
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

CLASSIFYING SOFTWARE BUG REPORTS USING

METHODS FROM FORMAL CONCEPT ANALYSIS

DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

Abstract. We provide experience in applying methods from formal con-
cept analysis to the problem of classifying software bug reports character-
ized by distinguished features. More specifically, we investigate the situ-
ation where we are given a set of already processed bug reports together
with the components of the program that contained the corresponding
error. The task is the following: given a new bug report with specific
features, provide a list of components of the program based on the bug
reports already processed that are likely to contain the error. To this end,
we investigate several approaches that employ the idea of implications be-
tween features and program components. We describe these approaches
in detail, and apply them to real-world data for evaluation. The best of
our approaches is capable of identifying in just a fraction of a second the
component causing a bug with an accuracy of over 70 percent.

1. Motivation

Maintaining large software systems is a non-trivial task, and processing
bug reports efficiently is a crucial part of this process. Modern software sys-
tems can easily contain thousands of lines of code, distributed over several
modules and subsystems. When the system reaches such a size, and no single
programmer can oversee its overall complexity, finding components of the pro-
gram which are likely to contain the error causing a given bug report becomes
much more demanding. This is a known challenge in software development.
For example, a recent study showed that in average it takes 19 days for the
Eclipse project and 38 days for the Mozilla project to find a first component
assignment for a bug report [6], without guarantee that this first assignment is
correct. Finding the responsible component is a main bottleneck in the debug-
ging process, and it may even require more time than fixing the error itself. In

Received by the editors: March 26, 2014.
2010 Mathematics Subject Classification. 68N30, 03G10.
1998 CR Categories and Descriptors. K.6.3 Software Management-Software maintenance.
Key words and phrases. FCA, Classification, Software Maintenance, Implications.
D. Borchmann supported by DFG Graduiertenkolleg 1763 (QuantLA). R. Peñaloza par-

tially supported by DFG within the Cluster of Excellence ‘cfAED’.

10

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 11

such cases, speeding up the process of identifying the responsible components
would increase maintainability, and thus the quality, of the software.

The purpose of this work is to share some experimental experience we have
obtained while trying to solve this problem. The approaches we follow in this
work are all based on ideas from formal concept analysis. More precisely, we
employed the idea that the information contained in a bug report (its so-called
“features”) somehow determine in an implicational manner the component of
the program containing the error. Therefore, we devised several methods based
on the notion of implications in formal contexts to find such components, and
tried to evaluate them experimentally on some real-world data obtained from
bug reports in a large software company.

Obviously, one could argue here that the assumption that features of bug
report determine the responsible components precisely is somehow simplified:
it is not unlikely—and it is in fact not very hard to come up with an example
for this—that two identical bug reports are caused by two completely unrelated
errors in the software system. Clearly, this defeats our main assumption of an
implicational dependency between features of bug report and responsible com-
ponents. On the other hand, one could argue that the cause for such situation
is that the bug reports are under-specified, and that the implicational depen-
dencies between features of bug report and responsible components would still
hold if we would include more features, which add information that can sepa-
rate the two reports. This could be achieved by requesting more information
from the user reporting the bug. However, even in the case where we do not
request additional information, we can still use our assumption to find a set
of likely components that caused the bug report, thus reducing the number of
components which need to investigated.

The main practical problem we have to face when following the indicated
approaches is to find the implicational dependencies between features of bug
report and their responsible components. To cope with this difficulty, our
approaches more or less follow a common pattern: all bug reports already
processed so far are brought together in a formal context Kreports. This formal
context is then examined for implicational dependencies between features and
components. Then, if a new bug report, given as a set of features, is received,
the implications extracted from the initial context are applied to this set of
features, and the components contained in the resulting closure are considered
candidate causes for the new bug report. Additionally, some of our approaches
introduce a meaningful way of rating the candidate components according to
their likelihood; that is, the higher the rank of a candidate component, the
more likely it is that the new bug was caused in that component.

While this idea is relatively simple to describe and understand, it faces
several practical issues. As already discussed, if the set of features does not

12 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

determine responsible components uniquely, the standard approaches of ex-
tracting valid implications from the context Kreports are not applicable. Hence,
we must devise new methods to achieve this goal, relaxing the restrictions that
implications must satisfy. Furthermore, already processed bug reports do not
always need to be correct; for example, it may happen that the actual cause
of some historical report was never fixed, but rather that the circumstances of
the bug were altered in such a way that it was not observed any more. In such
cases, the component stored as cause for this error in the historical records is
itself not correct. Assuming that such cases are possible but unlikely, we have
to adapt our approaches to include methods that can handle those exceptional
errors correctly. Finally, the context Kreports itself can be quite large, and ex-
isting approaches to extract implications from contexts may simply not work
on such large contexts, due to memory and time restrictions. Devising ideas
for scalable extraction algorithms is thus also necessary in this setting.

The problem of suggesting components that are likely responsible for bug
reports is a classification problem in the sense of machine learning [11]. How-
ever, it is not the aim of this work, at this early stage of development, to
compete with existing methods from machine learning. Our purpose is more
to share experiences on how to approach this problem from the perspective of
formal concept analysis, which we consider a natural, although often neglected,
choice for this situation. A comparison with other existing classification ap-
proaches, or a combination with them, would be a logical next step in this
direction of research. We leave that road open for possible future work.

This work is organized as follows. After giving a formal specification of
our problem and some related work in Section 2, we introduce and discuss
in Section 3 the approaches we investigate in this paper. Thereafter, we de-
scribe our experimental setup, show and discuss our results, and evaluate the
individual approaches. This is done in Section 4. We close this paper with
conclusions and outlook for further research in Section 5.

2. Problem Specification and Related Work

We first describe the problem we want to solve in a more precise way. For
the rest of this paper, we assume familiarity with the basic notions of formal
concept analysis. More details from this area can be found in [5].

Let Kreports = (G,M, I) be a finite formal context, called the context of
reports, and let M = F ∪ C be a partition of M , i. e. F ∩ C = ∅ and F,C are
non-empty. We call the elements of F features, and those of C components.
Intuitively, we understand Kreports as the formal context of all previous issues
(old issues, or bug reports) that have been reported for our software system.
For every such issue g ∈ G, the elements of g′ ∩F are the features of the issue

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 13

of g; i.e., the information observed and reported when the user encountered
the error. Possible such features can be statements like “segmentation fault”
or “screen turned blue”. On the other hand, the elements of g′ ∩ C are the
responsible components of the issue g, i. e. the elements of the software that
produces the issue g, and were located when the old issue g was solved. In
other words, fixing these components resulted in the issue to disappear.

Given such a formal context Kreports and the partition M = F ∪ C, we
want to find for a given new issue (that is, for a set of features o ⊆ F) a set of
components which are “likely” to be responsible for it. To achieve this goal,
we want to make use of the historical knowledge from the already solved issues
collected in Kreports. Thus, we want to be able to learn from the old issues as
a means to identifying the components that are responsible for a new issue.

From this formalization of our problem, one may be reminded of a sim-
ilar approach to model learning from positive and negative examples within
FCA [8]. In this approach we assume a formal context L = (H,N, J), and a
target attribute ω /∈M which objects in H may or may not have. Let H+ ⊆ H
be the set of objects which are known to have the attribute ω, H− ⊆ H the
set of objects that do not have the attribute ω and let H? = H \ (H+∪H−) be
the set of objects for which it is not known whether they have the attribute
ω or not. The three sets H+, H−, and H? are mutually disjoint. We call the
elements of H+ positive examples for ω, and likewise elements of H− negatives
examples for ω. The elements of H? are called undetermined examples.

The sets H+, H−, H? give rise to three subcontexts L+,L−,L? of L defined
as the restrictions of L to the corresponding sets of objects. The derivation
operators of L+,L−,L? are denoted by (·)+, (·)−, (·)?, respectively.

To decide for objects in H? whether they may have the target attribute
ω or not, we extract hypotheses from L+ and L−. A positive hypothesis T
for ω is an intent of L+ such that T+ 6= ∅ and T is not contained in any
object intent of L−, i. e. T * g− for all negative examples g ∈ H−. Negative
hypotheses are defined analogously. To decide for an undetermined example
g ∈ H? whether it has the target attribute ω or not, we consider its object
intent g? in the context L?. If this set contains positive hypotheses but no
negative ones, then g is classified positively, and correspondingly, if g? contains
negative hypotheses but no positive ones, g is classified negatively. If g? does
not contain any hypotheses at all, then g is unclassified, and if g? contains both
positive and negative hypotheses, then the classification of g is contradictory.

This method could also be applied to our problem of classifying software
issues. In this case, we would consider every component we have as a target
attribute, and try to apply the above method to obtain a classification. How-
ever, this idea becomes impractical as the number of components increases: for

14 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

Table 1. The context Kexa used as a running example

object a b c X Y

1 × × ×
2 × × ×
3 × ×
4 × × × ×
5 × ×
6 × × ×

each component we would need to construct the contexts L+,L−,L? and clas-
sify using the method sketched above, which is actually known to be hard [7].
This theoretical hardness may or may not be an issue in practical applications.

Furthermore, it may happen that bug reports having the exact same fea-
tures, actually describe different errors in the software, and thus may have
different responsible components. In those cases, we would still like to ob-
tain a meaningful set of potentially responsible components (if possible, with
an associated rating). However, the approach for learning from examples [8]
would always result in an undetermined or contradictory classification.

Nevertheless, we can draw some inspiration from this approach for our
own problem, and we do so in the following section, where we describe some
methods for proposing responsible components for new issues.

3. Method Descriptions

We have tried several approaches for detecting the responsible components
for a given issue. Each of these approaches is motivated by different ideas,
which we describe in detail next. Their common property is that they all
make use of a historical collection of old issues stored in the context Kreports

of reports to predict the component of a new issue. After having described
these methods, in the next section we provide the results of an experimental
evaluation on real-world issues from a software company.

For the following descriptions we assume that the attribute set M of
Kreports is partitioned into features and components as described before, i. e.
M = F ∪ C. Furthermore, we assume that we are given a new issue o ⊆ F
which we want to classify. For this, each of the following methods proposes a
set candidates(o) ⊆ C of the components that are likely to be responsible for
the issue o. Furthermore, all but the first method additionally yield a score
score(x) ∈ [0, 1] for each component x ∈ candidates(o). The higher this score,
the more likely the method considers x to be responsible for o.

To help understanding the ideas behind all these methods, we will apply
them over the simple context Kexa shown in Table 1. In this context, the

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 15

features are a, b, and c, while the components are X and Y . As the new issue
to be classified we consider the set of features oexa = {b, c}.
The new-incident method. A very simple idea for classifying a new issue
would be to search in the historical records Kreports for a previous occurrence
of the same issue. The component that was responsible for the old issue can
then be suggested as being responsible also for the new issue. This idea has
two obvious problems. On one hand, the historical record is not necessarily
complete, and hence there might exist no matching report; in this case, no
responsible component would be suggested. On the other hand, since historical
records may contain errors, components might change over time, and the set of
features might not fully describe all possible problems, there might exist more
than one matching issue in Kreports, which may lead to several components
being proposed. To alleviate these issues, we slightly generalize this simple
classification idea, yielding an approach which we call new-incident, which
works as follows. Recall that the new issue is described by its set of features
o ⊆ F . For every object g in the context Kreports, if g′ ∩ F ⊆ o, then g′ ∩ C is
suggested as a responsible component, i. e.

candidates(o) = {x ∈ g′ ∩ C | g′ ∩ F ⊆ o}.

Note that there is no scoring among the candidates of o, i. e. all proposed
components are equally preferred.

In our example context Kexa, for the new issue oexa we get that only the
objects 3 and 5 are such that g′ ∩ F ⊆ oexa: 3′ ∩ F = {c}, and 5′ ∩ F = {b}.
The proposed components are then X and Y , and these are preferred equally.

This approach is in fact very similar to the one using hypotheses for clas-
sification, as we have described in Section 2. Namely, what we do here is to
consider for all components x ∈ C in Kreports the sets of features belonging
to issues in Kreports with responsible component x. These sets actually corre-
spond to hypotheses in the sense of Section 2. The only difference may be that
for one such set of features T it may happen that T is actually contained in
some set of features which belongs to a previous issue which had a responsible
component different from x. Then, in the approach of Section 2 we would
discard T as a hypothesis. However, as we have already argued previously,
that is not a wanted behavior in our setting, as otherwise we would end up
with a large number of contradictory classifications. Instead, we keep T as a
hypothesis, and allow for a classification to more than one component. In this
way, new-incident is similar to the classification of Section 2.

A drawback of the new-incident method is that the whole context needs
to be processed whenever a new issue arises. As the historical records can
be very large, this might be a very time-consuming task. Thus, we analyze

16 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

methods based on the pre-computation of bases of implications to assist in a
more efficient classification of issues.
The can+lux method. Recall that the reports context may contain contra-
dictory information or may be incomplete. It thus makes sense to try to use a
base capable of producing implications that are violated by a small number of
exceptions, like Luxenburger’s base [9, 10, 14]. The definition of this base re-
lies on the notions of support and confidence of an implication [1]. Intuitively,
the support describes the proportion of objects that satisfy the implication,
while the confidence measures the number of objects that do not violate it.

Definition 1 (support, confidence). Let K = (G,M, I) be a formal context
and A ⊆M . The support of A is

supp(A) :=
|A′|
|G|

.

The support and confidence of an implication A→ B are defined as

supp(A→ B) := supp(A ∪B), conf(A→ B) :=
supp(A ∪B)

supp(A)
.

Luxenburger’s base includes only implications between intents having sup-
port and confidence larger than the given parameters minsupp and minconf,
respectively, which are input values from the interval [0,1] provided by the
user. Moreover, the implications belonging to this base can only relate direct
neighbors from the lattice of intents of the given formal context.

Definition 2 (Luxenburger’s base). For a finite formal context K, the Lux-
enburger base of K w.r.t. minsupp,minconf ∈ [0, 1] is the set of all implications
A→ B such that A and B are intents of K, A is a direct lower neighbor of B in
the lattice of intents of K ordered by ⊆, and both (i) conf(A→ B) ≥ minconf
and (ii) supp(A→ B) ≥ minsupp hold.

Notice that Luxenburger’s base does not include implications that are valid
in the formal context K, because for two intents A,B of K to yield a valid
implication A→ B of K, one must have A = B, and then A cannot be a direct
lower neighbor of B anymore. To ensure that we do not miss implicational
dependencies which are actually true in Kreports we therefore have to take the
valid implications separately, and we do so by extending Luxenburger’s base
with the canonical base of Kreports.

Given a new issue defined by a set of features o, the can+lux method com-
putes the closure of o over the canonical and Luxenburger’s bases of Kreports,
and suggests all components appearing in this closure as candidates. Each can-
didate component x ∈ C is associated with a score, defined as the maximum

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 17

of the confidences of all rules A→ {x } such that A ⊆ o, i. e.

score(x) := max{conf(A→ {x}) | A ⊆ o}.
Note that this involves an exhaustive search among all subsets of o, and can
hence become very expensive. However, for the experimental setup that we
discuss in the next section this is not an issue, as the size of o is usually small.

Let us consider our example context Kexa again. Its canonical base is

{ {Y } → {b}, {b,X} → {a}, {c} → {X}, {a, b, Y,X} → {c} },
and the Luxenburger’s base of Kexa with minsupp = 0.01 and minconf = 0.01
consists of the implications

∅ → {X}, ∅ → {b}, {b} → {Y }, {X} → {c},
∅ → {a}, {X} → {a}, {a} → {X}, {b} → {a},

{a} → {b}, {a,X} → {b}, {a, b} → {X}, {b, Y } → {a},
{a, b} → {Y }, {c,X} → {a}, {a,X} → {c}, {a, b,X} → {c},

{a, c,X} → {b}.

The closure of our observation oexa = {b, c} over these two bases includes both
components X,Y , and hence both are proposed as responsible. Since the rule
{c} → {X} is in the canonical base, X is proposed with score 1, while Y is
proposed with score 2

4 , which is the confidence of the rule {b} → {Y }.
The can+lux method provides a higher degree of liberty, as it is parameter-

ized on the minimal support and minimal confidence that are used to compute
Luxenburger’s base. Moreover, the time required for computing the closure
of the two bases and the scores of each proposed component is neglectable.
Unfortunately, the same is not true for the computation of the bases. Indeed,
as we will see in the following section, this computation was very costly in
terms of time in our software issue scenario. Moreover, the performance of
this classification was, surprisingly, rather disappointing.

Since the approach of considering Luxenburger’s base turned out to be in-
appropriate, we studied different approaches for producing implications that
are tolerant to a few exceptions. The main idea of the following three methods
is to partition the context into smaller pieces, and compute only valid implica-
tions in these subcontexts. The intuition is that a small number of exceptions
will violate such implications in only a few of all the subcontexts.
The subcontext method. For this method, we first create one subcontext
Kx for every component x ∈ C appearing in Kreports. The context Kx is defined
as the restriction of Kreports to the set of objects x′ and thereafter removing
all components and attributes which have an empty extent. In other words,

Kx = (Ḡ := x′, F̄ := {m ∈ F | m′ ∩ x′ 6= ∅ }, I ∩ Ḡ× F̄).

18 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

Table 2. The subcontexts KX (left) and KY (right) from subcontext

object a b c

1 × ×
3 ×
4 × × ×
6 × ×

object a b c

2 × ×
5 ×

Intuitively, the intents from the context Kx are sets of attributes that are
always together whenever component x is responsible, and can hence be used
as a premise for suggesting this component. To handle exceptions, we consider
only implications whose premise have a support larger than a threshold, which
is provided as a parameter. Formally, K is a frequent intent of a context K
w.r.t. minsupp if it is an intent of K and supp(K) ≥ minsupp. For every
component x, and every frequent intent K of KC , we include the implication
K → {x}. Notice that every intent L that is a subset of a frequent intent K is
also a frequent intent. Thus, it suffices to consider only the minimal frequent
intents as premises for the implications. The proposed components are then

candidates(o) = {x | K frequent non-empty intent of Kx,K ⊆ o}.

Note that this is the same as considering all components in the closure of o
under all implications K → {x} with K a frequent, non-empty intent of Kx.

Consider again our example context Kexa. The two subcontexts KX and
KY are shown in Table 2. If we set the minimal support to minsupp = 0.1, then
the minimal frequent intents of KX are {a} and {c}, and the only minimal
frequent intent of KY is {b}. Thus, we obtain the rules {a} → X, {b} → Y ,
and {c} → X. Given the new issue oexa = {b, c}, both components X and Y
are suggested as potentially responsible for the issue.

To provide a more fine-grained suggestion of the responsible components,
we score these implications according to their relevance among the context of
reports. More precisely, for each component we set

score(x) := max{conf(K → {x}) | K frequent non-empty intent of Kx}.

In our example, the scores are:

score(X) = max{conf({a} → X), conf({c} → X)} = 1,

score(Y) = max{conf({b} → Y)} =
2

3
.

As a result, component X is suggested with a higher priority (1) than Y (23).
The partition and partition-pp methods. A different method for parti-
tioning the context of all historical reports is to divide it in several subcontexts
of equal size, regardless of the component they are associated with. Under the

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 19

Table 3. A partition K1,K2 of Kexa

object a b c X

1 × × ×
3 × ×
6 × × ×

object a b c X Y

2 × × ×
4 × × × ×
5 × ×

assumption that exceptions occur rarely, we expect these exceptions to violate
the implications in only a few of the generated subcontexts. As the first step
in the partition and partition-pp methods, we randomly partition Kreports

into contexts of a specified size n. These subcontexts are then simplified by
removing all attributes that appear in no object. For instance, the context
Kexa can be partitioned into two contexts of size 3 as shown in Table 3.

In the first context we have removed the attribute Y , since it appears in no
object of this context. Given a new issue o, the partition method computes,
for every context K in the partition, the closure o′′K of o over K. The proposed
components are those that appear in any of these closures; that is, we propose

(1) candidates(o) = C ∩
⋃
{o′′K | K subcontext in the partition, o′K 6= ∅}

as candidates for the observation, where (·)′K and (·)′′K denote the derivation
and double derivation operator in the corresponding context K.

The score of each proposed component x ∈ C is given by the proportion
of subcontexts K in the partition such that x ∈ o′′K, i. e.

score(x) :=
|{K | K subcontext in the partition, x ∈ o′′K}|

k

where k = d |G|n e is the number of contexts in the partition.
The closure of the observation oexa = {b, c} over the subcontexts K1 and K2

is {a, b, c,X}. Thus, component X is proposed with score 1 (since it appears
in the closure for all the subcontexts), and component Y is not proposed.

While the partition method behaves well in our scenario of software
issues, as shown in the following section, one might still increase its accuracy
by allowing more components to be suggested. The partition-pp method
achieves this by considering the proper premises for the components in each
subcontext, rather than a direct closure.

Definition 3 (proper premise). Given a set of attributes B ⊆M , let

B• := B′′ \ (B ∪
⋃
S(B

S′′).

B is a proper premise if B• 6= ∅. It is a proper premise of m ∈M if m ∈ B•.

20 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

The idea of considering proper premises arises from the existence of the
partition M = F ∪C of the attribute set. More precisely, we are interested in
implicational dependencies “from F to C,” i. e. implications A→ B satisfying
A ⊆ F and B ⊆ C. Then sets L of implications of this type are iteration-free,
i. e. the computation of closures L(F̄) of sets F̄ ⊆ F can be achieved by

L(F̄) = F̄ ∪
⋃
{B | (A→ B) ∈ L, A ⊆ F̄}.

In other words, the computation given by the right-hand side of this equation
does not need to be iterated to compute L(F̄) [5].

We now want to compute bases of this type of implications for each sub-
context in partition and to use them instead of (·)′′. Of course, one would
like to have such a set to be as small as possible, and indeed proper premises
provide a way to obtain such a base. In other words, the set

{B → B• ∩ C | B ⊆ F is a proper premise for some element in C}

is a minimal iteration-free base for all implications from F to C [2, 5]. This
motivates the use of proper premises. Note that proper premises allow for
interesting optimizations with respect to their computation [13].

We apply this idea as follows: for each subcontext in the partition of
Kreports, the partition-pp method computes the proper premises of the com-
ponents appearing in it. We only include those proper premises which have
positive support withing this subcontext. For each such proper premise B
for a component x, we collect the implication B → {x} into a set L. Re-
sponsible components are then proposed by finding all collected implications
(B → {x}) ∈ L such that B ⊆ o, and suggesting their associated compo-
nents x. The score of suggesting x is given by the maximal confidence of an
implication (B → {x}) ∈ L such that B ⊆ o, i. e.

score(x) = max{conf(B → {x}) | (B → {x}) ∈ L, B ⊆ o}

where the confidence is computed in Kreports.
The proper premises for X in the context K1 are {a}, {b}, and {c}. In K2

there are no proper premises for Y and the only proper premise for X is {c}.
The confidence of the implications {a} → {X}, {b} → {X}, and {c} → {X}
over Kexa is 3

4 ,
2
4 , and 1, respectively. Thus, given our observation oexa, only

the component X is suggested with score 1, due to the implication {c} → {X}.
We can expect partition-pp to return more candidates than partition,

which is also confirmed by our experiments. This is due to the following
reason: in (1), a candidate set o′′K is excluded when o′K = ∅, i. e. if no object
in the subcontext has all the features in o. That is, we always consider the
whole set o in every such subcontext. However, there might still exist a subset
p ⊆ o which meaningfully entails responsible components, in the sense that

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 21

p′K 6= ∅ and pK 6= p′′K. Those sets p are ignored in partition, but not in
partition-pp: If x ∈ p′′K, then there exists a proper premise as subset p for x
with positive support, and thus partition-pp proposes x as a candidate.

4. Results and Discussions

We implemented all methods described above on conexp-clj, a general-
purpose library for formal concept analysis,1 and applied them to data describ-
ing software issues, collected by a large German software company, considered
as a multivalued context. The original data had six features that received
several different manifestations. We scaled this context nominally, resulting
in a formal context of size 2951×2973 with incidence density of roughly 0.002.
We then conducted the following experiments to measure the quality of these
methods with respect to classifying bug reports: for varying n ∈ N+, we ran-
domly chose a subcontext with n objects, removing all attributes which have
empty extent in the corresponding subcontext. Then b0.9 · nc of these items
were used to train the methods; i. e. formed the context of reports Kreports,
and the remaining d0.1 · ne data items were used to test them. A test con-
sisted in classifying the set of features of the data items, and comparing the
proposed components with the known responsible component. For each fixed
n, the whole procedure was repeated five times; 5 different, randomly cho-
sen subcontexts were considered. We recorded the averages of all the values
measured during each of these five executions.

To evaluate the testing data, and obtain a better evaluation of our pro-
posed methods, we also implemented a random classifier. This method simply
proposes a randomly chosen proportion of all the available components. The
number of proposed components is determined by an input parameter. This
allows us to determine whether the components are uniformly represented in
the data, and avoid giving special importance to over-represented components.

We tested the methods in two steps, when applicable: first, every method
proposes a set of components as being responsible for the issue. This test
is positive if and only if the original responsible component is among those
proposed. We also measured the mean percentage of proposed components
among all components in the data, to discern methods that yield positive
answers simply because they propose a large amount of components, from
those that yield more informative answers. Most of our methods also graded
the proposed components. For those methods a test is correct if and only if
the original responsible component is among the top-rated ones. Again, we
also measure the mean percentage of the top-rated components.

1http://github.com/exot/conexp-clj

22 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

Table 4. Experimental Results

Method n train (ms) test (ms) positive proposed correct proposed

random(0.2) 1000 7.25 26.32 20.81% 20.00% – –
random(0.2) 2000 15.12 24.87 19.09% 19.72% – –

random(0.5) 1000 4.85 16.64 51.38% 50.00% – –
random(0.5) 2000 22.63 30.65 51.16% 49.82% – –

random(0.9) 1000 12.58 26.21 90.50% 89.61% – –
random(0.9) 2000 13.37 33.40 87.00% 89.68% – –

new-incident 1000 0.02 19856.95 36.00% 3.11% – –
new-incident 2000 0.02 59371.25 44.50% 3.00% – –

subcontext(0.05) 750 3181598.62 11.98 69.33% 28.15% 30.67% 0.55%
subcontext(0.05) 1000 2841258.02 14.10 73.00% 29.94% 51.00% 0.54%

subcontext(0.01) 750 3355400.12 12.65 73.33% 25.48% 37.33% 0.50%
subcontext(0.01) 1000 2923139.74 15.09 72.00% 27.93% 41.00% 0.50%

can+lux(0.01,0.7) 1000 1375682.73 113.01 9.00% 0.05% 9.00% 0.05%
can+lux(0.01,0.7) 2000 3260189.07 219.74 8.50% 0.03% 8.50% 0.03%

can+lux(0.01,0.9) 1000 1359721.46 148.44 14.00% 0.07% 14.00% 0.07%
can+lux(0.01,0.9) 2000 3378045.62 199.46 7.50% 0.03% 7.50% 0.03%

can+lux(0.05,0.7) 1000 310803.29 0.24 0.00% 0.00% 0.00% 0.00%
can+lux(0.05,0.7) 2000 724341.14 0.13 0.00% 0.00% 0.00% 0.00%

can+lux(0.05,0.9) 1000 340270.58 119.62 5.00% 0.03% 5.00% 0.03%
can+lux(0.05,0.9) 2000 787725.99 0.09 0.00% 0.00% 0.00% 0.00%

partition(3) 1000 18961.75 193.25 33.94% 0.84% 30.00% 0.23%
partition(3) 2000 73898.59 519.63 49.13% 0.69% 47.00% 0.19%

partition(10) 1000 6161.62 109.95 34.00% 0.21% 34.00% 0.21%
partition(10) 2000 23895.38 268.83 46.00% 0.34% 45.00% 0.19%

partition(15) 1000 4943.22 109.95 36.00% 0.23% 34.06% 0.17%
partition(15) 2000 16468.57 245.98 41.69% 0.27% 40.56% 0.16%

partition(30) 1000 2488.06 94.70 40.00% 0.23% 40.00% 0.20%
partition(30) 2000 8529.07 218.02 44.50% 0.25% 43.50% 0.18%

partition-pp(3) 1000 89773.62 83.68 78.19% 31.12% 64.00% 0.50%
partition-pp(3) 2000 418524.89 217.82 88.38% 37.96% 71.00% 0.39%

partition-pp(10) 1000 142692.24 63.23 77.38% 7.32% 68.00% 0.52%
partition-pp(10) 2000 498504.77 151.32 82.19% 10.79% 72.22% 0.43%

partition-pp(12) 1000 182192.81 57.21 78.63% 7.30% 69.69% 0.49%
partition-pp(12) 2000 491516.69 120.77 81.66% 9.29% 70.84% 0.39%

partition-pp(15) 1000 267326.75 53.75 76.88% 7.08% 61.31% 0.51%
partition-pp(15) 2000 630232.06 109.49 80.91% 7.56% 70.91% 0.38%

partition-pp(30) 1000 1083661.64 38.19 66.63% 3.62% 59.00% 0.44%
partition-pp(30) 2000 2201360.65 85.13 80.94% 4.16% 71.56% 0.36%

The results are shown in Table 4. This table includes the training and
testing times, which should be considered with care: the experiments were
conducted in parallel on a 24 core machine, and the times measured are the
overall execution times, not the ones per thread. Thus, the actual computation
times could be lower than the ones stated in the table. However, these numbers
still give a feeling on how these methods perform. Also note that we applied
a timeout of 5 hours for each experiment, including repetitions.

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 23

From the experimental results we first see that the random classifiers be-
have as expected: if we choose randomly 20% of all components we have, then
roughly 20% of the tests are positive; that is, the responsible component is
among those proposed. The same is true for 50% and 90%. Thus, our data
behaves mostly like random data with respect to our classification task. With
respect to this random selection, even our simple approach new-incident

performs much better: for n = 1000, only around 3% of the components are
proposed while 36% of all tests were positive. This performance increases
for n = 2000. However, while the training time is negligible (there is no
training phase), the testing time is quite high, and increases with the size of
the data. This may render this approach difficult to apply in realistic sce-
narios, where the classification time is the real bottleneck. Fortunately, only
the new-incident method has such long testing times. In all the follow-
ing approaches, the testing time is negligible. However, the price to pay are
rather huge training times; sometimes even larger than the timeout used. On
the other hand, in comparison to testing, training is conducted rarely, which
means that huge training times can still be acceptable in practical applications.

The first method in this category is subcontext, which we applied with
parameters 0.05 and 0.01 to our data. We see that the rate of positive tests
is quite high, but also the percentage of components proposed. On the other
hand, the scoring function provides a good method for further reducing the set
of proposed components: only one out of each 200 components is rated with
the highest score, and the correct answer is still provided in roughly half of
the cases. However, the training times for this method were the largest among
all the approaches we tested, by a broad margin. As an overall comparison
with other methods, we conclude that the subcontext method is not the best
suited for achieving a convincing classification.

The approach can+lux, which combines the canonical and Luxenburger’s
bases, performs even worse, much to our surprise: although the proportion
between the number of proposed components and positive and correct tests is
comparatively good, the latter is too low to be of any use for classification.
Moreover, the rating provided by this method yields no improvement over the
unrated classification. As the percentage of proposed components is almost the
same, we can conclude that most components receive the same (highest) score.
This behavior is not necessarily an intrinsic problem of the method, but could
be attributed to a faulty choice of the scoring function. Notice, however, that
the method proposes in average less than one responsible component. Thus,
the same behavior would be observed, regardless of the scoring function.

This picture changes drastically when we come to the approaches based
on partitioning the training data into smaller subcontexts. For partition

we not only achieved rather high positive rates, but the number of proposed

24 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

25% 50% 75%

10%

20%

30%

40%

Positive

P
ro

p
os

ed

new-incident
subcontext
can+lux
partition
partition-pp

25% 50% 75%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

Correct

P
ro

p
os

ed

subcontext
can+lux
partition
partition-pp

Figure 1. Positive (left) and correct (right) vs. proposed components

components was radically reduced. Interestingly, the rating provided by this
method also behaves well; it keeps high rates of correct tests but reduces the
number of proposed components. This is especially true if the partitioned
contexts are very small (e. g. have 3 objects), but is also observable for larger
contexts. Finally, the training times are practically irrelevant, and should
scale well for even larger data sets. Notice that the training time depends
linearly on the number of objects in the training data; if we additionally want
to restrict to only the highest-ranking components, then the training time
becomes O(n log n) since an additional sorting step is needed.

While partition behaves relatively well, the proportion of positive tests
remains below 50%. It would clearly be nicer to increase this number, even
if the rate of proposed components increases. This is achieved by introducing
implicational dependencies as in partition-pp, where both the positive and
correct rates are increased. The cost of this improvement is to propose more
components in both cases, but the ratios between proposed and positive or
correct rates are still very good. What is very surprising, though, is that
the rating provided by this approach is very effective, reducing the number
of proposed components by factors of 10 or more while keeping high rates of
correct tests. This is especially true for n = 2000; one can conjecture that this
improves for larger training sets. Moreover, we can also see that the larger
the subcontexts we consider in our partition, the smaller the sets of proposed
components are. However, we have to pay for this with an increase in the
training time, which may or may not be relevant in practice. In particular,
this method proposes in average less than six top-rated components, and it
might not be worth spending resources trying to reduce this number further.

The results of Table 4 are further depicted in Figure 1. The horizontal
axis corresponds to the percentage of positively or correctly classified tests,
respectively, while the vertical axis shows the percentage of suggested com-
ponents. The ideal situation is an element in the lower-right corner: a high
percentage of success, while suggesting only a few candidates. In the plots,
different methods are depicted by different node shapes, while the shade of

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 25

gray expresses the size of the training set: a darker shade means a larger set.
As it can be seen, the nodes sharing the same figure and the same shade of
gray form natural clusters in these plots. This suggests that the quality of
the results depends mainly on the method chosen, and the size of training set,
while the parameters used in the specific method are not that relevant. The
best results were obtained by partition-pp with a training set of size 2000.
This corresponds to the cluster of nodes depicted by in the plots. It can be
easily seen that this method indeed showcases the best behavior. The only
exception is the case where partitions have size three, which is the single node
in the upper-right corner of the left plot: it was the most successful w.r.t.
positive classification, but suggested over a third of all available components.

These experimental results suggest that our initial idea of using implica-
tional dependencies between attributes to classify bug reports is reasonable,
but only if considered “locally” as in partition and partition-pp. If those
dependencies are considered in the overall training data, then the resulting
classification fails miserably (see can+lux). The partitions used in partition

and partition-pp should not contain too large, nor too small, contexts.
For putting these methods into practice, we can also think of a combined

approach of partition and partition-pp: the former one has an acceptable
performance and suggests only very few components. Therefore, considering
those components may be a good starting point. If the responsible component
is not among those proposed by partition, one can consider those proposed
by partition-pp, which may be more (especially if not rated), but which are
also more likely to contain the real cause of the issue. Also different sizes of the
partition are imaginable, increasing the performance of the classification but
also the number of proposed components. If all fails, one has to fall back to
manual classification. However, this last resource is needed only sporadically.

5. Conclusions

Our goal was to analyze whether FCA tools can be useful for classifying
software issues according to their responsible component. Contrary to stan-
dard machine learning techniques, FCA methods provide logical implications
between the symptoms (features of the bug) and the causes (the responsi-
ble component). These implications can be understood by users, and provide
more detailed information of the software system itself. The use of association
rules to detect faults and vulnerabilities in software systems has been studied
previously [3, 4, 12]. The main difference with this paper is that we study and
compare different approaches for handling erroneous and incomplete informa-
tion, and detected empirically which is best suited for our scenario.

26 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

We tried several approaches, all based in ideas developed in FCA. Each
of the methods was inspired by different approaches towards the problem.
One of the important issues was how to deal with potential errors, incomplete
knowledge, and change of the software structure over time. Surprisingly to
us, the obvious idea of using Luxenburger’s base to handle uncommon excep-
tions yielded relatively bad results: the responsible component was usually
not proposed, regardless of the chosen minimal support and confidence.

The method that behaved best in our scenario was to compute a base
of proper premises over a partition of the historical records, together with a
scoring function for the proposed components. This method behaves very well
from partitions of size 3 up to 30, yielding the right answer in over two-thirds
of the cases, while proposing less than 0.5% of the available components. This
method also scales well: whenever new historical records are added, only the
proper premises over a partition of the new cases need to be computed. All
previous records remain unchanged. Moreover, it is easy to get rid of old
historical records, by simply deleting their corresponding partitions.

In general, our experiments show that it is feasible to classify objects from
large historical records using FCA, provided that training can be done off-line.
While training in the partition-pp method could take more than 10 minutes,
in a context of 1000 objects, the classification time was almost instantaneous,
taking less than 100ms. For our software issue scenario, these conditions are
satisfactory: new issues would be entered to the training data sporadically,
and training may take place over-night. However, lower classification times,
with higher success rates and small sets of candidate components, translate
into faster repair of software bugs.

We have not compared our approach with existing classification methods
from machine learning and other areas. Since we obtained promising results,
we will make such comparison in the future. Our implementation is prototyp-
ical, and requires further optimization for industrial-strength use. Studying
some applicable optimization techniques will also be a focus of future work.

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. “Mining Asso-
ciation Rules between Sets of Items in Large Databases”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data. 1993, pp. 207–216.

[2] Karell Bertet and Bernard Monjardet. “The multiple facets of the canon-
ical direct unit implicational basis”. In: Theoretical Computer Science
411.22-24 (2010), pp. 2155–2166.

REFERENCES 27

[3] Peggy Cellier. “Formal concept analysis applied to fault localization”.
In: Companion Volume of the 30th International Conference on Software
Engineering. (Leipzig, Germany). ACM, 2008, pp. 991–994.

[4] Peggy Cellier et al. “Formal Concept Analysis Enhances Fault Localiza-
tion in Software”. In: Proc. ICFCA 2008. (Montreal, Canada). Vol. 4933.
LNCS. Springer, 2008, pp. 273–288.

[5] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathe-
matical Foundations. Berlin-Heidelberg: Springer, 1999.

[6] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. “Improving bug
triage with bug tossing graphs”. In: Proc. ACM SIGSOFT Int. Symp.
on Found. of Software Eng. ACM, 2009, pp. 111–120.

[7] Sergei O. Kuznetsov. “Complexity of learning in concept lattices from
positive and negative examples”. In: Discrete Applied Mathematics 142.1-
3 (2004), pp. 111–125.

[8] Sergei O. Kuznetsov. “Machine Learning and Formal Concept Analysis”.
In: Proc. ICFCA 2004. Vol. 2961. LNCS. Springer, 2004, pp. 287–312.

[9] Michael Luxenburger. “Implications partielles dans un contexte”. In: Ma-
thématiques, Inform. et Sciences Humaines 29.113 (1991), pp. 35–55.

[10] Michael Luxenburger. “Implikationen, Abhngigkeiten und Galois-Abbil-
dungen”. German. PhD thesis. TH Darmstadt, 1993.

[11] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[12] Stephan Neuhaus and Thomas Zimmermann. “The Beauty and the Beast:
Vulnerabilities in Red Hats Packages”. In: Proc. 2009 USENIX Annual
Technical Conference. 2009.

[13] Uwe Ryssel, Felix Distel, and Daniel Borchmann. “Fast algorithms for
implication bases and attribute exploration using proper premises”. In:
Annals of Math. and Artif. Intel. Special Issue 65 (2013), pp. 1–29.

[14] Gerd Stumme et al. “Intelligent Structuring and Reducing of Associa-
tion Rules with Formal Concept Analysis”. In: Proc. KI 2001. (Vienna,
Austria). Vol. 2174. LNCS. Springer, 2001, pp. 335–350.

Theoretical Computer Science, TU Dresden, Germany
E-mail address: daniel.borchmann@mailbox.tu-dresden.de

TCS, TU Dresden, Germany. Center for Advancing Electronics Dresden
E-mail address: penaloza@tcs.inf.tu-dresden.de

SAP, Germany
E-mail address: wenqian.wang@sap.com

