
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

Incremental Computation of Concept Diagrams

FRANCESCO KRIEGEL

Abstract. Suppose a formal context K = (G,M, I) is given, whose con-
cept lattice B(K) with an attribute-additive concept diagram is already
known, and an attribute column C = (G, {n} , J) shall be inserted to or
removed from it. This paper introduces and proves an incremental update
algorithm for both tasks.

1. Introduction

Every formal context K = (G,M, I) can be displayed by means of an
(attribute-additive) diagram of its concept lattice B(K). However, common
algorithms focus on the computation of the concept set B(K) or the concept
neighborhood1 ≺ as a whole, and do not provide any hints how to update
the concept set, the concept neighborhood or even the concept diagram2 upon
changes in the underlying formal context.

Thus, each change would require a recomputation of the whole concept
diagram. This means that unchanging fragments would be recomputed (which
can be expensive), and furthermore it is then even not guaranteed that the
unchanged parts of the concept diagram can be recognized as unchanged in the
visualization by the user. To overcome this, I investigated the task of inserting
or removing an attribute column into or from a formal context while updating
the corresponding concept diagram with as little effort or visual changes as

Received by the editors: March 31, 2014.
2010 Mathematics Subject Classification. 03G10.
1998 CR Categories and Descriptors. I.2.4 Knowledge Representation Formalisms and

Methods.
Key words and phrases. Formal Concept Analysis, Concept Diagrams.
1The concept set may be ordered by extent inclusion, which yields a complete lattice

B(K) = (B(K),≤), see second section or Ganter’s book [2] for further details. The concept
neighborhood ≺ is the reflexive-transitive reduction of the concept order ≤.

2A concept diagram is a twice labeled directed acyclic graph (B(K),≺, γ−1, µ−1) induced
by the neighborhood relation on the concept set, together with a function that maps each
node to a position into a vector space, and each node (A,B) is labeled below by all objects
g ∈ G, whose object concept γ(g) equals (A,B), and dually labeled above by all attributes
m ∈M with µ(m) = (A,B).

45

46 FRANCESCO KRIEGEL

possible. The algorithm is called iFox,3 and could further be used to deduce
an update algorithm for setting or deleting just a single incidence entry in K,
or for adding or removing a bunch of attribute columns at once, or dualizing
it to the insertion or removal of object rows. 4

The next section gives some preliminaries on basic FCA and some lemmata
for context appositions, the third section then formulates the necessary propo-
sitions to update the concept set, the neighborhood relation, the labels, the
reducibility and seeds (for attributes, when drawing attribute-additive con-
cept diagrams), and the arrow relations, respectivelly. Finally, the algorithm
is formulated in pseudo code and its complexity is determined.

All lemmata and theorems can be found in, or are a condensed represen-
tation of, [4], except the last proposition describing the incremental update
for the down arrows. The references further include some additional hints
from the reviewers. This paper does not cover the incremental computation of
pseudo-intents or implication bases. If you are interested in this topic, please
have a look at Obiedkov and Duquenne’s paper [5].

2. Preliminaries

2.1. Basics of Formal Concept Analysis. A formal context K = (G,M, I)
consists of two sets G (objects) and M (attributes), and furthermore a binary
relation I ⊆ G × M (incidence) between them. For a pair (g,m) that is
enclosed in I, we also write gIm and say that object g has attribute m (in
context K). A common visualization is a cross table as shown in the figure
below on the left and another one on the right.

G

M

I

g

m
I m

g ×

A formal concept (A,B) of a context K consists of two sets, an extent A ⊆ G
and an intent B ⊆M , such that their cartesian product A×B forms a maximal
rectangle within the incidence relation I, more formally

A = BI := {g ∈ G | ∀m∈B gIm} and B = AI := {m ∈M | ∀g∈A gIm} .

3Historical note: In my time at SAP I implemented a FCA library called fcaFox, including
an iPred algorithm. Thus, I chose the name iFox for my algorithm for the incremental
computation of concept diagrams.

4If one wants to dualize the algorithm for row insertion or removal, and the concept
diagram is still to be drawn attribute-additivelly, a characterization for the object reducibility
update is neccessary. This can be found in [4].

Incremental Computation of Concept Diagrams 47

M

G A

B

I

6∃

6∃

The set of all formal concepts is denoted by B(K), and this set can be ordered
by means of the extents, i.e. concept (A,B) is smaller than or equals concept
(C,D) iff extent A is contained in extent C, symbol: (A,B) ≤ (C,D).

B(K) := (B(K),≤) is a complete lattice and its infima and suprema are
given by the equations

∧
t∈T

(At, Bt) =

⋂
t∈T

At,

(⋃
t∈T

Bt

)II and
∨
t∈T

(At, Bt) =

(⋃
t∈T

At

)II
,
⋂
t∈T

Bt

 .

Sometimes the concept lattice of a given formal context shall be visualized
for a highly structured and integrated view on its content. For this purpose the
definition of a concept lattice is extended to the following notion of a concept
diagram.

Definition 1. Let K be a formal context and V a vector space, e.g. the real
plane R2 or the real space R3 (or a discrete subset of them like Z2) for common
visualizations. An attribute-additive concept diagram of K in V is a tuple

Bλ,σ(K) := (B(K),≺, λ, σ)

with the following components:

(1) the concept lattice (B(K),≤) and its neighborhood relation ≺,
(2) the default label mapping (other choices possible, e.g. extent cardinal-

ity)

λ :
B(K)→ ℘(G)× ℘(M)

b 7→ ({γ = b} , {µ = b}) ,

where all object labels in the first component γ−1(b) are drawn below
the concept b, and dually all attribute labels in the second component
µ−1(b) are drawn above b,

(3) and an arbitrary seed vector mapping σ : Mirr → V .

48 FRANCESCO KRIEGEL

The position of a concept (A,B) in V is then defined as the sum of the seed
vectors of all irreducible attributes in the intent, i.e.

π(A,B) :=
∑

m∈B∩Mirr

σ(m).

2.2. Appositions of Formal Contexts. For two formal contexts (G,M, I)
and (G,N, J) with disjoint attribute sets M∩N = ∅ their apposition is defined
as

(G,M, I)|(G,N, J) := (G,M ∪̇N, I ∪̇ J).

Lemma 2. Let (G,M, I)|(G,N, J) be an apposition context, then the following
equations hold for arbitrary objects g ∈ G and attributes m ∈M and n ∈ N .

(1) g(I ∪̇ J)m⇔ gIm and
g(I ∪̇ J)n⇔ gJn

(2) gI∪̇J = gI ∪̇ gJ
(3) mI∪̇J = mI and

nI∪̇J = nJ

Proof. The proof is ommitted here, since the given equations are trivial.

Lemma 3. Let (G,M, I)|(G,N, J) be an apposition context and A ⊆ G and
B ⊆M ∪̇N . Then the following equations hold:

(1) AI∪̇J ∩M = AI and

AI∪̇J ∩N = AJ and
AI∪̇J = AI ∪̇AJ

(2) (B ∩M)I∪̇J = (B ∩M)I and

(B ∩N)I∪̇J = (B ∩N)J and

BI∪̇J = (B ∩M)I ∩ (B ∩N)J

(3) AI(I∪̇J) = (AI∪̇J ∩M)I = AII and

AJ(I∪̇J) = (AI∪̇J ∩N)J = AJJ and

A(I∪̇J)(I∪̇J) = AII ∩AJJ
(4) (B ∩M)I(I∪̇J) = (B ∩M)II ∪̇ (B ∩M)IJ and

(B ∩N)J(I∪̇J) = (B ∩N)JI ∪̇ (B ∩N)JJ and

B(I∪̇J)(I∪̇J) = ((B ∩M)I ∩ (B ∩N)J)I ∪̇ ((B ∩M)I ∩ (B ∩N)J)J

Proof. The proof is obvious, use 2.

3. A Very Simple Example

Consider the free distributive lattice FCD(3) with three generating ele-
ments x, y, z, as shown in the figure below. An example is constructed that
shows how an insertion and a removal of one attribute column affect the con-
cept diagram.

Incremental Computation of Concept Diagrams 49

x
∨
y
∨
z

x
∨
y

x
∨
z

y
∨
z

x y z ⊥

x ∧ y ∧ z × × × × × × × ↗↙

y ∧ z × × × × ↗↙ × ×
x ∧ z × × × × × ↗↙ ×
x ∧ y × × × × × × ↗↙

z × ↗↙ × × ×
y × × ↗↙ × ×
x × × × ↗↙ ×
> ↗↙

x yz

Choose all objects and the first six attributes as old context. The attribute
z is to be added. The appropriate contexts and their concept lattices are shown
below.

K

x
∨
y
∨
z

x
∨
y

x
∨
z

y
∨
z

x y

x ∧ y ∧ z × × × × × ×
y ∧ z × × × × ↗↙ ×
x ∧ z × × × × × ↗↙

x ∧ y × × × × × ×
z × ↗↙ × ×
y × × ↗↙ × ×
x × × × ↗↙ ×
> ↗↙

x

x

x ∧ z

y

y

y ∧ z

x ∧ y ∧ z, x ∧ y

z

In the initial state above some nodes are marked with a pentagon, these
are the generator concepts. The final state below shows the concept lattice
after insertion of column z, and the new concept nodes are marked with a
star. As you can see the generator structure is locally doubled, and each new
concept is a lower neighbor of its generator.

50 FRANCESCO KRIEGEL

K|C
x
∨
y
∨
z

x
∨
y

x
∨
z

y
∨
z

x y z

x ∧ y ∧ z × × × × × × ×
y ∧ z × × × × ↗↙ × ×
x ∧ z × × × × × ↗↙ ×
x ∧ y × × × × × × ↗↙

z × ↗↙ × × ×
y × × ↗↙ × ×
x × × × ↗↙ ×
> ↗↙

x

x

y

y

x ∧ yx ∧ z y ∧ z

x ∧ y ∧ z

z

z

4. Incremental Computation of Concept Diagrams

Throughout the whole section let K = (G,M, I) be an arbitrary formal
context, called old context, with its concept diagram (B(K),≺, λ, σ). Now the
question arises what happens with the concept diagram when a new attribute
column is inserted into K, or when an existing attribute column is removed,
respectivelly. For this purpose let n /∈M be the new attribute with its appro-
priate column context C = (G, {n} , J). The new context is then defined as
the apposition K|C := (G,M ∪̇ {n} , I ∪̇ J). 5 6

G

M

I

n

J

In the ongoing text we analyze the changes that occur on different levels
of the concept diagram: concepts, neighborhood, labels, seeds, reducibility
and arrows. Most of the main results are displayed in a table style: The old
concept diagram on the left side and the new one on the right side, as shown
below.

(B(K),≺, λ, σ) � (B(K|C),≺, λ, σ)

5For simplification of notion the set parenthesis of the singleton set {n} may be omitted:
The symbol n is used both for the element n itself and also for a singleton set containing this
element n. It is always clear which variant is meant. We thus write (G,n, J) := (G, {n} , J)
for the column context, and B ∪̇ n := B ∪̇ {n} or else B \ n := B \ {n} for an attribute set
B ⊆M .

6Sometimes both the old context K and the new context K|C share the same set of concept
extents; then C is called redundant für K, and irredundant otherwise.

Incremental Computation of Concept Diagrams 51

Lemma 4. (1) For all object sets A ⊆ G the following equivalence holds:

A ⊆ nJ ⇔ AJ = {n} .
(2) For every concept (A,B) of K|C it holds that

A ⊆ nJ ⇔ n ∈ B.

Proof.

(1) Let A ⊆ G. Trivially AJ ⊆ {n} always holds. The other set inclusion
follows from the galois property, as A ⊆ nJ is equivalent to AJ ⊇ {n}.

(2) Let (A,B) be an arbitrary concept of K, i.e. B = AI∪̇J = AI ∪̇ AJ .
Then by the first part, A ⊆ nJ holds, iff AJ = {n} holds. Obviously
this implies n ∈ B. As n /∈ AI always holds, n ∈ B of course implies
AJ = {n}.

4.1. Updating the Formal Concepts. First, we define a partition of the
formal concept set of the old context K, and dually a partition of the formal
concept set of the new context K|C and then formulate appropriate update
functions, that map the parts of those partitions to each other. This then
fully describes the update mechanism on the concept level from K to K|C and
vice versa.

Definition 5. A concept (A,B) of K is called

(1) old concept w.r.t. C, iff its extent is no subset of the new attribute
extent, i.e. A 6⊆ nJ ,

(2) varying concept w.r.t. C, iff A ⊆ nJ , and
(3) generating concept w.r.t. C, iff it is old and (A ∩ nJ)I = B holds.

The set of all old, varying and generating concepts is denoted by OC(K),
VC(K) and GC(K). Obviously every K-concept is either old or varying, and
each generating concept is particularly an old concept, i.e. {OC(K),VC(K)}
is a partition of B(K) and GC(K) ⊆ OC(K) holds.

Definition 6. A concept (A,B) of K|C is called

(1) old concept w.r.t. C, iff its intent does not contain the new attribute,
i.e. n /∈ B,

(2) varied concept w.r.t. C, iff n ∈ B and (B \ n)I = A, and
(3) generated (or new) concept w.r.t. C, iff n ∈ B and (B \ n)I 6= A.

The set of old, varied and generated concepts of K|C is denoted by O(K|C),
V(K|C) and G(K|C). We can easily see, that {O(K|C),V(K|C),G(K|C)}
forms a partition of B(K|C).

As the names suggest, old concepts of K determine old concepts of K|C and
vice versa, K-varying concepts determine K|C-varied concepts, and generating

52 FRANCESCO KRIEGEL

concepts from K induce new concepts of K|C. This is due to the following
three bijections.

Lemma 7. The following three mappings o, g and v are bijections.

OC(K) A 6⊆ nJ n /∈ B O(K|C)

GC(K)
A 6⊆ nJ

(A ∩ nJ)I = B

n ∈ B
(B \ n)I 6= A

G(K|C)

VC(K) A ⊆ nJ
n ∈ B

(B \ n)I = A
V(K|C)

(A,B) 7→ (A,B)

(A,B)← [(A,B)

(A,B) 7→ (A ∩ nJ , B ∪̇ n)

((B \ n)I , B \ n)← [(A,B)

(A,B) 7→ (A,B ∪̇ n)

(A,B \ n)← [(A,B)

⊆ o ◦ g

B(K) B(K|C)

o

g

v

Proof. Each of the following parts prove, that the mentioned mappings are
well-defined and bijective. The original proof in [4] used the nested concept
lattice of C in K, the presented proof here is much simpler.

(1) The mapping o and its inverse are well-defined by lemma 4. The lower
mapping is indeed the inverse, as we can easily see.

(2) Let (A,B) be a generating concept of K w.r.t. C, then

(A ∩ nJ)I∪̇J = (A ∩ nJ)I ∪̇ (A ∩ nJ)J = B ∪̇ {n}

as surely n ∈ (A∩ nJ)J holds (because every object in A∩ nJ has the
new attribute n w.r.t. J), and

(B ∪̇ {n})I∪̇J = BI ∩ nJ = A ∩ nJ .
Thus, the mapping g is well-defined. The lower mapping is also well-
defined by the following observation for an arbitrary generated concept
(A,B) of K|C, see also lemma 3

(B \ {n})II = (B ∩M)II = (AI∪̇J ∩M)II = AIII = AI = · · · = B \ {n}
Both mappings are inverse to each other, as can be seen on the intents.

(3) Let (A,B) be a varying concept of K w.r.t. C, then for the extent

we have AI∪̇J = AI ∪̇ AJ = B ∪̇ {n} and for the intent we infer

(B ∪̇ {n})I∪̇J = BI ∩ nJ = A ∩ nJ = A. Conversely for the lower

mapping it holds that AI = AI∪̇J ∩ M = B ∩ M = B \ {n} and
(B \ {n})I = A by assumption. Both mappings are mutually inverse
by looking on the extents.

Incremental Computation of Concept Diagrams 53

4.2. Updating the Neighborhood. Of course, when visualizing concept
lattices, it is neccessary to update the concept neighborhood relation as well.
Some first investigations show that there are blocks within the neighborhood
that do not change from K to K|C and vice versa. 7

When inserting the new attribute, mainly the lower neighbors of the new
concepts have to be computed. It is already clear that each new concept must
be a lower neighbor of its generating concept. Also, each varied concept can
not have any generator concept as upper neighbor.

For the attribute removal the columns and rows of new concepts of K|C
are just deleted, and the neighborhood between the varying and generator
concepts needs to be determined.

A complete overview is given in the following figure (the bold subrelations
change, and have to be computed; all other parts may be copied).

OC(K) GC(K) VC(K)

OC(K)
≺o

GC(K)

VC(K) v≺o v≺g ≺v

�

O(K|C) G(K|C) N(K|C) V(K|C)

O(K|C)
≺o

G(K|C)

N(K|C) ××××× ≺n

V(K|C) v≺o v≺n ≺v

Within the figure the really old concepts are used, that are just the old
concepts which are no generator concept, denoted by

O(K|C) := O(K|C) \G(K|C) and OC(K) := OC(K) \GC(K).

Theorem 8. The concept neighborhood relation only changes partially:

(1) Let a, b be two generators in K w.r.t. C, then n(a) ≺n n(b) holds, iff

[a, b] ∩GC(K) = {a, b} ,

i.e. when there is no generating concept between a and b.

7It easy to see that the neighborhood between old concepts does not change, and so also
for the varying/varied concepts.

54 FRANCESCO KRIEGEL

(2) If a is varying and b a generator, both in K w.r.t. C, then v(a) v≺n n(b)
holds iff

[a, b] ∩GC(K) ∩VC(K) = {a, b} ,

so if there is no generator or varying concept between a and b.
(3) Let a be a varied concept and b a new concept in K|C. Then v−1(a) v≺g

g(b) holds in B(K) iff a v≺n b and

(a, og(b)) ∩O(K|C) = ∅.

Proof. It is simply a proof by cases. The proof for the unchanging com-
ponents is ommited here, and only the changing fragments are investigated.
Some first clues can be obtained from the neighborhood structure within the
nested concept lattice.

(1) Let first a and b be two generating concepts. When are their gener-
ated new concepts neighboring? This can only be the case when no
other concept is between them, and the only type of concept fitting
between two new concepts is another new concept. In summary, the
corresponding new concepts n(a) and n(b) are neighbors, iff there is
no other generator concept between a and b.

(2) Analogously, let a be a varying concept and b a generating concept.
Then the varied concept v(a) can only be covered by the new con-
cept g(b), when there is no other K|C-concept between them. There
could only be a varied or a new concept between them, and thus the
statement holds exactly when there is no generator or varying concept
between a and b.

(3) This is an immediate consequence of 2. For a varied concept a and a
new concept b, the corresponding varying concept v−1(a) can only be
covered by the generating concept g(b), when there is (in addition to
the condition from 2) no really old concept between v−1(a) and g(b),
since this is the only missing concept type in the characterization of
neighboring varied and new concepts, see 2.

4.3. Updating the Labels. Each concept node is labeled with some objects
and attributes. More exactly, each object concept (gII , gI) where g ∈ G is
labeled with g above, and dually every attribute concept (mI ,mII) where
m ∈M is labeled with m below.

When changing the context by column insertion or removal, the attribute
label n must be inserted in or removed from the concept diagram, and fur-
thermore some other already existing labels might have to be moved to other
concept nodes. In detail, the object concepts γ(g) and the attribute concepts
µ(m) have to be investigated to characterize the label update for the column

Incremental Computation of Concept Diagrams 55

insertion or removal. A complete overview for this is given in [4], and the
condensed result is presented in the following proposition.

Proposition 9. (1) When adding the new attribute n, there must be an
corresponding attribute concept µ(n) that is labeled with n. If n is not
redundant, then this new concept is always generated by the greatest
generator concept

>g :=
∨

GC(K) = (nJII , nJI),

and then µ(n) = n(>g) holds.
(2) For the concept diagram transition from K to K|C only object labels at

previously generator nodes can move downwards to the corresponding
new concept node. No attribute labels change.

(3) Vice versa, for the transition from K|C back to K the attribute label
n is removed and the object labels of a generator concept are merged
with the object labels of the approriate new concept, i.e. let (A,B) be
a generator with object labels L and (C,D) the generated new concept
with object labels M , then (A,B) is labeled with each element from the
union L ∪M in the old concept diagram.

G M

OC(K) λo

GC(K) λg

VC(K) λv

�

nJ{ nJ M n

O(K|C) λo

G(K|C) λg λg

N(K|C) λg × >g

V(K|C) λv

Proof. This is easy and straight-forward by analyzing the object and at-
tribute concepts, and determining whether they are old, varying/varied or
generating/new.

4.4. Updating the Reducibility and Seeds. In order to maximize the
quality of an attribute-additive concept diagram it is important to know the
irreducible attributes of the context. Each attribute can then be displayed as
the infimum of irreducible attributes, and thus, the set of irreducible attributes
spans the whole concept diagram and it suffices to assign seed vectors just to
the irreducible attributes. Of course, when inserting or removing C to K or
from K|C, the attribute irreducibility may change for the existing attributes.

Proposition 10. The attribute reducibility can be updated via the following
observations:

(1) Each K-reducible attribute is also K|C-reducible.

56 FRANCESCO KRIEGEL

(2) A K-irreducible attribute m ∈ M is K|C-reducible, iff its K-attribute
concept is varying and the corresponding unique upper neighbor µ∗K(m)
is really old, and furthermore at least one superconcept of µ∗K(m) is a
generator concept.

(3) Every K|C-irreducible attribute is also K-irreducible.
(4) A K|C-reducible attribute m ∈M is K-irreducible, iff its K|C-attribute

concept is varied and has exactly one old upper neighbor b and overthis
only new upper neighbors, that are generated from superconcepts of b.

µK(m)

∃!

∈ VC(K)

∈ OC(K)

∈ GC(K)

�

µK|C(m)

∃!

∈ V(K|C)

∈ O(K|C) ∈ N(K|C)

∈ G(K|C)

Proof.

(1) First, if m is a K-reducible attribute, then the attribute extent mI

can be obtained by an intersection of attribute extents
⋂
m∈Bm

I with
m 6∈ B. Obviously then also

m(I∪̇J) = mI =
⋂
m∈B

mI =
⋂
m∈B

m(I∪̇J)

holds, hence m is K|C-reducible.
(2) Second, let m be a K-irreducible attribute.

(⇒) Suppose m is K|C-reducible. If µK(m) were an old concept, then
µK|C(m) = o(µK(m)) and the set of upper neighbors does not
change according to theorem 8. Thus, the irreducibility of m in
K implies the irreducibility of m in K|C. Contradiction! Hence,
the attribute concept µK(m) must be varying. By 7, there are no
other old or varied upper neighbors of µK|C(m). If µ∗K(m) would
be a varying or generating concept, then

µK|C(m) = v(µK(m)) ≺

{
v(µ∗K(m)) if µ∗K(m) ∈ VC(K)

g(µ∗K(m)) if µ∗K(m) ∈ GC(K)

holds. Let b ∈ GC(K) with b 6= µ∗K(m), such that g(b) covers
µK|C(m), then µK(m) must be a lower neighbor of b and there
is no varying or generating concept between them. So µK(m) ≺
µ∗K(m) < b must hold, but this is a contradiction. In summary,
v(µ∗K(m)) or g(µ∗K(m)), respectivelly, must be the unique upper
neighbor of µK|C(m), and m would be K|C-irreducible. Contra-
diction! Hence µ∗K(m) must be an old non-generator concept.

Incremental Computation of Concept Diagrams 57

Finally if there were no generating superconcept above µ∗K(m),
then o(µ∗K(m)) were the only upper neighbor of µK|C(m), i.e. m
would be K|C-irreducible. Contradiction!

(⇐) Suppose the attribute concept µK(m) is a varying concept and
its unique upper neighbor µ∗K(m) is an old non-generator concept
that has at least one generator superconcept. Denote the mini-
mal ones of these generator superconcepts by ξ1, ξ2, . . . , ξk. Then
the following structure on the left side can be found within the
concept lattice of K. Neighboring concept nodes are connected
by straight line segments and comparable concepts are connected
by zig zag line segments. Then according to theorem 8 the new
concepts g(ξ1), . . . , g(ξk) must cover the varied attribute concept
v(µK(m)). This is due to the fact, that no varying concept can
be greater than an old concept, and the generators ξ1, . . . , ξk are
minimal. Furthermore µ∗K(m) is the unique upper neighbor of
µK(m), hence there cannot be any varying or generating concept
between µK(m) and each ξj . In summary, the transition from K
to K|C changes the concept lattice structure as displayed in the
right diagram. Obviously µK|C(m) = v(µK(m)) has more than
one upper neighbor, hence m is K|C-reducible.

(3) Let first m ∈M be a K|C-irreducible attribute. Then m must also be
K-irreducible, as otherwise m were K|C-irreducible by 1.

(4) Second, let m ∈M be K|C-reducible attribute.
(⇒) Suppose m is K-irreducible. Then µK|C(m) must be a varied con-

cept. Otherwise µK(m) = o−1(µK|C(m)) were an old concept and
this is a contradiction to 1. If µK|C(m) had more than one old (and
thus non-generating) upper neighbor in B(K|C), then the accord-
ing old concepts in B(K) would cover µK(m). This is a contra-
diction to the K-irreducibility of m. So µK|C(m) has exactly one
old upper neighbor ω ∈ O(K|C), all other upper neighbors must
be varied or new concepts. If a varied concept covers µK|C(m),
then its appropriate varying concept covers µK(m) as well. Again,
this is a contradiction to the K-irreducibility. So all other upper
neighbors must be new concepts. If there were any new concept
ν ∈ G(K|C) whose generator ξ is not a superconcept of ω, then
µK(m) would be covered by o−1(ξ). Then µK(m) had at least two
upper neighbors and this contradicts the K-irreducibility.

(⇐) Suppose µK|C(m) varies and has exactly one upper neighbor ω and
overthis only new upper neighbors ν1, . . . , νk, whose generators are
greater than ω. Then choose ξj := g(νj) and the same structure

58 FRANCESCO KRIEGEL

as in the right diagram above occurs, and by theorem 8 o−1(ω) =
µ∗K(m) must be the unique upper neighbor of µK(m). This means
m is K-irreducible.

The update of the seed map can now be done with the following rules.

(1) When adding the new column, delete the seeds for K|C-reducible at-
tributes, that were K-irreducible, and introduce a new seed for n.

(2) When removing the column, delete the seed for n and compute seeds
for the previously reducible attributes in K|C, which are now irre-
ducible in K.

irr? R2

Mirr(K)
× σK|C Mirr(K|C)

× σK
Mred(K|C)

Mred(K)

�

irr? R2

Mirr(K)
× σK|C Mirr(K|C)

Mred(K|C)
Mred(K)

× σ(n) n

5. Incremental Computation of the Arrow Relations

5.1. Updating the Up Arrows. This section investigates the changes for
the up arrow relation. For this purpose the object set and the attribute set is
splitted into the following components:

G1 :=
{
g
∣∣ g /∈ nJ} , G2 :=

{
g
∣∣ g ∈ nJ} , and

M1 :=
{
m
∣∣mI 6⊂ nJ

}
, M2 :=

{
m
∣∣mI ⊂ nJ

}
When the column is inserted the block ↗K ⊆ G1 × M2 can simply be

deleted. The only entries to compute is the upper column ↗n ⊆ G1 × {n}. 8

It is even possible to give a characterization for the ↗K block for the column
removal.

M1 M2

G1 ↗K

G2 ↗K|C

�

M1 M2 n

G1 ↗n

G2 ↗K|C

Proposition 11. (1) Up arrows in K and K|C may only differ on the
subset G1 ×M2 and G1 × {n}. All other parts are equal.

(2) Let g ∈ G1 and m ∈ M2, then g ↗K m holds, iff one of the following
conditions is fulfilled:

8Of course, there cannot be any arrows in the lower column G2×{n} as it is full of crosses.

Incremental Computation of Concept Diagrams 59

(a) m is K|C-reducible, and its attribute concept µK|C(m) ∈ V(K|C)
has exactly one old upper neighbor b and overthis only new up-
per neighbors generated by superconcepts of b, and furthermore
γK|C(g) is a subconcept of b.

µK|C(m)γK|C(g)

∃!

∈ V(K|C)

∈ O(K|C) ∈ N(K|C)

∈ G(K|C)

(b) m is K|C-irreducible, µ∗K|C(m) ∈ N(K|C) and the old object con-

cept γK|C(g) ∈ O(K|C) is a subconcept of the generator og(µ∗K|C(m)).

µK|C(m)

γK|C(g) ∃!

∃!

∈ V(K|C)

∈ N(K|C)

∈ G(K|C)

Proof.

(1) This is obvious.
(2) In case g ∈ nJ this follows from the preceding lemma as well. Suppose

g 6∈ nJ . Then the object concept of g in K|C is given by

γK|C(g) =

{
o(γK(g)) if γK(g) ∈ OC(K)

v(γK(g)) if γK(g) ∈ VC(K)
.

(a) Let m be K|C-reducible. g ↗K m can only hold, when m is
irreducible in K, i.e. when µK|C(m) ∈ V(K|C) has exactly one old
upper neighbor ω and overthis only new upper neighbors, whose
generators are superconcepts of ω, according to 10. Then o−1(ω)
is the unique upper neighbor of µK(m). Furthermore, γK|C(g) ≤ ω
holds, iff γK(g) ≤ µ∗K(m), i.e. iff g ↗K m.

(b) When m is K|C-irreducible, then m is also K-irreducible by 10.
Furthermore, g 6∈ nJ implies g ↗\ K|C m, i.e. γK|C(g) is no subcon-

cept of µ∗K|C(m). If µ∗K|C(m) is an old concept, then o−1(µ∗K|C(m))

is the unique upper neighbor of

µK(m) =

{
o−1(µK|C(m)) if µK|C(m) ∈ O(K|C)

v−1(µK|C(m)) if µK|C(m) ∈ V(K|C)
.

60 FRANCESCO KRIEGEL

Then γK(g) is a subconcept of µ∗K(m), iff γK|C(g) is a subcon-
cept of µ∗K|C(m). As this cannot occur according to the precon-

ditions, g ↗\ K m must hold. If µ∗K|C(m) is a varied concept,

then v−1(µ∗K|C(m)) is the unique upper neighbor of µK(m) =

v−1(µK|C(m)). Then γK(g) is smaller than µ∗K(m), iff γK|C(g) is
a subconcept of µ∗K|C(m). Thus, g ↗\ K m as well in this case. If

the unique upper neighbor µ∗K|C(m) is a new concept, then ac-

cording to 8 g(µ∗K|C(m)) must be the unique upper neighbor of

µK(m) = v−1(µK|C(m)). Furthermore γK(g) can only be a sub-
concept of µ∗K(m), if it is an old concept and a subconcept of the
generator. (If γK(g) would be varying and smaller than the gener-
ator, γK|C(g) must be smaller than the new generated concept as
well, in contradiction to the preconditions.) In summary, g ↗K m
holds in this case, iff γK|C(g) is an old concept and smaller than
the generator of the upper neighbor of µK|C(m).

5.2. Updating the Down Arrows. Suppose, g ∈ G is an object and m ∈M
is an attribute of K. First, observe that by definition of the down arrows it
holds that

g ↙K m⇔ g Irm and ∀
h∈G

gI (hI ⇒ h I m

and analogously

g ↙K|C m⇔ (g,m) /∈ (I ∪̇ J)︸ ︷︷ ︸
⇔gIrm

and ∀
h∈G

gI∪̇J (hI∪̇J ⇒ h (I ∪̇ J) m︸ ︷︷ ︸
hIm

.

Proposition 12. (1) When g ↙K|C m holds, then also g ↙K m holds.

(2) Let g ↙K m where g Jr n. Then g ↙K|C m holds, if there is no K-

equivalent object h (i.e. gI = hI), which is not K|C-equivalent to g
(i.e. h J n).

(3) Let g ↙K m where g J n. Then g ↙K|C m holds, if each object h ∈ G
with gI (hI also has the new attribute n.

Proof.

(1) This is obvious, since gI (hI implies g(I∪̇J) (h(I∪̇J).
(2) Suppose g does not have the new attribute n, and g ↙K m holds.

When does g ↙K|C m also hold? For h ∈ G with gI∪̇J (hI∪̇J it holds

that gI (hI ∪̇ hJ .
• If gI (hI , then h I m holds since g ↙K m.
• If gI = hI and h J n, then h Irm since g does not have m (as
g ↙K m holds).

Incremental Computation of Concept Diagrams 61

Obviously g ↙K|C m cannot hold, when the second condition is ful-
filled.

(3) Finally, let g have the new attribute n and g ↙K m. To check, whether
g ↙K|C m hold, let h ∈ G be an object, whose K|C-intent is a proper

superset of gI∪̇J . It then easily follows, that also h must have the
new attribute n and gI (hI must hold for the K-intents. By the
precondition this yields h I m. Since this is true for all such objects
h, g ↙K|C m can be concluded.

6. Conclusion

This document described an update algorithm for the insertion or removal
of an attribute column to or from a formal context, whose concept diagram
is already known. It has been implemented in ConceptExplorer FX, that is
a partial re-implementation of the well-known FCA tool ConceptExplorer by
Serhiy Yevtushenko et al.

The introduced lemmata and propositions may be extended for the inser-
tion or removal of several attribute columns at once, or it may be dualized
for object row insertion or deletion, as also suggested in the introduction.
Furthermore it may be possible to generalize it to insert elements into an arbi-
trary complete lattice, not only to insert new attribute concepts into a concept
lattice (and also for deletion, of course).

References

[1] C. Carpineto, G. Romano, Concept Data Analysis : Theory and Applications. Wiley,
2004.

[2] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations. Springer,
1998.

[3] R. Missaoui, R. Godin, H. Alaoui, Incremental concept formation algorithms based on
galois (concept) lattices. in Computational Intelligence, 11 (1995), pp.246-267.

[4] F. Kriegel. Visualization of conceptual data with methods of formal concept analysis.
Master’s thesis, Technische Universitat Dresden, Faculty of Mathematics, Institute for
Algebra, SAP AG, Research Center Dresden, 2012.

[5] S A. Obiedkov, V. Duquenne, Attribute-incremental construction of the canonical impli-
cation basis. Ann. Math. Artif. Intell., 49 (2007), pp. 77-99.

[6] M. Skorsky. Endliche Verbande - Diagramme und Eigenschaften. PhD thesis, 1992.
[7] P. Valtchev, R. Missaoui, P. Lebrun, A partition-based approach towards constructing

galois (concept) lattices, Discrete Mathematics, 256(2002), pp.801-829.

Theoretical Computer Science, TU Dresden, Germany
E-mail address: francesco.kriegel@tu-dresden.de

	1. Introduction
	2. Preliminaries
	3. A Very Simple Example
	4. Incremental Computation of Concept Diagrams
	5. Incremental Computation of the Arrow Relations
	6. Conclusion
	References

