencies with respect to a tuple class is given.

1. Introduction and Previous Work

The goal of relational database design is to generate a set of relation
schemas that allows us to store information without unnecessary redundancy.
The relation scheme obtained by translating the Entity-Relationship model is
a good starting point, but we still need to develop new techniques to detect
possible redundancies in the preliminary relation scheme. The normal form
satisfied by a relation is a measure of the redundancy in the relation. In or-
der to analyze the normal form of a relation we need to detect the functional
dependencies that are present in the relation.

XML is a popular data representation and exchange format over the web.
XML data design must ensure that there are no unintended redundancies,
since these can generate data inflation and transfer costs, as well as unneces-
sary storage. Hence, the good design of XML schemas is an important issue.
Redundancies are captured as functional dependencies in relational databases

Received by the editors: March 25, 2014.
2010 Mathematics Subject Classification. 68P15, 03G10.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design –

Scheme and subschema.
Key words and phrases. XML data design, Formal Concept Analysis.

80

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 81

and it is expected that they play a similar role in XML databases, having
specific properties and features due to the structure of XML data.

XML functional dependencies (XML FD) have become an important re-
search topic. In 2004, Arenas and Libkin ([1]) adopted a tree tuple-based
approach, defining for the first time an XML FD and a normal form. Yu and
Jagadish prove in [19] that the previously introduced notions of XML FD are
insufficient, and propose a generalized tree tuple-based XML FD.

Formal Concept Analysis offers an algebraic approach to data analysis
and knowledge processing. Hence, it lies at hand to use FCA for mapping
conceptual designs into XML schemas, since the XML data model is both hi-
erarchical and semistructured. The notion of dependencies between attributes
in a many-valued context has been introduced in [4], by Ganter and Wille.
J. Hereth investigates in [6] how some basic concepts from database theory
translate into the language of Formal Concept Analysis. He defines the power
context family resulting from the canonical translation of a relational data-
base. Regarding this power context family, he defines the formal context of
functional dependencies. A detailed analysis and complex examples of the for-
mal context of functional dependencies for a relational table are presented in
[9]. Determining the implications in this context is investigated in [10], using
a specially designed software. These are syntactically the same as functional
dependencies in the analyzed table.

Uncovering functional dependencies in XML using FCA has been studied
in [13]. AN XML document is read and the formal context corresponding to the
flat representation of the XML data is constructed. XML data is converted into
a fully unnested relation, a single relational table, and existing FD discovery
algorithms are applied directly. The implications are exactly the functional
dependencies in the analyzed XML data. This study is continued in [8] and [7].
Here a framework is proposed, which parses the XML document and constructs
the formal context corresponding to the flat representation of the XML data.
The concept lattice is a useful graphical representation of the analyzed XML
document’s elements and their hierarchy. Keys and functional dependencies in
XML data are determined, as attribute implications in the constructed formal
context. Then, the scheme of the XML document is transformed in GTT-XNF
using the detected functional dependencies.

In this article the hierarchical representation of XML data from the paper
of Yu and Yagadish (2008) is used to define a triadic FCA approach for a con-
ceptual model of XML data. The novelty of the paper is this triadic approach
and the proposed formal tricontext of functional dependencies with respect to
a tuple class.

82 CHRISTIAN SĂCĂREA AND VIORICA VARGA

2. Mining Functional Dependency in XML Data

XML functional dependency has been defined in different ways, but no gen-
erally accepted definition exists. The main problem with defining functional
dependency for XML databases is the absence of the definition of a tuple con-
cept for XML. Arenas and Libkin defined tree tuples based upon Document
Type Definition (DTD) schema [1]. In [13] an FCA based approach is given
to find functional dependency in XML data as using the approach from [1].
In this approach, the XML document is read and then the formal context
corresponding to the flat representation of the XML data is constructed. Here
we derive the list of implications, these implications are exactly the functional
dependencies in the analyzed flat representation of XML data.

Hartmann et al. [2, 3] define functional dependencies using the concept
of tree homomorphism. Wang [16] compared different functional dependency
definitions for XML and proposed a new definition of XML FD, which unifies
and generalizes the surveyed XML FDs. All these XML FD definitions are
based upon path expressions created from DTDs or XML Schema definitions.

Szabó and Benczúr [12] define the functional dependency concept on gen-
eral regular languages, which is applicable to XML. They consider an XML
document as a set of text fragments, each fragment being a string of symbols
and the types of these strings are sentences of a regular language.

Yu and Jagadish [19] found that the tree tuples model of Arenas and
Libkin [1] cannot handle set elements. They extend the tree tuple model as
Generalized Tree Tuple (GTT) by incorporating set element type into the
XML FD specification.

In [8] and its extended version [7], we propose a framework to mine FDs
from an XML database; it is based on the notions of Generalized Tree Tuple,
XML functional dependency and XML key notion as introduced by [19]. The
formal context for a tuple class or the whole XML document is constructed
from the flat representation of the generalized tree tuple. Non-leaf and leaf
level elements (or attributes) and corresponding values are inserted in the for-
mal context, then the concept lattice of the XML data is constructed. The
obtained conceptual hierarchy is a useful graphical representation of the ana-
lyzed XML document’s elements and their hierarchy. The software also finds
the keys in the XML document. The set of implications resulted from this
concept lattice will be equivalent to the set of functional dependencies that
hold in the XML database. If the XML data representation is nested, solving
the problem of mining XML FD’s using FCA becomes more complicated and
involves the use of multicontexts, tricontexts and power tricontexts families.

We start by recalling some basic definitions from [19].

Definition 1. (Schema) A schema is defined as a set S = (E, T, r), where:

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 83

• E is a finite set of element labels;
• T is a finite set of element types, and each e ∈ E is associated with a
τ ∈ T , written as (e : τ), τ has the next form:
τ ::= str | int | float | SetOf τ | Rcd[e1 : τ1, . . . , en : τn];
• r ∈ E is the label of the root element, whose associated element type

can not be SetOf τ .

This definition contains some basic constructs in XML Scheme [15]. The
types str,int and float are system defined simple types and Rcd indicate
complex scheme elements (elements with children elements). Keyword SetOf is
used to indicate set schema elements (elements that can have multiple match-
ing data elements sharing the same parent in the data). We will treat at-
tributes and elements in the same way, with a reserved ”@” symbol before
attributes.

Figure 1. Example Tree

Example 1. The scheme SCustOrder of XML document from Figure 1 is:

CustOrder:Rcd

Customers:SetOf Rcd

CustomerID: str

CompanyName: str

Address: str

City: str

Country: str

Phone: str

Orders: SetOf Rcd

OrderID: int

CustomerID: str

84 CHRISTIAN SĂCĂREA AND VIORICA VARGA

OrderDate: str

OrderDetails: SetOf Rcd

OrderID: int

ProductID: int

UnitPrice: float

Quantity: float

ProductName: str

CategoryID: int

A schema element ek can be identified through a path expression, path(ek) =
/e1/e2/.../ek, where e1 = r, and ei is associated with type τi ::= Rcd [..., ei+1 :
τi+1, ...] for all i ∈ [1, k − 1]. A path is repeatable, if ek is a set element. We
adopt XPath steps ”.” (self) and ”..” (parent) to form a relative path given
an anchor path.

Definition 2. (Data tree) An XML database is defined to be a rooted labeled
tree T = 〈N,P,V, nr〉, where:

• N is a set of labeled data nodes, each n ∈ N has a label e and a node
key that uniquely identifies it in T ;
• nr ∈ N is the root node;
• P is a set of parent-child edges, there is exactly one p = (n′, n) in P for

each n ∈ N (except nr), where n′ ∈ N,n 6= n′, n′ is called the parent
node, n is called the child node;
• V is a set of value assignments, there is exactly one v = (n, s) in V for

each leaf node n ∈ N , where s is a value of simple type.

We assign a node key, referred to as @key, to each data node in the data
tree in a pre-order traversal. A data element nk is a descendant of another data
element n1 if there exists a series of data elements ni, such that (ni, ni+1) ∈ P
for all i ∈ [1, k−1]. Data element nk can be addressed using a path expression,
path(nk) = /e1/ . . . /ek, where ei is the label of ni for each i ∈ [1, k], n1 = nr,
and (ni, ni+1) ∈ P for all i ∈ [1, k − 1].

A data element nk is called repeatable if ek corresponds to a set element
in the schema. Element nk is called a direct descendant of element na, if nk
is a descendant of na, path(nk) = . . . /ea/e1/ . . . /ek−1/ek, and ei is not a set
element for any i ∈ [1, k − 1].

In considering data redundancy, it is important to determine the equality
between the ”values” associated with two data elements, instead of comparing
their ”identities” which are represented by @key. So, we have:

Definition 3. (Element-value equality) Two data elements n1 of T1 = 〈N1,P1,
V1, nr1〉 and n2 of T2 = 〈N2,P2,V2, nr2〉 are element-value equal (written as
n1 =ev n2) if and only if:

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 85

• n1 and n2 both exist and have the same label;
• There exists a set M , such that for every pair (n′1, n

′
2) ∈M , n′1 =ev n

′
2,

where n′1, n
′
2 are children elements of n1, n2, respectively. Every child

element of n1 or n2 appears in exactly one pair in M .
• (n1, s) ∈ V1 if and only if (n2, s) ∈ V2,where s is a simple value.

Definition 4. (Path-value equality) Two data element paths p1 on T1 =
〈N1,P1,V1, nr1〉 and p2 on T2 = 〈N2,P2,V2, nr2〉 are path-value equal (written
as T1.p1 =pv T2.p2) if and only if there is a set M ′ of matching pairs where

• For each pair m′ = (n1, n2) in M ′, n1 ∈ N1, n2 ∈ N2, path(n1) = p1,
path(n2) = p2, and n1 =ev n2;
• All data elements with path p1 in T1 and path p2 in T2 participate in
M ′, and each such data element participates in only one such pair.

The definition of functional dependency in XML data needs the definition
of so called Generalized Tree Tuple.

Definition 5. (Generalized tree tuple) A generalized tree tuple of data tree
T = 〈N,P,V, nr〉, with regard to a particular data element np (called pivot
node), is a tree tTnp

= 〈N t,Pt,Vt, nr〉, where:

• N t ⊆ N is the set of nodes, np ∈ N t ;
• Pt ⊆ P is the set of parent-child edges;
• Vt ⊆ V is the set of value assignments;
• nr is the same root node in both tTnp

and T ;

• n ∈ N t if and only if: 1) n is a descendant or ancestor of np in T , or
2) n is a non-repeatable direct descendant of an ancestor of np in T ;
• (n1, n2) ∈ Pt if and only if n1 ∈ N t , n2 ∈ N t, (n1, n2) ∈ P;
• (n, s) ∈ Vt if and only if n ∈ N t, (n, s) ∈ V.

A generalized tree tuple is a data tree projected from the original data tree.
It has an extra parameter called a pivot node. In contrast with the notion of
a tree tuple defined in [1], which separate sibling nodes with the same path
at all hierarchy levels, the generalized tree tuple separate sibling nodes with
the same path above the pivot node. An example of a generalized tree tuple
is given in Figure 2. Based on the pivot node, generalized tree tuples can be
categorized into tuple classes:

Definition 6. (Tuple class) A tuple class CT
p of the data tree T is the set of

all generalized tree tuples tTn , where path(n) = p. Path p is called the pivot
path.

Definition 7. (XML FD) An XML FD is a triple 〈Cp, LHS,RHS〉, (LHS for
Left Hand Side part of FD and RH for Right Hand Side) written as LHS →

86 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 2. Example tree tuple

RHS w.r.t. Cp, where Cp denotes a tuple class, LHS is a set of paths (Pli ,
i = [1, n]) relative to p, and RHS is a single path (Pr) relative to p.

An XML FD holds on a data tree T (or T satisfies an XML FD) if and
only if for any two generalized tree tuples t1, t2 ∈ Cp

- ∃i ∈ [1, n] , t1.Pli =⊥ or t2.Pli =⊥, or
- If ∀i ∈ [1, n], t1.Pli =pv t2.Pli , then t1.Pr 6=⊥, t2.Pr 6=⊥, t1.Pr =pv t2.Pr.

A null value, ⊥, results from a path that matches no node in the tuple, and
=pv is the path-value equality defined in Definition 4.

Example 2. (XML FD) In our running example whenever two products agree
on ProductID values, they have the same ProductName. This can be formu-
lated as follows:
{./ProductID} → ./ProductName w.r.t COrderDetails

Another example is:
{./ProductID} → ./CategoryID w.r.t COrderDetails

In our approach we find the XML keys of a given XML document, so we
need the next definition:

Definition 8. (XML key) An XML Key of a data tree T is a pair 〈Cp, LHS〉,
where T satisfies the XML FD 〈Cp, LHS, ./@key〉.

Example 3. We have the XML FD: 〈COrders, ./OrderID, ./@key〉, which
implies that 〈COrders, ./OrderID〉 is an XML key.

Tuple classes with repeatable pivot paths are called essential tuple classes.

Definition 9. (Interesting XML FD) An XML FD 〈Cp, LHS,RHS〉 is inter-
esting if it satisfies the following conditions:

• RHS /∈ LHS;

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 87

Figure 3. Concept Lattice of functional dependencies’ Formal
Context for tuple class CCustomers

• Cp is an essential tuple class;
• RHS matches to descendent(s) of the pivot node.

Definition 10. (XML data redundancy) A data tree T contains a redundancy
if and only if T satisfies an interesting XML FD 〈Cp, LHS,RHS〉, but does
not satisfy the XML Key 〈Cp, LHS〉.

As pointed out by [19], the hierarchical representation of XML data avoids
many redundancies compared with the flat representation of XML data. Hence,
we can separate individual relations like RCustomers, ROrders or RFilm, RActor

as in Tables 3 and 4. There are two types of relevant XML functional depen-
dencies. The intra-relational XML FD’s are the XML FD’s whose LHS and
RHS paths are in the same relation. Hence, an intrarelational FD is one that
involves a single relation. As highlighted by [19], most of the interesting FD’s
in XML datasets are not intra-relational., i.e., they do not contain only LHS

88 CHRISTIAN SĂCĂREA AND VIORICA VARGA

or RHS paths within the same relation. Consider the XML data set in Figure
6. Then, intra-relational FD’s are SName → Founded, SName → film, and
film/Title, film/Year → film/Director, film/actor in RStudio.

3. FCA Grounded Discovery of Intra-relational Functional
Dependencies in XML Data

In order to mine intra-relational functional dependencies using FCA, we
can use the same procedure as in the flat representation of XML datasets.
This algorithm is presented in detail in [8] and [7], in the following we give
just a sketch of how it is done.

Consider, the tuple class CCustomers. First, we construct the formal context
of functional dependencies for XML data, see [7]. The concept lattice of this
context is represented in Figure 3. The concept lattice displays also the hierar-
chy of the analyzed data. For instance, the node labeled Customers/Country
is on a higher level than the node labeled Customers/City. The Customers
node with six attributes is a subconcept of the concept labeled Customers/City.
In our XML data, every customer has different name, address, phone number,
so these attributes appear in one concept node and imply each other.

We can also observe, that the information about Products is displayed on
the other side of the lattice. Products are in many-to-many relationships with
Orders, linked by OrderDetail in this case. The specially designed software
FCAMineXFD mines the functional dependencies. A part of these XML FD-s
are shown in Figure 4.

Given the set of dependencies discovered by this tool, we adopt the nor-
malization algorithm of [19] to convert one XML schema into a correct one.
The resulting scheme is shown in Figure 5.

4. Mining Inter-relational Functional Dependencies in XML
Data

XML data, due to its specificity, has two different representations: a flat
and hierarchical (non-flat) representation. XML elements may be simple ele-
ments but they also may nest other elements. Consider the XML document
from Figure 6. It displays information extracted from a movie database con-
cerning film studios, films, actors, etc.

The XML schema notation (XSN) allows to specify sequences and choices
of elements. The scheme SMoviesDB of XML document in XSN from Figure 6
is given by:

MoviesDB (studio*)

studio (SName, Founded, film*)

film (Title, Year, Director, actor*)

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 89

Figure 4. Functional dependencies in tuple class CCustomers

Table 1. Table Rroot

@key parent
1 ⊥

Table 2. Table RStudio

@key parent SName Founded
10 1 Columbia Pictures 1924
50 1 Warner Bros. Pictures 1923

actor (AName, Gender, Born, BornY?)

In the flat representation, the data tree is represented as a single relational
table. The hierarchical representation is more compact. The original XML
tree is represented by a set of nested relations based on the XML schema, each
relation Rp corresponds to an essential tuple class Cp (see [19]). In our movie

90 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 5. Correct XML Scheme

Table 3. Table RFilm

@key parent Title Year Director
13 10 Da Vinci Code 2006 Ron Howard
30 10 Captain Phillips 2013 Paul Greengrass
55 50 Extremely Loud & Incredibly Close 2011 Stephen Daldry
80 50 Gravity 2013 Alphonso Cuarón

Table 4. Table RActor

@key parent AName Gender Born BornYear
20 13 Tom Hanks M USA 1956
25 13 Audrey Tautou F France ⊥
35 30 Tom Hanks M USA 1956
40 30 Barkhad Abdi M Somalia ⊥
60 55 Thomas Horn M USA ⊥
65 55 Tom Hanks M USA 1956
70 55 Sandra Bullock F USA ⊥
85 80 Sandra Bullock F USA 1964

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 91

Figure 6. Movie Tree

dataset example, the hierarchical representation of the XML data from Figure
6 is given in the nested tables 1 - 4.

Every nested table is considered as a many-valued context. Through con-
ceptual scaling, we obtain a multi-context wherefrom we can construct a tri-
context.

In the following, we briefly recall some definitions.

Definition 11. A triadic formal context (shortly tricontext) is a quadruple
K := (K1,K2,K3, Y) where K1, K2 and K3 are sets, and Y is a ternary
relation between them, i. e., Y ⊆ K1×K2×K3. The elements of K1, K2 and
K3 are called (formal) objects, attributes, and conditions, respectively. An
element (g,m, b) ∈ Y is read object g has attribute m under condition b.

Definition 12 ([17]). A multicontext of signature σ : P → I2, where I and
P are non-empty sets, is be defined as a pair (SI , RP) consisting of a family
SI := (Si)i∈I of sets and a family RP := (Rp)p∈P of binary relations with
Rp ⊆ Si × Sj if σp = (i, j). A multicontext K := (SI , RP) can be understood
as a network of formal contexts Kp := (Si, Sj , Rp), with p ∈ P and σp = (i, j).
According to this understanding, the conceptual structure of a multicontext
K is constituted by the concept lattices of its components Kp.

In our example, every many-valued context representing a nested table
of the XML dataset is nominally scaled. We obtain four contexts, which
alltogether form the multicontext KMovie.

Example 4. The conceptual structure of the Movie multicontext is displayed
in the Figures 7-10.

92 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 7. Rroot

Figure 8. Rstudio

Figure 9. Rfilm

For a multicontext K := (SI , RP) of signature σ : P → I2, let I1 := {i ∈
I | σp = (i, j) for some p ∈ P} and I2 := {j ∈ I | σp = (i, j) for some p ∈ P}.

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 93

Figure 10. Ractor

Let GK :=
⋃

i∈I1 Si and MK :=
⋃

j∈I2 Sj . We can define a triadic context

(for short tri-context) by TK := (GK,MK, P, YK) with YK := {(g,m, p) ∈
GK ×MK × P | (g,m) ∈ Rp}. The conceptual structure of TK can be seen as
a natural triadic extension of the concept lattices B(Kp).

Definition 13. Given an XML database, the above construction gives us the
canonical translation of the XML database as a formal tricontext.

Example 5. The triadic context generated by the Movies multicontext has
as object set G := {1, 10, 50, 13, 30, 55, 80, 20, 25, 35, 40, 60, 65, 70, 85}, the at-
tribute set is obtained by taking all nominally scaled attributes of the four
many-valued contexts 1 - 4, and the condition set contains the labels of the
four hierarchical levels from > to Actor.

Definition 14. For {i, j, k} = {1, 2, 3} with j < k and for X ⊆ Ki and

Z ⊆ Kj ×Kk, the (−)(i)-derivation operators are defined by

X 7→ X(i) := {(aj , ak) ∈ Kj ×Kk | (ai, aj , ak) ∈ Y for all ai ∈ X},

Z 7→ Z(i) := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Z}.

94 CHRISTIAN SĂCĂREA AND VIORICA VARGA

These derivation operators correspond to the derivation operators of the
dyadic contexts defined by K(i) := (Ki,Kj ×Kk, Y

(i)), where

a1Y
(1)(a2, a3)⇔ a2Y

(2)(a1, a3)⇔ a3Y
(3)(a1, a3)⇔ (a1, a2, a3) ∈ Y.

Definition 15. For {i, j, k} = {1, 2, 3} and for Xi ⊆ Ki, Xj ⊆ Kj and Ak ⊆
Kk, the (−)Ak -derivation operators are defined by

Xi 7→ XAk
i := {aj ∈ Kj | (ai, aj , ak) ∈ Y for all (ai, ak) ∈ Xi ×Ak},

Xj 7→ XAk
j := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Xj ×Ak}.

These derivation operators correspond to the derivation operators of the

dyadic contexts defined by Kij
Ak

:= (Ki,Kj , Y
ij
Ak

) where

(ai, aj) ∈ Y ij
Ak
⇔ (ai, aj , ak) ∈ Y for all ak ∈ Ak.

Example 6. In the tricontext Movies, if g is an object, i.e., is a key of a node
in the XML dataset about movies, then i = 1, j = 2, k = 3 and g(1) is the tree
tuple having as root node the parent of g, while g(K3) is the generalized tree
tuple having g as a pivot element (see Definition 5).

This allows the algorithmic discovery of all generalized tree tuples with a
given pivot element. These generalized tree tuples are playing an essential role
in defining inter-relational functional dependencies as defined in [19]

If e is an element name, let A be the set of all nodes in the XML data set,
having as label the element name e. Then A(K3) is the tuple class of e (see
Definition 6).

We have represented all important elements from an XML dataset using
Triadic FCA. Discovering inter-relational functional dependencies can now be
done using the algorithms developed for mining triadic implications.

Definition 16. ([5]) If K := (G,M,B, Y) is a tricontext, R,S ⊆ M,C ⊆ B,

an expression of the form R
C→ S is called conditional attribute implication and

is read as R implies S under all conditions from C. A conditional attribute

implication R
C→ S holds in K if and only if the following is satisfied:

For each condition c ∈ C, it holds that if an object g ∈ G has all the
attributes in R then it also has all the attributes in S.

Definition 17. Let K be a the tricontext resulting from the canonical transla-
tion of an XML database. Let Cp be a tuple class. Then, the formal tricontext
of functional dependencies with respect to Cp is defined as XMLFD(K) :=
(Cp × Cp,M, P, Y), where M is the set of element names, P the set of nested
tables, and ((g, h), e, p) ∈ Y if and only if the path values of g and h are equal
with regard to path-value equality from Definition 4.

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 95

Proposition 1. The inter-relational functional dependencies of an XML data-
base are exactly the conditional attribute implications in XMLFD(K).

5. Conclusion and Further Research

As far as described above, FCA proves to be a valuable tool for the con-
ceptual design of XML data. XML data can be represented in hierarchical
or flat form. In a recent work we give an FCA based approach for mining
functional dependencies for flat XML data representation. In this paper we
define a triadic FCA approach for a conceptual model of hierarchical XML
data representation. The formal tricontext of functional dependencies with
respect to a tuple class is given. This triadic approach is applicable in discov-
ering inter-relational functional dependencies using algorithms developed for
mining triadic implications.

As future work we propose to develop a software which will build the
tricontext of an XML tree. The conditional attribute implications will give
the functional dependencies from XML tree.

References

[1] M. Arenas, L. Libkin: A normal form for XML documents. TODS 29(1), pp. 195-232
(2004)

[2] S. Hartmann, S. Link: More functional dependencies for XML. In: Proc. ADBIS, pp.
355-369 (2003)

[3] S. Hartmann, S. Link, T. Trinh: Solving the implication problem for XML functional
dependencies with properties. In: Logic, Language, Information and Computation, 17th
International Workshop, WoLLIC, pp. 161-175 (2010)

[4] B. Ganter, R., Wille: Formal Concept Analysis. Mathematical Foundations. Springer,
Berlin-Heidelberg-New York(1999)

[5] B. Ganter, S. Obiedkov, Implications in Triadic Formal Contexts, in ICCS 2004, LNAI
3127, pp. 186-195, Springer Verlag, 2004.

[6] J. Hereth: Relational Scaling and Databases. Proceedings of the 10th International
Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer
Verlag, pp. 62-76 (2002)

[7] K.T. Janosi-Rancz, V. Varga.: XML Schema Refinement Through Formal Concept Anal-
ysis, Studia Univ. Babes-Bolyai Cluj-Napoca, Informatica, vol. LVII, No. 3, pp. 49-64
(2012)

[8] K.T. Janosi-Rancz, V. Varga, T. Nagy: Detecting XML Functional Dependencies
through Formal Concept Analysis, 14th East European Conference on Advances in
Databases and Information Systems (ADBIS), Novi Sad, Serbia, LNCS 6295, pp. 595-
598 (2010).

[9] K.T. Janosi-Rancz, V. Varga: A Method for Mining Functional Dependecies in Rela-
tional Database Design Using FCA, Studia Univ. Babeş-Bolyai, Informatica, Vol. LIII,
Nr. 1 (2008), pp. 17-28.

96 CHRISTIAN SĂCĂREA AND VIORICA VARGA

[10] K.T. Janosi-Rancz, V. Varga, J. Puskas: A Software Tool for Data Analysis Based
on Formal Concept Analysis, Studia Univ. Babeş-Bolyai, Informatica, Vol. LIII, Nr. 2
(2008), pp. 67-78.

[11] F. Lehmann, R. Wille: A Triadic Approach to Formal Concept Analysis, in: Ellis,
G., Levinson, R., Rich, W., Sowa, J. F. (eds.), Conceptual Structures: Applications,
Implementation and Theory, vol. 954 of Lecture Notes in Artificial Intelligence, Springer
Verlag, (1995), pp. 32-43

[12] Gy. Szabó, A. Benczúr.: Functional Dependencies on Extended Relations Defined by
Regular Languages, Annals of Mathematics and Artificial Intelligence, May 2013, pp.
1-39.

[13] V. Varga, K.T. Janosi-Rancz, C. Sacarea, K. Csioban: XML Design: an FCA Point of
View, Proceedings of 2010 IEEE International Conference on Automation, Quality and
Testing, Robotics, Theta 17th edition, Cluj Napoca, pp. 165-170 (2010)

[14] M. W. Vincent, J. Liu, C. Liu: Strong functional dependencies and their application to
normal forms in XML, ACM TODS, 29(3), pp. 445-462 (2004)

[15] W3C. XML Schema, http://www.w3.org/XML/Schema (2014)
[16] J. Wang: A comparative study of functional dependencies for XML. In: APWeb, pp.

308-319 (2005)
[17] R. Wille: Conceptual Structures of Multicontexts. In Conceptual Structures: Knowledge

Representation as Interlingua Lecture Notes in Computer Science Volume 1115, (1996),
pp 23-39.

[18] S.A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian). Proceed-
ings of the 7th national conference on Artificial Intelligence KII, Russia, pp. 127-134
(2000).

[19] C. Yu, H. V. Jagadish: XML schema refinement through redundancy detection and
normalization, VLDB J. 17(2), pp. 203-223 (2008)

Babeş-Bolyai University, Cluj, Romania
E-mail address: csacarea@math.ubbcluj.ro

Babeş-Bolyai University, Cluj, Romania
E-mail address: ivarga@cs.ubbcluj.ro

