
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Number 2, 2014

AN APPROACH TO RESOURCE MANAGEMENT OF

C/C++ APPLICATIONS

HANNELORE MĂRGINEAN AND SIMONA MOTOGNA

Abstract. In this paper we will present an approach to resource man-
agement of C/C++ applications, that has been concluded by building a
new and unique profiling tool, remgrind. We first introduce general notions
about profiling and performance analysis and continue with describing Val-
grind, the framework that we used to build our tool. Finally we provide
details about our implementation and compare it to similar tools.

1. Introduction

Software complexity has increased significantly over the last few decades
and finding errors or performance issues is an increasingly difficult task. A
way to alleviate these issues are tools that help finding bugs or performance
hotspots in the software by analyzing the program. Program analysis is a
method used to examine the correctness and performance of software, in order
to solve possible flaws and optimize the software to execute faster and use
fewer resources.

There exists a large number of research contributions and tools that per-
form such an analysis at the level of basic blocks (Pixie [2], QPT [9]) or
tracing tools (WRL Titan [1], MPTRACE [6]). With the appearance of mod-
ular programming paradigm, and the significant increase of software complex-
ity, several issues have arisen, such that basic programming analysis tools do
not provide sufficient information for development and maintenance teams.
Nowadays, software applications are usually developed by large teams, and
may use third party components or libraries that do not necessarily exhibit
implementation details. As a consequence, if someone would want to evalu-
ate the performance of his own code, he must take into consideration aspects
regarding functions calls and memory used by these calls.

Received by the editors: October 19,2014.
2010 Mathematics Subject Classification. 68M20.
1998 CR Categories and Descriptors. H.3.4 [Information Storage and Retrieval]:

Systems and Software – Performance evaluation (efficiency and effectiveness); F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs – Functional constructs.

Key words and phrases. program analysis, profiling, resource management.

107



108 H. MĂRGINEAN AND S. MOTOGNA

Our approach analyzes the resources used by an application at the function
level in order to be able to find performance hotspots. Our tool remgrind
monitors memory allocations and deallocations as well as I/O operations for
C/C++ applications and annotates each function with this information. It is
our hope that this unique approach can be used by developers to channel their
optimization efforts to parts of the program that consume the most resources.
Remgrind was not designed to obtain results that other tools already provide
and as such is not a complete solution to profiling and testing applications,
but it offers its unique view into programs. Similar profilers account for the
running time of called routines in the running time of the routines that call
them [8], or discover hidden asymptotic inefficiencies in the code [4]. Similar
tools are presented in section 4.

The rest of the paper is structured as follows: Section 2 introduces the
basic concepts of profiling, section 3 introduces our tool remgrind and explain
it’s feature and algorithms used in the approach, together with a case study.
Related work section evaluates our tool against similar approaches and dis-
cusses it’s specific features that differentiate it. In the end, we draw some
conclusions and suggest some future extensions.

2. Profiling

Program analysis can be classified in two major approaches: static and
dynamic.

Static analysis is performed on the source or object code without executing
the program. The advantage of this approach is that it offers full code coverage
however most memory and concurrency issues can not be detected.

Dynamic analysis is performed while the program is executed. The effi-
ciency and accuracy of the analysis output depends on the test inputs, which
determine the code coverage during execution. The program can be started
either on a real or a virtual processor. The code is usually examined by
instrumenting the client code with analysis code to obtain the necessary infor-
mation about the run-time state. The main advantage of dynamic analysis is
that most issues like memory leaks and concurrency problems can be detected.
However, detection of such problems is directly related to program input [5].
Profiling is a subcategory of dynamic analysis.

Profiling needs to gather information, and the most used methods are
based on sampling, instrumentation and event based gathering.

The aim of performance optimization of a program is to decrease the re-
sources used. The relationship between performance analysis(profiling) and
performance optimization is established by the probability of finding flaws
and bottlenecks in the software using a profiler. The profilers aim to inspect
specific aspects of the program, such as duration of execution, memory used,



AN APPROACH TO RESOURCE MANAGEMENT OF C/C++ APPLICATIONS 109

multithreading or I/O operations [12], [14]. Profiling is therefore an important
step in optimizing code.

The most important aspects regarding performance analysis are:
80/20 principle : According to the Pareto principle [13], for almost every

event, 20% of the causes are responsible for 80% of the effects. The 80/20 rule
can also be applied in software optimization. This means that approximately
20% of the code is using 80% of resources, time, memory etc. Identifying
this small percentage of code by manually analyzing the source code can be
a demanding task and a simpler solution for this problem consists in using a
profiler.

Time-based analysis: is very useful in identifying parts of the program
which are consuming the most processing time during execution. Measuring
the duration alone is not enough because todays applications may also be
influenced negatively by cache hit rates, disk read and writes, inter-thread
communication and even overhead generated by the operating system.

Analysing the memory allocations and deallocations during the ex-
ecution of a program can help the programmer finding code which is memory-
consuming and therefore affects the overall performance of the application.
Another important aspect is finding memory related bugs, like accessing unal-
located memory, double freeing or memory leaks which can lead to corrupted
data or application crashes.

Multithreading Analysis: Most applications use multiple threads or
processes to make use of the processors with more than one core as well as to
divide a program intro multiple tasks. The issues that arise from using threads
are mostly caused by the shared access to resources. The mechanism for
protecting access can lead to deadlocks, livelocks, starvation and unprotected
access may cause race conditions

Cache and Branch-prediction Analysis: CPUs use caches that are
organized hierarchically in order to improve the performance of accessing the
main memory. Each level increases in size but has reduced speed compared
to previous levels. Cache hits or misses can have a great impact on soft-
ware performance. Another important facet of performance analysis is branch
prediction. A CPU attempts to predict which branch of a conditional jump in-
struction will be taken in order be able to continue execution without waiting
for the data required for the condition.

Valgrind [15] is an instrumentation framework for building dynamic analy-
sis tools. There are Valgrind tools that can automatically detect many memory
management and threading bugs, and profile your programs in detail. You can
also use Valgrind to build new tools.



110 H. MĂRGINEAN AND S. MOTOGNA

The core is a low-level implementation that is required to build a dynamic
instrumentation tool. It works by simulating a CPU in order to fully super-
vise the execution of the program. Valgrind implements a JIT compiler for
instrumenting the program in real-time.

3. Our approach

In this section we will describe remgrind, a tool built for the resource
management of C/C++ applications. By resources we are referring to heap
memory allocated and deallocated and the bytes that are read or written
to handles like files or sockets. Our approach to resource management of a
program is a profiling tool that collects information about the resources per
function and also provides statistics regarding I/O operations per application.

The supported functions refer to allocation and deallocation (malloc, new,
vec new, memalign, calloc, free, delete, vec delete) and the supported read and
write system calls with their corresponding numbers are: read 0, pread 17,
readv 19,recvfrom 45, recvmsg 47, msgrcv 70, mq timedreceive 243, preadv
295, recvmmsg 299, respectively write 1, pwrite 18, writev 20, sendfile 40,
sendmsg 46, sendto 44, msgsnd 69, mq timedsend 242, pwritev 296, sendmmsg
307.

Our solution is build as a Valgrind tool and uses instrumentation, replace-
ment of allocation and deallocation functions and system call wrappers. It
uses hash tables from Valgrind and implements algorithms for these three
main entry points for gathering information about the functions.

Instrumentation is based on the following approach: it takes as argu-
ment a superblock that contains a list of statements which are then analyzed
one by one. One assembly instruction is split into multiple IR(intermediate
representation) instructions, therefore we need to use the tag IMark to iden-
tify the beginning of the machine instruction. We use instrumentation in
order to add new nodes to the functions hash table and increment the num-
ber of calls for a function. This is performed by the helper C function
&create or incrementFn. The algorithm is sketched in 1.

Replacing allocation and deallocation functions: Allocation and dealloca-
tion functions can be replaced in Valgrind and this functionality is very useful
for gathering information regarding memory. We use this technique in order
to compute the memory used by the function itself and its maximum, as well
as the cumulative memory and its maximum.

Computing cumulative memory is based on the following idea: after the
program has finished execution this algorithm computes the memory used by
a function recursively. If the hash node corresponding to the function has no
called functions, then it means that the memory must not be calculated any



AN APPROACH TO RESOURCE MANAGEMENT OF C/C++ APPLICATIONS 111

Algorithm 1 Instrumentation

1: function (SB sb)
2: SB out = sb.expressions;
3: for each stmt in sb.statement-list do
4: if stmt.tag == IMark and stmt == entry then
5: addStmt(out, &create or incrementFn)
6: else
7: addStmt(out, stmt)
8: end if
9: end for

10: ret out
11: end function

further for that function. Otherwise the sum is computed recursively for every
called function.

Computing maximum cumulative memory follows this idea: When a mal-
loc, free or a similar function is called, the tool recalculates the current memory
for almost every function. For calculating the maximum value of the memory
at any point in any function, we traverse the stacktrace and sum the size of
the memory allocated. We ignore the first element in the stack because it is
the call to the allocation or deallocation function. The values on the stack are
pointers to current instructions in every function, therefore the address of the
function it belongs to needs to be computed.

Syscall wrappers: System calls can not be fully replaced by Valgrind in a
way similar to malloc or other similar operation, but Valgrind offers syscall
wrappers which are called before and after the execution of a system call. We
use these wrappers to compute the total number of bytes read and written to
and from handles and to obtain information about their duration. The number
of bytes read or written are added to the corresponding function before the
system call by the function pre syscall.

For measuring the duration of a system call, the time is measured by
pre syscall and by post syscall and those values are then substracted. The
average duration of a system call as well the maximum system call duration
are also computed by post syscall.

3.1. Example. In this section we will present an example that covers all the
possible use cases. We will not consider the functions that are called before
main and their data generated regarding reads, writes and memory. Assume
we have the following program:

The statistics per application generated by the application are presented
in Figure 1, and the statistics per function are listed in Figure 2:



112 H. MĂRGINEAN AND S. MOTOGNA

1: function 1
2: pointer p = allocate memory(120)
3: read(filehandler, 4000)
4: end function
5: function (Pointer p)
6: Pointer p1 = allocate memory(400)
7: call function1()
8: free memory(p1)
9: free memory(p)

10: write(filehandler, 1300)
11: end function
12: function Main
13: Pointer p = allocate memory(40)
14: call function(p)
15: call function1()
16: read(filehandler, 3000)
17: write(filehandler,70000)
18: end function

Figure 1. Statistics per application

4. Related work

4.1. Similar Tools. There exists a significant number of tools that address
program analysis providing information about different aspects during pro-
gram execution: error detection, overall execution time, memory information.
We discuss some of them, as they target the same issues as remgrind.

Memchek is used for detecting errors in C and C++ applications. It is
implemented as a Valgrind tool. It can detect illegal memory accesses, use of
undefined values, incorrect use of allocation and deallocation functions, like
double-freeing of a heap memory block and detect memory leaks. The heap
summary shows the total number of bytes allocated, the number of allocations



AN APPROACH TO RESOURCE MANAGEMENT OF C/C++ APPLICATIONS 113

Figure 2. Statistics per function

and frees. The leak summary shows the number of bytes lost as well as the
stacktrace for every leak [11]

Callgrind is as profiler that generates a flat output that contains infor-
mation about events like data reads, cache hit or misses for every function of
the profiled program [3]. The cost is computed based on this events and can
be inclusive or exclusive. Callgrind also generates a cal-graph for the program
and in combination with the data from the flat output it can be used to detect
the location where the costs are the highest.

Massif is a Valgrind tool for profiling memory. This tool uses snapshots to
show the memory usage over time in order to help fixing certain memory leaks
that memcheck is unable to detect. It also notes the peak of memory usage
and provides stacktraces at certain points in time to show where memory is
being used. Massif is able to track heap memory and optionally stack usage
or is able to track memory usage per page using lower level interfaces [10].

GProf is the GNU profiler that measures the time spent in functions,
the number of function calls and calls per line. It generates a flat profile that
contains information about the execution time of the function and the number
of calls and it shows the percentage of that function uses. The call-graph it



114 H. MĂRGINEAN AND S. MOTOGNA

generates can be used to detect if the time spent in the function was not
actually executed in that function but rather in its children, which are the
functions it has called [8, 7].

4.2. Performance Analysis. In this section we discuss the performance of
different tools when analyzing two test programs. The first is a simple program
that calls twice a function that opens and reads a file. The second program
is an application of allocation, freeing and allocating some memory zone. The
programs were compiled using gcc, version 4.8.2 20131212 (Red Hat 4.8.2-
7). The platform on which the tests were run is a Laptop with a Intel(R)
Core(TM) i5 CPU M 460 @ 2.53GHz processor and 4GB of RAM. The OS is
Fedora 20 and the filesystem used in for the first test is ext4.

The test programs were compiled with gcc and the -pg option was added
in order to profile using gprof. The results of the testing can be seen in Table
1. Real refers to the time from start to finish of the call, user is the amount
of CPU time spent in user-mode code (outside the kernel) within the process,
and sys is the amount of CPU time spent in the kernel within the process.

Tool Test1 Test 2 Details
0m0.002s 0m0.004s real

native 0m0.001s 0m0.003s user
0m0.000s 0m0.001s sys
0m0.001s 0m0.004s real

gprof 0m0.001s 0m0.003s user
0m0.001s 0m0.001s sys
0m0.395s 0m0.483s real

memcheck 0m0.358s 0m0.441s user
0m0.033s 0m0.036s sys
0m0.623s 0m0.305s real

callgrind 0m0.216s 0m0.276s user
0m0.029s 0m0.025s sys
0m0.782s 0m0.265s real

massif 0m0.203s 0m0.233s user
0m0.028s 0m0.028s sys
0m0.229s 0m0.474s real

remgrind 0m0.205s 0m0.445s user
0m0.022s 0m0.026s sys

Table 1. Tool Performance

The unique features of remgrind compared to the tools we have analyzed
and how they can be used to improve software can be summarized in the
following:



AN APPROACH TO RESOURCE MANAGEMENT OF C/C++ APPLICATIONS 115

Self memory used per function: This value is useful in detecting func-
tions that allocate or deallocate a lot of memory without considering the func-
tions it called. The difference compared with memcheck is that this is not
intended as a memory error detector but resource management per function.

Maximum value of the self memory used per function: This value
can help detect possible peeks in the memory used in a function even if at
the end of the function the self memory used has a value of 0. Massif is a
heap profiler that can detect peeks in the memory usage but it only provides
information about the whole program and is designed to detect memory leaks.

Maximum cumulative memory used per function: This value rep-
resent the maximum value of the memory used by a function at any point in
time taking the functions it called into consideration. These values can help
to detect memory-consuming parts of the program and are 100% accurate, be-
cause every time a function allocates or deallocates memory, all the functions
from the stack are updated. Massif detects the maximum of the memory used
per application, whereas our solution detects maximum per function.

Total reads and writes per function and application:None of the
presented tools compute the number of bytes read and written from handles
per function or per application. Performance hotspots caused by I/O opera-
tions can be easily detected by knowing this information about functions.

Average time spent in I/O per application and the maximum
duration of a I/O operation: The average time spent in I/O operations
can help in detecting if the performance of the application is I/O bound or not.
A tool that is also focused on collecting information per function is callgrind,
but it does not offer information about memory usage or I/O operations. The
information we provide regarding memory can not be obtained from memcheck
or massif, because they are application oriented and not function oriented.

5. Conclusions

In this paper we have presented an approach to resource management of
C/C++ applications that has not been previously attempted. It is based on
analysis of resources used by an application at the function level in order to
be able to determine performance hotspots. The approach is implemented
in a tool, remgrind that monitors memory allocations and deallocations, and
I/O operations for C/C++ applications and annotates each function with this
information. We compare our approach with similar tools that address the
same issues: we have perform a time performance analysis of remgrind and
other tools, and then discuss the innovative features of our tool.

Our solution can currently profile single-threaded applications. In the
future we want to add support for multi-threaded applications. Another im-
provement that we want to implement in the future will deal with replacement



116 H. MĂRGINEAN AND S. MOTOGNA

of the C helper calls added at instrumentation time for gathering information,
with intermediate representation statements, which would lead to a significant
increase in performance.

References

[1] Anita Borg, R.E. Kessler, Georgia Lazana, and DavidWall. Long Address Traces from
RISC Machines: Generation and Analysis, Proceedings of the 17th Annual Symposium
on Computer Architecture, May 1990

[2] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl.
PROTEUS: A High-Performance Parallel-Architecture Simulator. MIT/LCS/TR-516,
MIT, 1991.

[3] Callgrind - Valgrind page callgrind manual [Online]. Available: http://valgrind.org/
docs/manual/cl-manual.html

[4] E. Coppa, C. Demetrescu, I. Finocchi - Input-Sensitive Profiling, Proc. PLDI12, , ACM
SIGPLAN Notices, Volume 47 Issue 6, June 2012, pg. 89-98

[5] E. Dustin, T. Garrett, and B. Gauf, Implementing Automated Software Testing: How
to Save Time and Lower Costs While Raising Quality, 1st ed., Addison-Wesley Profes-
sional, March 2009

[6] Susan J.Eggers, DavidR. Keppel, Eric J. Koldinger, andHenryM.Levy.Techniques for
Efficient Inline Tracing on aShared-MemoryMultiprocessor. SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, vol 8, no 1, May 1990.

[7] Gprof - Gnu gprof profiler [Online]. Available: https://www.cs.utah.edu/dept/old/ tex-
info/as/gprof.html

[8] S.L. Graham, P.B. Kessler, and M.K. McKusick, gprof: a Call Graph Execution Profiler,
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 17, No 6, pp. 120-126

[9] James R. Larus and Thomas Ball. Rewriting executable files to measure program be-
havior. Software, Practice and Experience, vol 24, no. 2, pp 197-218, February 1994.

[10] Massif - Valgrind page massif manual [Online]. Available: http://valgrind.org/
docs/manual/ms-manual.html

[11] Memcheck - Valgrind page memcheck manual [Online]. Available: http://valgrind.
org/docs/manual/mc-manual.html

[12] S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs,
1st ed. Addison-Wesley, 1996, pg. 82-85

[13] Pressman, Roger S.: Software Engineering: A Practitioner’s Approach (7th ed.).
Boston, Mass: McGraw-Hill, 2010

[14] M. Reddy, API Design for C++, 1st ed. Morgan Kaufmann, February 2011, pg. 235-236
[15] Valgrind - Valgrind home page [Online]. Available: http://valgrind.org/
[16] Static code analysis. [Online]. Available: http://www.viva64.com/en/t/0046/

Babeş Bolyai University, Department of Mathematics and Computer Sci-
ence, 1 M. Kogălniceanu St, 400084 Cluj-Napoca, ROmania

E-mail address: hanneloremarginean137@gmail.com

E-mail address: motogna@cs.ubbcluj.ro


