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RANKING FORMAL CONCEPTS BY UTILIZING MATRIX

FACTORIZATION

LENKA PISKOVÁ, TOMÁŠ HORVÁTH, AND STANISLAV KRAJČI

Abstract. Formal Concept Analysis often produce huge number of for-
mal concepts even for small input data. Such a large amount of formal
concepts, which is intractable to analyze for humans, calls for a kind of
a ranking of formal concepts according to their importance in the given
application domain. In this paper, we propose a novel approach to rank
formal concepts that utilizes matrix factorization, namely, a mapping of
objects and attributes to a common latent space. The lower the distance
between objects and/or attributes in the extent and/or intent of a for-
mal concept in the latent space of factors, the more important the formal
concept is considered to be. We provide an illustrative example of our ap-
proach and examine the impact of various matrix factorization techniques
using real-world benchmark data.

1. Introduction

Formal Concept Analysis (FCA) [9] is a method for analyzing object-
attribute data. In the basic setting, table entries are 1 or 0 indicating whether
an object has a given attribute or not. FCA aims at finding so-called formal
concepts (as well as the subconcept-superconcept relation among them) from
this data. A formal concept is a formalization of the concept of a ’concept’
which consists of two parts, a set of objects which forms its extension and a
set of attributes which forms its intension [16]. The set of all concepts ordered
by ≤ forms a complete lattice [9].

One of the obstacles in real-world application of FCA is that it often
produces a huge number of formal concepts which can be exponential in the
size of input data (see Table 3).

A kind of a ranking of resulting formal concepts would be beneficial for
a human expert in the process of analyzing the formal concepts. We think
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that such a ranking is domain and/or task specific and strongly depends on
the actual needs of a user (i.e. a domain expert which is intended to use the
outputs of FCA). Because of this, an approach to rank formal concepts should
be intuitive, easily understandable and provide sufficient insight for a user.

In this paper, we propose a novel approach to rank formal concepts that
utilizes matrix factorization, namely, a mapping of objects and attributes to
a common latent space. The lower the distance between objects and/or at-
tributes in the extent and/or intent of a formal concept in the latent space
of factors, the more important the formal concept is considered to be. The
presented approach is intuitive and easily explainable for users. It can be used
together with other approaches to rank formal concepts.

2. Related Work

The reduction of the number of formal concepts and, thus, the size of
concept lattices can be accomplished directly (removing formal concepts that
do not satisfy a requirement) or in an indirect way (through handling formal
contexts).

The aim of the approach in [5] is to find a decomposition of a Boolean
(binary) matrix (formal context) with the smallest number of factors (that
correspond to formal concepts) as possible. These factor concepts can be
considered more important than other concepts of the formal context.

The usage of rank-k SVD in order to reduce the size of the corresponding
concept lattice is proposed in [8]. However, SVD is not used to reduce the
number of objects and/or attributes, but instead, to remove noise in an input
table. Subsequently, the number of formal concepts is reduced. In [6], SVD
is used to decompose a document-term matrix into a much smaller matrix
where terms are related to a set of dimensions (factors) instead of documents.
This term-dimension matrix is then converted into a binary matrix using a
probabilistic approach.

The main idea of the JBOS (junction based on object similarity) method
is that groups of similar objects are replaced by representative ones. The
similarity of two objects is the sum of the weights of attributes in which the
objects agree with each other (both objects have them or both do not have
them) [7].

Another way is to reduce the number of formal concepts by means of
attribute-dependency formulas (ADF) expressing the relative importance of
attributes [3]. ADF depend on the purpose and have to be specified by an
expert. Only formal concepts satisfying the set of ADF are relevant. The ap-
proach in [2] also utilizes background knowledge. After a user assigns weights
to attributes, values of formal concepts are determined. Formal concepts with
higher values are considered more important.
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The idea of basic level of concepts appeared in [4]. Concepts in the basic
level represent those concepts which are preferred by humans to use when
describing the world around. The cohesion of a formal concept defined in [4],
unlike the coherence proposed in this work, is a measure of whether the objects
in its extent are pairwise similar.

The notion of the stability of a formal concept was introduced in [12].
The stability index indicates how much the intent of a concept depends on
the set of objects in the extent (intentional stability). Extentional stability
was defined analogously. Two other indices, probability and separation, are
proposed in [11] and their performance on noisy data is discussed.

Another option to reduce the size of concept lattices is to consider only
frequent formal concepts for a user given minimum support (Iceberg concept
lattice) [15]. Note that a concept (A,B) is frequent if the fraction of objects
that contain the attributes in B is above the minimum support threshold.

3. Formal Concept Analysis

A formal context is a triple (X,Y,R) consisting of a set X = {x1, . . . , xn} of
objects, a set Y = {y1, . . . , ym} of attributes and a binary relation R ⊆ X×Y
between them. We write (x, y) ∈ R if the object x has the attribute y.

For a set A ⊆ X of objects and a set B ⊆ Y of attributes we define
A′ = {y ∈ Y : (∀x ∈ A)(x, y) ∈ R} and B′ = {x ∈ X : (∀y ∈ B)(x, y) ∈ R}.
A′ is the set of attributes common to the objects in A and B′ is the set of
objects which have all the attributes in B.

A formal concept of (X,Y,R) is a pair (A,B) where A ⊆ X,B ⊆ Y,A′ = B
and B′ = A. A and B are called the extent and the intent of the con-
cept (A,B), respectively. The set of all concepts of (X,Y,R) is denoted by
B(X,Y,R). A ⊆ X (B ⊆ Y ) is an extent (intent) if and only if A′′ = A
(B′′ = B).

We define a partial order ≤ on B(X,Y,R) by (A1, B1) ≤ (A2, B2))⇔ A1 ⊆
A2 (equivalently, B1 ⊇ B2). The set of all concepts of (X,Y,R) ordered by ≤
constitutes the concept lattice (B(X,Y,R),≤) of (X,Y,R) [16].

For more details on Formal Concept Analysis we refer to [9].

Example: The formal context in Table 1 induces 26 formal concepts:
C1 = ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, ∅),
C2 = ({1, 2, 3, 5, 6, 7, 10, 12, 14}, {1}), C3 = ({1, 9, 10, 11}, {4}),
C4 = ({4, 8, 9, 10, 11, 13, 14, 15}, {6}),
C5 = ({1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15}, {8}),
C6 = ({1, 10}, {1, 4}), C7 = ({9, 10, 11}, {4, 6}),
C8 = ({6, 8, 12}, {5, 8}), C9 = ({4, 8, 9, 11, 13, 15}, {6, 8}),
C10 = ({8, 10, 13, 14, 15}, {6, 10}), C11 = ({1, 2, 3, 4, 5, 6, 7, 9, 11, 12}, {8, 9}),
C12 = ({10, 14}, {1, 6, 10}), C13 = ({1, 9, 11}, {4, 8, 9}),
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Table 1. An illustrative example of a formal context of ani-
mals and their attributes (a cross in a row x and a column y
indicates that the object x has the attribute y)
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1 Bat × × × × ×
2 Bear × × × ×
3 Cat × × × × ×
4 Chicken × × × × ×
5 Dog × × × × ×
6 Dolphin × × × × ×
7 Elephant × × × ×
8 Frog × × × ×
9 Hawk × × × × ×
10 Housefly × × × ×
11 Owl × × × × ×
12 Sea lion × × × × ×
13 Snake × × × ×
14 Spider × × ×
15 Turtle × × × ×

C14 = ({8, 13, 15}, {6, 8, 10}), C15 = ({3, 4, 5}, {8, 9, 11}),
C16 = ({10}, {1, 4, 6, 10}), C17 = ({1, 2, 3, 5, 6, 7, 12}, {1, 7, 8, 9}),
C18 = ({4, 9, 11}, {2, 6, 8, 9}), C19 = ({13, 15}, {3, 6, 8, 10}),
C20 = ({8}, {5, 6, 8, 10}), C21 = ({1}, {1, 4, 7, 8, 9}),
C22 = ({6, 12}, {1, 5, 7, 8, 9}) , C23 = ({3, 5}, {1, 7, 8, 9, 11}),
C24 = ({9, 11}, {2, 4, 6, 8, 9}), C25 = ({4}, {2, 6, 8, 9, 11}),
C26 = (∅, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11})

4. Outline of Our Approach

Each formal context (input data for FCA) can be viewed as a matrix with
n rows representing objects, m columns representing attributes and values 1
or 0 depending on whether an object has a given attribute or not. Thence, we
can refer to a context as a matrix R ∈ {0, 1}n×m.

Consider a formal context R in Table 1, in which objects x1, . . . , xn ∈ X
are animals and y1, . . . , ym ∈ Y are attributes which relate to animals, e.g. can
fly, has a backbone, is warm-blooded, etc. Using a matrix factorization method
we can create an approximation of a formal context R by a product of two or
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more matrices. Factorizing R means mapping the objects and attributes to a
common k-dimensional latent space, the coordinates of which are called the
factors. For attributes of animals, the discovered factors might measure obvi-
ous dimensions such as whether an animal is a mammal or whether an animal
can fly; less well-defined dimensions such as whether an animal is dangerous
or not; or, completely uninterpretable dimensions. For animals, each factor
measures the extent to which the animal possesses the corresponding factor.
Note that we are not concerned in the exact interpretation of the factors in this
work since it belongs rather to areas of human sciences ( psychology, sociology,
etc.).

We use the idea of mapping of objects and attributes to a common latent
factor space to define the coherence of a formal concept. The coherence is
based on the distance between objects and/or attributes in the common la-
tent factor space; objects which are close to each other share more common
characteristics than objects which are remote from each other (similarly for
attributes). For example, the distance between cat and dog should be small
unlike the distance between cat and housefly. The attributes cold-blooded and
warm-blooded should be remote from each other since these attributes exclude
each other, i.e. if an animal is cold-blooded, it can not be warm-blooded and
vice versa. Naturally, the location of objects and attributes in a latent factor
space is dependent on an input (formal context) what will be seen later in
Section 6.

5. Matrix Factorization

For the decomposition of formal contexts (Boolean matrices), Boolean Ma-
trix Factorization is a natural choice. However, we also provided experiments
with other factorization techniques, namely Singular Value Decomposition and
Non-negative Matrix Factorization.

5.1. Boolean Matrix Factorization (BMF). The aim of Boolean Ma-
trix Factorization (BMF) is to find a decomposition of a given matrix X ∈
{0, 1}n×m into a Boolean matrix product

X = A ◦B (or X ≈ A ◦B)

of matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m. [5]
A Boolean matrix product A ◦B is defined by

(A ◦B)ij =
k

max
l=1

Ail ·Blj ,

where max denotes the maximum and · the ordinary product.
A decomposition of X = A◦B corresponds to a discovery of k factors that

exactly or approximately explain the data. The least k for which an exact
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decomposition X = A ◦ B exists is called the Boolean rank (Schein rank) of
X.

There are two different problems to solve in BMF:

• Discrete Basis Problem (DBP): Given X ∈ {0, 1}n×m and an integer
k > 0, find A ∈ {0, 1}n×k and B ∈ {0, 1}k×m that minimize ||X −A ◦
B|| =

∑
ij |Xij − (A ◦B)ij |. [14]

• Approximate Factorization Problem (AFP): Given X and an error
ε ≥ 0, find A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with k as small as
possible such that ||X −A ◦B|| ≤ ε. [5]

In this paper, we have used the greedy approximation algorithm for BMF
described in [5] (where it is called Algorithm 2).

5.2. Singular Value Decomposition (SVD). Singular Value Decomposi-
tion (SVD) is a factorization of a matrix X ∈ Rn×m by the product of three
matrices X = UΣV T where U ∈ Rn×n, Σ ∈ Rn×m and V ∈ Rm×m such that
UTU = I, V TV = I (where I is an identity matrix), column vectors of U (left-
singular vectors) are orthonormal eigenvectors of XXT , column vectors of V
(right-singular vectors) are orthonormal eigenvectors of XTX and Σ contains
singular values of X at the diagonal in descending order.

We can create an approximation X̂ of a matrix X as

X ≈ X̂ = UΣV T ,

where U ∈ Rn×k, Σ ∈ Rk×k and V ∈ Rm×k.

5.3. Non-negative Matrix Factorization (NMF). Let X be an n × m
non-negative matrix and k > 0 an integer. The goal of Non-negative Matrix
Factorization (NMF) [13] is to find an approximation

X ≈WH,

where W and H are n× k and k ×m non-negative matrices, respectively.
The matrices W and H are estimated by minimizing the function

D(X,WH) + Reg(W,H),

where D measures the divergence and Reg is an optional regularization
function. The different types of NMF arise from using different cost functions
for measuring the divergence between X and WH, and by regularization of
W and/or H.

The quality of the approximation is quantified by a cost function D. The
common cost function between two non-negative matrices A and B is the
squared error (Frobenius norm)

D(A,B) =
∑
ij

(aij − bij)
2.
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6. The Proposed Approach

The notation we use in this and subsequent sections is the following:

• distance(x1, x2) denotes a distance between objects x1 and x2 in the
latent space,
• coherence(C) denotes the degree of coherence of a formal concept C

Let R be a formal context, X = {x1, . . . , xn} and Y = {y1, . . . , ym} be the
sets of objects and attributes of R, respectively. After the decomposition of R
each object xi ∈ X is represented by a k-dimensional vector of latent factors
(xi1 , . . . , xik) describing the object and each attribute yj ∈ Y is represented
by a k-dimensional vector of factors (yj1 , . . . , yjk) describing the attribute.
Obviously, some objects are close to each other, while other objects are far
away from each other (depending on the distance between objects) in the space
of factors.

In our experiments, we have used the Manhattan distance (L1 distance)
and the Euclidean distance (Euclidean metric, L2 distance). The distance
between two objects x1, x2 ∈ X (i.e. k-dimensional vectors (x11 , . . . , x1k) and
(x21 , . . . , x2k) of latent factors) is given by

(Manhattan distance) distance(x1, x2) =
1

k

k∑
l=1

|x1l − x2l |

(Euclidean distance) distance(x1, x2) =

√√√√1

k

k∑
l=1

(x1l − x2l)
2

To have distance ∈ [0, 1] we put 1
k to the equations Manhattan distance

and Euclidean distance. The distance between attributes or between an object
and an attribute in the latent factor space can be computed similarly.

One natural way to measure the coherence of a formal concept is by using
the distance (Manhattan, Euclidean) between the objects in the extent of the
formal concept as

(1) coherencemax
X (A,B) = 1− max

x1,x2∈A
distance(x1, x2)

Alternatively, we might put

(2) coherenceavg
X (A,B) = 1−

∑
{x1,x2}⊆A,x1 6=x2

distance(x1, x2)

|A|(|A| − 1)/2

Simply, coherencemax
X (A,B) is computed by the maximum distance be-

tween any two objects in the extent of (A,B) and coherenceavg
X (A,B) is com-

puted using the average distance between two objects in the extent of (A,B).
Thus, coherencemax

X (A,B) ≤ coherenceavg
X (A,B).
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Formal concepts with similar objects (i.e. objects that share many com-
mon attributes) in their extents have a high degree of coherencemax

X and
coherenceavg

X (provided that similar objects are close to each other while dis-
tinct objects are remote from each other in the space of factors what will be
seen later).

Similarly, the coherence of a formal concept can be measured using the
distance between the attributes in its intent (denoted by coherencemax

Y and
coherenceavg

Y ). Alternatively, we can use the distance between both, the ob-
jects and attributes in the extent and intent of a formal concept, respectively
(denoted by coherencemax and coherenceavg).

It is easy to see that if (A1, B1) ≤ (A2, B2), then coherencemax
X (A1, B1) ≥

coherencemax
X (A2, B2) and coherencemax

Y (A1, B1) ≤ coherencemax
Y (A2, B2).

Remark: From the above mentioned assumptions it follows that the decision
of whether to use coherence?

Y or coherence?
X , where ? = max or ? = avg,

depends on user/expert preferences. coherence?
Y prefers specific concepts (a

concept is specific if it consists of a few objects that share many attributes, see
Fig. 2) while coherence?

X tends to prefer general concepts (a concept is general
if it consists of many objects that have only a few attributes in common, see
Fig. 3).

Now, we are able to assign a degree of coherence to each formal concept of a
formal context. We consider formal concepts with higher degrees of coherence
more important.

6.1. Illustrative Example. In this section we demonstrate our approach on
a small example. It depends on the outcome of a matrix factorization method
whether the results provided by our approach will be good or not. Therefore,
we first address the problem of matrix factorization, and then we analyze the
results themselves.

For the decomposition of the formal context in Table 1 we utilize Boolean
Matrix Factorization (BMF) due to the good interpretability of factors. Using
BMF the animals and their attributes are mapped to 8-dimensional space of
latent factors which is shown in Fig. 1.

The interpretation of the factors might be the following: The first factor
can be interpreted as the property of being a mammal (manifestations of the
factor are: fur (hair), produces milk, has a backbone, warm-blooded) and the
second factor can be interpreted as the property of being a bird (manifestations
of this factor are feathers, lays eggs, has a backbone, warm-blooded). The other
factors relates to the attributes cold-blooded, scales, can fly, lives in water,
domestic, fur (hair), respectively.

The animals bear and elephant are mapped to the same point in the space
of latent factors. The same is true for cat and dog, dolphin and sea lion, hawk
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Figure 1. The decomposition of the formal context in Table
1 using BMF
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2 Bear × ×
3 Cat × × ×
4 Chicken × ×
5 Dog × × ×
6 Dolphin × × ×
7 Elephant × ×
8 Frog × ×
9 Hawk × ×
10 Housefly × × ×
11 Owl × ×
12 Sea lion × × ×
13 Snake × ×
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factor 1 × × × ×
factor 2 × × × ×
factor 3 × ×
factor 4 × × × ×
factor 5 ×
factor 6 × ×
factor 7 × × ×
factor 8 ×

and owl as well as snake and turtle. According to Table 1 these animals agree
with each other, i.e. either all of the animals have some attribute or none of
them. In the contrary, for the animals owl and sea lion, if one of the animals
has a factor, then the second one does not have the factor. Correspondingly,
if owl has an attribute in the formal context in Table 1, then sea lion does not
have the attribute and vice versa (except for the attributes has a backbone and
warm-blooded contained in the manifestations in both of the first two factors).



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 71

In the space of factors, the attributes lays eggs and cold-blooded differ only
in the second factor. All the animals in the formal context in Table 1 except
for chicken, hawk and owl (e.g. except for birds) agree on these attributes.

After the decomposition of the formal context in Table 1, we can measure
the distance between animals (objects) and/or their properties (attributes) in
the space of factors. Using Manhattan distance, distance(bear, elephant) = 0,
distance(owl, sea lion) = 5

8 , distance(lays eggs, cold-blooded) = 1
8 .

It is important to notice that the location of objects and attributes in the
common factor space depends on the formal context, mainly on the selection
of appropriate attributes. A formal context that does not contain “good”
attributes may cause that different animals will have many factors in common.

For each formal concept of the formal context in Table 1 we can compute
the degree of coherence. For example,
coherencemax

X (C18) = 1− 2
8 = 0.75,

coherenceavg
X (C18) = 1−

2
8

+ 2
8

+0

3 = 1− 1
6 = 5

6 ,

coherencemax
Y (C18) = 1− 4

8 = 0.5,

coherenceavg
Y (C18) = 1−

2
8

+ 4
8

+ 2
8

+ 4
8

+ 4
8

+ 2
8

6 = 1− 3
8 = 5

8 .
Formal concepts C1, . . . , C26 and their degrees of coherence are shown in

Table 2. Remember that the higher the coherence, we consider the formal
concept more important.

Figure 2. The concept lattice of animals. The formal con-
cepts with coherenceavg

X greater or equal to 0.85 using BMF
are highlighted in black
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Table 2. The coherence (computed using Manhattan dis-
tance) of the formal concepts of Table 1 rounded to two decimal
places

intent of (A,B) coherence of (A,B)
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1. 0.38 0.60 0.38 0.60 1.00 1.00
2. × 0.50 0.78 0.50 0.76 1.00 1.00
3. × 0.63 0.75 0.63 0.71 1.00 1.00
4. × 0.38 0.64 0.38 0.63 1.00 1.00
5. × 0.25 0.57 0.38 0.59 1.00 1.00
6. × × 0.63 0.73 0.75 0.75 0.63 0.63
7. × × 0.50 0.70 0.63 0.75 0.50 0.50
8. × × 0.38 0.65 0.63 0.75 0.50 0.50
9. × × 0.38 0.60 0.50 0.63 0.50 0.50
10. × × 0.50 0.76 0.63 0.75 0.88 0.88
11. × × 0.25 0.63 0.38 0.66 0.75 0.75
12. × × × 0.38 0.65 0.88 0.88 0.38 0.58
13. × × × 0.25 0.60 0.63 0.75 0.25 0.50
14. × × × 0.38 0.70 0.75 0.83 0.38 0.58
15. × × × 0.50 0.71 0.63 0.75 0.50 0.67
16. × × × × 0.38 0.60 1.00 1.00 0.38 0.58
17. × × × × 0.25 0.74 0.75 0.85 0.38 0.65
18. × × × × 0.38 0.68 0.75 0.83 0.50 0.63
19. × × × × 0.38 0.74 1.00 1.00 0.38 0.65
20. × × × × 0.38 0.60 1.00 1.00 0.38 0.56
21. × × × × × 0.25 0.61 1.00 1.00 0.25 0.60
22. × × × × × 0.38 0.67 1.00 1.00 0.38 0.63
23. × × × × × 0.38 0.70 1.00 1.00 0.38 0.65
24. × × × × × 0.25 0.64 1.00 1.00 0.25 0.58
25. × × × × × 0.50 0.68 1.00 1.00 0.50 0.63
26. × × × × × × × × × × × 0.25 0.63 1.00 1.00 0.25 0.63

The most coherent formal concepts using coherenceavg
X (the 4th column

in Table 2) sorted in descending degree are C16, C19 − C25, C12 and C17

(Fig. 2). The formal concepts C19, C22, C23, C12 and C17 can be named
as “reptiles” (snake, turtle), “sea mammals” (dolphin, sea lion), “pets” (cat,
dog), “invertebrate animals” (housefly, spider) and “mammals” (bat, bear, cat,
dog, dolphin, elephant, sea lion), respectively.

Next, consider the most coherent concepts using the coherence measured
on the attributes only coherencemax

Y (the 5th column in Table 2). The concepts
in descending order of the degree of coherence are C2 − C5, C10, C11, C6, C7,
C8, C9, C15, C18 and C25 (Fig. 3). The concepts C5, C10, C11, C8, C15 and
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Figure 3. The concept lattice of animals. The formal con-
cepts having coherencemax

Y greater or equal to 0.75 using BMF
are highlighted in black

C18 represent “vertebrate animals”, “cold-blooded animals”, “warm-blooded
animals”, “aquatic animals”, “domestic animals” and “birds”.

The interpretation of other results (i.e. these provided by coherencemax,
coherenceavg, coherencemax

X and coherenceavg
Y ) is left to the reader.

The decision of whether to compute the coherence on objects or attributes
as well as the use of coherencemax or coherenceavg depends on the purpose of
the concrete application of FCA on the data and also on other user-related
factors.

7. Experiments

In this section, we present some experiments we have performed to give a
deeper insight into the behaviour of the proposed method for ranking formal
concepts. Benchmark data sets used for these experiments are taken from the
UCI Machine Learning Repository [1] characteristics of which are shown in
Table 3.

7.1. Experiment 1. In the first experiment, we have explored the degrees of
coherence that are assigned to formal concepts.

Using Boolean Matrix Factorization (BMF) for the decomposition of for-
mal contexts we have found out that (see Table 4):
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Table 3. Some characteristics of the used data sets in our experiments

Dataset # Objects # Attributes # Factors (BMF) # Formal Concepts

Car 1728 25 25 12640
Spect Heart 267 46 46 2135549
Tic-tac-toe 958 29 29 59505

Wine 178 68 57 24423

• Many concepts of the formal contexts (data sets) have the same de-
gree of coherence if we measure the coherence using maximum dis-
tance between objects and/or attributes in the factor space. For
example, for wine data set the total number of formal concepts is
24423, each of which is assigned 1 out of 12 degrees of coherence (us-
ing coherencemax).
• The number of distinct coherence values computed by the maximum

distance is identical using either of the two distance measures (Man-
hattan, Euclidean).
• coherencemax

X and coherenceavg
X provide more distinct coherence values

than coherencemax
Y and coherenceavg

Y , respectively. It follows from the
fact that the number of objects is greater than the number of attributes
for each data set.
• It is appropriate to utilize the Euclidean distance instead of the Man-

hattan distance for measuring the coherence, because the number of
distinct degrees of coherence that are assigned to formal concepts is
greater if we use the Euclidean distance (what is not surprising, since
the factor matrices are binary, i.e. contain only 0s and 1s).
• For tic-tac-toe data the number of distinct degrees of coherence as-

signed to formal concepts using coherencemax
Y and coherenceavg

Y is very
small, because each attribute possesses a unique factor no other at-
tribute has.

We can conclude that, using BMF, the same coherence degree is assigned
to many formal concepts (see Table 4). These concepts are then ranked at the
same position which is not useful for a user.

We have also carried out similar experiment where SVD and NMF were
used for the decomposition of formal contexts. Remember that factor matrices
generated by SVD and NMF are real-valued matrices. Therefore, using the
average distance between objects and/or attributes in a factor space, almost
all formal concepts take on different degrees of coherence. Further, using the
maximum distance between objects and/or attributes in a space of factors, the
number of distinct degrees of coherence is greater (in comparison to the case
of using BMF) when we use SVD or NMF for the decomposition of formal
contexts.
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Table 4. The numbers of distinct values of coherence that the
formal concepts of the formal contexts (data sets) take on using
the respective ways of measuring the coherence (BMF was used
for decomposition of data sets)

Manhattan distance Euclidean distance
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Car 7 826 8 609 6 28 7 2326 8 1381 6 57
Spect Heart 15 231041 25 153976 5 127 15 2072196 25 1969571 5 372
Tic-tac-toe 8 1156 10 1048 2 2 8 6557 10 5402 2 6

Wine 12 4906 16 3127 17 651 12 24360 16 16868 17 8132

The use of SVD and NMF in our approach allow us to differentiate better
between formal concepts with respect to degrees of coherence, and thus are
better for ranking formal concepts according to their coherence. From this
point of view, it is also appropriate to measure the coherence utilizing the av-
erage distance (not the maximum distance) between objects and/or attributes
in the extents and/or intents of formal concepts, respectively.

7.2. Experiment 2. The aim of the second experiment is to investigate the
impact of matrix factorization methods on the selection of important (coher-
ent) formal concepts. Hence, we have compared the top-k most coherent for-
mal concepts resulting from our approach by using various methods of matrix
decomposition.

Based on the conclusions of the previous experiment, matrix factorization
methods that decompose a matrix into a product of real-valued matrices are
better if we want to rank formal concepts according to their degrees of co-
herence. Thus, in this experiment we have used SVD and NMF for matrix
decomposition.

For a formal concept (A,B) it holds that if |A| ≤ 1 (|B| ≤ 1), then
coherence?

X = 1 (coherence?
Y = 1), where ? = max or ? = avg. The number of

formal concepts satisfying these conditions, and thus having the corresponding
degrees of coherence equal to 1 are shown in Table 5. Since this assertion holds
regardless of the selected method of matrix factorization, we did not consider
such formal concepts in this experiment. Obviously, formal concepts that do
not satisfy these conditions can also have degrees of coherence equal to 1.

The results of the comparison of the top-k most coherent formal concepts
using SVD and NMF are shown in Fig. 4 – Fig. 7.
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Table 5. The number of formal concepts (A,B) such that
|A| ≤ 1 or |B| ≤ 1

Dataset # Formal Concepts
(A,B) having |A| ≤ 1

# Formal Concepts
(A,B) having |B| ≤ 1

Car 1729 23
Spect Hear 215 44
Tic-tac-toe 959 30

Wine 169 37

(a) Manhattan distance (b) Euclidean distance

Figure 4. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Car dataset using Manhattan distance (Fig. 4(a))
and Euclidean distance (Fig. 4(b)).

The used matrix factorization method has only a little influence on formal
concepts provided by coherenceavg (except for the Spect Heart dataset). Ap-
proximately 80% of formal concepts provided by coherenceavg are the same
if we decompose data sets using SVD or NMF (for the Car and Tic-tac-toe
datasets). On the other hand, coherencemax, coherencemax

Y and coherenceavg
Y

are quite sensitive on the selected method of matrix decomposition. The re-
sults are similar regardless of the computation of the distance in a space of
factors (Manhattan distance, Euclidean distance).

8. Conclusions

We have introduced a novel approach to rank (and thus to reduce the
number of) formal concepts utilizing different types of matrix factorization
methods. Besides the intuitive choice, the Boolean Matrix Factorization tech-
nique (BMF), we have utilized also Singular Value Decomposition (SVD) and
Non-negative Matrix Factorization (NMF). As our experiments showed, using
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(a) Manhattan distance (b) Euclidean distance

Figure 5. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Spect Heart dataset using Manhattan distance (Fig.
5(a)) and Euclidean distance (Fig. 5(b)).

(a) Manhattan distance (b) Euclidean distance

Figure 6. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Tic-tac-toe dataset using Manhattan distance (Fig.
6(a)) and Euclidean distance (Fig. 6(b)).

BMF in our approach results in a case when only a small number of distinct
values are assigned to formal concepts and thus many formal concepts have
the same degree of coherence which is not helpful in ranking. However, having
just a small number of different ranking degrees could be interesting in some
cases of application of FCA to data.

The main research issue we would like to focus on the following issues:
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(a) Manhattan distance (b) Euclidean distance

Figure 7. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Wine dataset using Manhattan distance (Fig. 7(a))
and Euclidean distance (Fig. 7(b)).

• Experimental evaluation of the proposed approach on several real-
world data sets including qualitative evaluation of the results by do-
main experts.
• Comparison with other techniques to select important formal concepts,

in particular with the one for selecting basic level concepts [4].
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University, Jesenná 5, Košice, Slovakia
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