STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Number 2, 2014

FAOS - A FRAMEWORK FOR ANALYZING
OBJECT-ORIENTED SOFTWARE SYSTEMS

ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

ABSTRACT. In this paper we are presenting a software framework we have
developed for supporting several machine learning-based techniques which
were introduced for solving some software engineering problems. Search-
based software engineering is a research and practice domain which is
based on the idea of reformulating all software engineering problems as
search problems, and on applying metaheuristic search techniques for solv-
ing these problems. We have previously introduced in the search-based
software engineering literature several machine learning-based solutions for
solving problems of major importance within software engineering, namely:
software remodularization both at the class and the package level and
software design defect detection. The FAOS (Framework for Analyzing
Object-oriented Software systems) framework was used for developing all
the above mentioned techniques. A comparison of the FAOS software with
similar existing approaches in the literature is also provided, emphasizing
its characteristics and advantages.

1. INTRODUCTION

Search-based software engineering [10] is a research and practice domain
appeared in the field of software engineering, and is based on the idea of re-
formulating all software engineering problems as search problems. Researches
within this field are conducted towards developing metaheuristic search tech-
niques for solving different software engineering problems such as testing,
module clustering, cost estimation, requirements analysis, systems integra-
tion, software maintenance and evolution of legacy systems.

Harman and Jones claim in [9] that Software Engineering is ideal for the
application of metaheuristic search techniques, such as genetic algorithms,
simulated annealing and tabu search. But these techniques are not the only

Received by the editors: September 15, 2014.

2010 Mathematics Subject Classification. 68N30, 68N19.

1998 CR Categories and Descriptors. D.2.8 [Software Engineering]:Metrics — Prod-
uct metrics; D.2.10 [Software Engineering]: Design — Methodologies; D.2.13 [Software
Engineering]: Reusable Software — Reusable libraries;

Key words and phrases. software framework, object-oriented software system, software
development.

66

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 67

computational intelligence techniques applicable to software engineering tasks.
Machine learning algorithms or fuzzy approaches can be used as well. These
techniques could offer solutions to difficult problems within software engineer-
ing and may provide ways of finding acceptable solutions in situations where
perfect solutions are impossible or practically infeasible. Even if the relation-
ship between searching and learning is not obvious, from the perspective of
human reasoning modelling, machine learning techniques can be connected to
intelligent searching techniques. Essentially, an artificial learning system (ir-
respective of the learning strategy used) has to search (or discover) an optimal
sequence of actions for solving a particular problem. Thus, machine learning
based solutions for solving software engineering problem are associated to the
search based software engineering topic.

We have previously introduced several machine learning-based techniques
for solving problems of great importance during software maintenance and
evolution. The approached problems were: software remodularization at the
class [16] and the package level [18] and software design defect detection [3].

The main contribution of this paper is to introduce the FAOS framework
(Framework for Analyzing Object-oriented Software systems) which we have
used for the development of all the previously mentioned techniques. FAOS
was designed to be generic enough to offer a support for analyzing an object-
oriented software system and to easily extract from it relevant information, as
well as to provide reference implementation for several software metrics which
are useful to measure software quality [11].

The rest of this paper is organized as follows. Section 2 presents the
related work as well as the techniques already introduced in the literature
which were developed using the FAOS framework. Our software framework
proposal is introduced in Section 3. Section 4 emphasizes the advantages of
the framework proposed in this paper and provides a comparison with existing
related approaches. Conclusions of the paper as well as directions to further
improve and extend the FAOS framework are outlined in Section 5.

2. BACKGROUND

This section presents a literature review on existing related software frame-
works, as well as a review on the machine learning-based approaches which we
have previously introduced in the search-based software engineering literature
and were developed using the FAOS framework.

2.1. Literature review. In search-based and machine learning-based soft-
ware engineering researchers often implement their approaches in the form of
different tools or frameworks that can be used both by researchers for the
comparison of results, but also by software developers to get help with their

68 ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

everyday tasks. While there is no other framework with the exact same func-
tionalities as FAOS, there are some frameworks in the literature which are
similar to parts of it. In this section we will present those frameworks that we
have met in the literature and we consider that are similar to the FAOS.

One such framework is JDeodorant, which is actually an Eclipse plu-
gin, available at [13], developed for identifying bad smells [8] in Java code.
JDeodorant provides a specialized view in Eclipse and is able to identify four
types of bad smells: God Class, Long Method, Feature Envy and Type Check-
ing. Each of them opens a new view in Eclipse, and these views have an Iden-
tify Bad Smells button. Clicking this button the corresponding bad smells are
identified in the selected element, which can be a whole project, a package, a
class and for some smells even just a method. A big advantage of JDeodorant
is that it not only suggests refactorings to be applied to remove the identified
bad smell, but it can also give a preview of how the system would look like
after the refactoring and perform the refactoring.

Another tool which is similar to FAOS is iPlasma, available at [12], which is
an integrated environment designed for the quality analysis of object-oriented
software systems. Its code analysis is implemented for two programming lan-
guages, Java and C++, their internal representation being the same. There are
multiple possible analysis methods implemented in ¢Plasma, it can compute
the values of a high number of software metrics, it implements the Detection
Strategies presented in [19], and it also has a module for detecting duplicate
code.

The Bunch tool is similar to the packageRestructuring module of FAOS
(presented in Section 3.2.3), it uses different search algorithms (Steepest As-
cent Hill Climbing, Next Ascent Hill Climbing and Genetic Algorithms) for
finding a good partitioning of the software system, using the M({) measure as
objective function [14, 21].

There are also other tools, which can compute the value of different soft-
ware metrics for a system or part of a system, some freely available, others
commercial. For example, for Eclipse we have found two different plugins,
both called Metrics. The first, available at [20] can compute the value of 23
different software metrics. It allows the setting of different threshold values
for the metrics, and when a class or a method has a higher value than the
threshold, it is marked in the editor. The other Eclipse plugin that computes
the values of software metrics is available at [7]. It has implemented the value
of seven metrics computed for a method, and four metrics computed for a
class.

2.2. Machine learning based software engineering. In [17] we have ap-
proached the problem of improving the quality of a software system design,
an important issue during the evolution of object-oriented software systems.

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 69

Starting from the fact that software metrics are essential in measuring the soft-
ware quality [2], a metric-based high-dimensional representation of the entities
from a software system was introduced. Using this representation, we have
defined a distance semi-metric between the entities of the software system.
An experimental validation of the distance semi-metric on two case studies
was provided, illustrating that the distance function introduced in [17] may
be successfully used for improving the internal structure of software systems.

In [15] we have worked on the problem of improving the quality of a soft-
ware system design as well, but from a different point of view. Instead of
using a high-dimensional representation of the entities, we decided to aggre-
gate the values of different software metrics into a single score, which was used
to guide a hierarchical clustering process. For this approach we have identified
16 software metrics that measure the cohesion, coupling and size in a software
system and used their values in the aggregated score. Experiments on small
software systems showed that our approach is capable of identifying a good
structure of the software system.

In the paper [16] we have investigated through a case study, whether the
use of unsupervised learning methods can be beneficial in the process of au-
tomatic refactoring [8] identification. The results of two algorithms (one that
uses hierarchical clustering and one that does not) are compared for a case
study, and show that the algorithm that uses hierarchical clustering is capable
of identifying refactorings which are not found by the non-clustering based
algorithm.

The problem of software refactoring at the package level [22] was ap-
proached in [18] using hierarchical clustering. Two approaches are proposed in
order to help software developers in designing well-structured software pack-
ages. The first approach takes an existing software system and re-modularizes
it at the package level using hierarchical clustering, in order to obtain better-
structured packages. The second method we propose considers a certain struc-
ture of packages for a software system and suggests the developer the appro-
priate package for a newly added application class. The proposed methods
are based on computing the value of several features, aggregated into a sin-
gle score, which was used as a distance measure during the clustering process.
Computational experiments are performed on two open-source frameworks and
the algorithms introduced in [18] have proven to perform well in comparison
to existing similar approaches.

Another problem within the software engineering domain that we have ap-
proached from a machine learning perspective is the problem of automatically
detecting application classes having design defects, presented in [3]. We have
proposed a method based on relational association rule mining for detecting
faulty application classes in existing software systems. The proposed method

70 ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

is based on mining of relational association rules for identifying design defects
[19] in software. Experiments on open-source software are conducted in order
to detect defective application classes in object-oriented software systems.

3. THE FAOS SOFTWARE FRAMEWORK

In this section we introduce an application programming interface (API)
that is realized in JDK 1.6 and is intended to analyze software systems written
in Java in order to extract from them relevant information such as attributes,
methods, application classes and relationships between all these entities. The
FAOS framework was used for developing the machine learning-based software
engineering techniques presented in Subsection 2.2.

3.1. Theoretical considerations. First, we will start with presenting some
theoretical aspects on which the software framework is based on.
Let S = {s1, 82, ..., 5n} be a software system, where s;,1 < i < n is an entity
(an application class, a method from a class or an attribute from a class).
Let us consider the following. (1) Class(S) = {C1,Cys,...,Ci}, Class(S) C
S, is the set of applications classes from the software system S. Each appli-
cation class C; (1 < i < [) is a set of methods and attributes, i.e., C; =
{ma, mag, ... Mip,, @ity aio, - . -, Gip, }, where my; (Vj, 1 < j < p;) are methods

L pi

and a;; (Vk, 1 < k < r;) are attributes from C;. (2) Meth(S) = U U mij,
i=1j=1

Meth(S) C S, is the set of methods from all the application classes of the soft-

I r;
ware system S. (3) Attr(S) = U U a;j, Attr(S) C S, is the set of attributes
i=1j=1
from the application classes of the software system S.
Based on the above notations, the software system S may be defined as

S = Class(S) U Meth(S)|J Attr(S) [4].

3.2. The framework design. The FAOS framework is currently composed
of three main modules, Analyzer, Metrics and PackageRestructuring. The
following subsections will present in detail these three modules.

3.2.1. The Analyzer module. The first module of the FAOS framework is the
Analyzer, which performs the actual analysis of the software system and builds
an internal representation of it, which can be further used for other tasks. The
current implementation of the Analyzer module can only analyze software
systems written in Java, and it requires either the compiled .class files or a
jar archive for the analysis.

A simplified class diagram of the Analyzer module is presented in Figure 1.
This diagram (and the diagrams for the rest of the modules) presents only the

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS

1

<<lava Package>>
fH analyzer.collector

I |

71

==Java Package==
f# analyzer.datamodel

«<Java Classs>

(3 ClassinfoCollector
<<]ava Classs>

(® MethodinfoCollector

=« java Classs=
(@ GeneralinfoCollector

=+Java Inferfaces=»
@ MAttribute
sl . J'--,
: <<lava Classs»
(3 MPackage

= <<lava Class>=
(© MField

<<lava Classs> [
(@ MClass

<<lava Class>>

(& MMethod

- <elava Classss |

@Filters
<zlava Class=>
@ Analyzer |
<<]ava Packages=
2 analyzer.xml
<<Jave Clags»»

T (@ AnalyzerConfig

<J ava Class»»
(& AnalyzerConfigHandler

FIGURE 1. Simplified class diagram for the Analyzer module.

packages of the module and the classes from each package, without including
methods and attributes of these classes. In order to avoid overcrowding the
diagram, only the most important relations between the classes are marked.
In the following we will present in detail the components of Figure 1.

Datamodel for representing software systems. The Analyzer mod-
ule of the FAOS framework provides an internal representation of the analyzed
software system. This subsection will present the datamodel used, i.e., how
we represented elements of the software system. The datamodel is a very im-
portant component of the FAOS framework, because the rest of the modules
use the datamodel as well. This part is presented on the datamodel package
from Figure 1.

An important base for our datamodel is the MAttribute interface, which is
implemented by the classes representing entities of a software system: pack-
ages, classes, methods and fields. By using a common interface for all these
entities the definition of different approaches that treat these entities equally is
a lot easier. Besides a method to return the name of the entity, the MAttribute
interface has another method which returns the set of relevant properties for
the given entity.

72 ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

The MClass class represents an application class from a software system. It
is a complex class, having many attributes, the most important of them being;:
the name of the class, the name of the superclass, an array with the names
of the implemented interfaces, a list of methods and a list of fields. Methods
of the MClass class include getters and setters for the fields (combined with
some filtering possibilities in case of the lists of methods and fields), methods
that verify if the class is an interface, abstract and so on.

A method from an application class is represented by the MMethod class.
This is a complex class as well, its most important fields being: the name of
the method, the MClass object of the application class to which this method
belongs, the set of fields that are used by the method, the set of methods called
by the method, the set of local variables created and used in the method, the
set of parameters of the method. Methods of the MAtiribute class contain
getters and setters for most fields, methods that verify if the method is public,
private, abstract, static, constructor, a setter or a getter.

An attribute, or field, of an application class is represented by the MField
class. This is a simple class, it only has attributes for the name of the field,
the MClass object for the owner class of the field and its type. Besides getters
and setters it has methods that verify if it is private, public, static, constant
or the “this” field.

There is a fourth class that implements the MAtiribute interface, the
MPackage class. This class represents a software package and it simply has a
list of objects of type MClass and a name.

The ASM bytecode manipulation framework. The main role of the
Analyzer module is to take a set of compiled Java classes and extract from
them a set of MClass objects (together with the corresponding list of MMeth-
ods and MFields) that can later be used for different other tasks. For the
analysis of the compiled code we used the ASM Java bytecode manipulation
framework [1], version 4.0. This framework provides the users with a set of
interfaces and abstract classes which can be easily implemented or extended
to perform specific tasks. One of the base classes from the ASM API is the
ClassVisitor abstract class, which, as its name suggests, implements the Vis-
itor design pattern. This class has a series of methods, corresponding to the
content of a compiled Java class file, each being automatically invoked by the
ClassReader object from ASM, when the corresponding element is visited.

Two very important methods of the ClassVisitor class are the visitField
and wvisitMethod methods, which are called for every attribute and method of
the analyzed class. These methods return other Visitor objects, a FieldVisitor
or a MethodVisitor. The MethodVisitor abstract class is used to visit elements
of a method from an application class, there is a separate method for each

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 73

bytecode instruction category. The FieldVisitor class was not used it was not
needed for obtaining the information for our representation of a field.

Since the ClassVisitor and the Method Visitor classes are abstract, we ex-
tended them and implemented our classes that perform the analysis and build
the corresponding MClass, MMethod and MField objects. This part of the
Analyzer module is presented in the collector package from Figure 1. The
ClassInfoCollector class extends the ClassVisitor class and builds an MClass
object corresponding to the analyzed class. We have defined the MethodIn-
foCollector class as well, which extends the MethodVisitor class and builds
an MMethod object for the visited method. The third class from the collec-
tor package, the GenerallnfoCollector, was written to “coordinate” the other
two classes. This class maintains the list of MClass objects that are created
one-by-one by the ClassInfoCollector object as the classes are analyzed.

Configuring the Analyzer. The third package of the Analyzer module,
called xml contains the two classes needed for configuring the analysis. For
the configuration we have chosen to use xzml files because of their flexibility.

The AnalyzerConfig class is a simple class which contains all the informa-
tion read from the configuration file, while the AnalyzerConfigHandler class is
the class which reads the xml file and builds the corresponding AnalyzerConfig
object.

Finally, the last class in the Analyzer module is the Analyzer class. This
class needs the name of the configuration file, uses the AnalyzerConfigHandler
to get the corresponding AnalyzerConfig object and, in the analyzeProject
method, creates a GenerallnfoCollector object and starts the analysis. This
method returns the list of M Class objects extracted from the analyzed software
system, a list which can later be used to all sorts of further tasks and analyses.

3.2.2. The Metrics module. The second module of the FAOS framework is the
Metrics module, which contains the implementation of different software met-
rics using the datamodel presented in Subsection 3.2.1. This module is divided
into two main packages, the classLevel package contains the implementation of
different software metrics computed for a class, while the packageLevel pack-
age contains the implementation of software metrics and measures computed
for a software package. The simplified class diagrams for these two packages
are presented on Figures 2 and 3.

From Figure 2 it can be seen that the central class in the classLevel package
is the ClassMetric abstract class, which is extended by every software metric
in this package. While currently these metrics can only be computed for an
application class, we would like to extend them to measure other entities as
well, for example methods and fields. Thus the most important method of
the ClassMetric class is the measure method, which receives as parameter
an object of type MAttribute. This method, based on the exact type of the

74

ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

==lava Package=>

fH metrics.classLevel

<<Java Class>> “JE'(";;E;S» <zlava Classs> | |<<lava Classs= <<lava Classs=
(®DAC Gca @mpc 3 LCoM1

==lava Class=> T
©ms ®LCOM2

<<Java Class=» \ 43’”/’// ==lava Class=>

=<lava Class=»

G LCoM4

@Nom = |

—— i
& ClassMetric Q\“\-_\
//)7 «<Java Class>=
«<Java Classs= @ LCcoms
®Lce
==]ava Classs»
®LD
==]ava Class=>

(G NoA <<Java Class»> | | <<lava Class>> | | <« gva Classs> | |<<lava Classs=

(©ORFC (©Name @T1CC @ICH

FIGURE 2. Simplified class diagram for the class-level metrics
from the Metrics module.

received parameter, will call one of the following three methods: measureClass,
measureMethod and measureField.

As it can be seen from Figure 2 currently there are 17 different class-level
metrics implemented in the Metrics module. 16 of them are the ones used for
the aggregated metrics-based class-level restructuring and for design defect
detection (both presented in Section 2.2). The 17*" measure, called Name is a
measure that we have defined and used for the 4% feature of our package-level
restructuring approach.

The second part of the Metrics module contains the implementation of
different metrics and measures for packages of a software system. The simpli-
fied class diagram of this package is presented on Figure 3. It has the abstract
class PackageMetric to have a common superclass for all metrics for packages,
but there are actually three different types of package metrics, as suggested
by three of the four subpackages inside the packageLevel package. These types
are the following:

e Metrics which are computed for one package from the partitioning of
the software system. Such metrics and measures are placed in the
onepackage subpackage and extend the OnePackageMetric abstract

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 75

<<lava Packages»
i metrics.packageLevel

———
«<lava Package>>
3 metrics.packagelLevel.partition
<<lava Class=> <<lava Class=> "JEE'; HC:E“”
@ma BUPED
<<lava Class»>
<<Java Packages= @IPsC
i metrics.packageLevel.model

<<lava Interfaces> <<lava Class=> { <<lava Class=>
€3 DependencyMap . (] GF @pu

<<lava Classs>

N . Il

. <<Java Class=»

H (© NBClassRelations

] -) <<lava Class>> | [<<Java Class»> <<Java Class>>

@atrabependoncyMan e ci [—— L =TI 9ra
© Matr
«=Java Packages>
i metrics.packageLevel.onepackage
— <zJava Classs> <<lava Class»»

<<lava Class>>
(®EfferentCoupling
[<<JavaClass>
(@EfferentCouplingP

e u“b <<lava Class=>
@o) @ Instability

<<Java Class=>

(@ InstabilityP

«<Java Package»> (@ AfferentCouplingP
3 metrics.packageLevel.vectorBased

<Java Class=>
(b VectorBasedPackageMetric
<7
<<lava Class=>
<<Java Class>>
® luster

(@ AfferentCoupling

<<lava Class>>
(@ DistanceP

<<lava Classs=>

(9 Distance

(@ EqualSize

T
<<Java Class>> <}
(& PackageMetric

=<Java Class>»
(@ Abstractness

FiGure 3. Simplified class diagram for the package-level met-
rics from the Metrics module.

class. The implemented metrics are well-known in the literature for
evaluating software packages [6].

e Metrics that are computed for a whole partition of the software system
(they take into consideration all packages). Such measures are placed
in the partition subpackage and they extend the PartitionMetric ab-
stract class and most of them were taken from [6].

e Measures that evaluate a partition, but return a vector with the value
of different other measures, instead of returning one single value. These
measures are placed in the vectorBased subpackage and they extend
the VectorBasedPackageMetric abstract class. The two measures im-
plemented in this subpackage were taken from [23].

The fourth subpackage in the packageLevel package, called model, contains
classes that help compute the value of the metrics and measures from the other
three packages. In order to avoid constantly checking what kind of relations
are between different classes (if any), we decided to create a map which is built
only once before computing the metrics and memorizes all the dependencies
between the classes from the software system.

3.2.3. The PackageRestructuring module. The third module of the FAOS frame-
work is called packageRestructuring and the package-level restructuring ap-
proach described in Section 2.2 is implemented in it, so, it is a little less

76 ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

——
<=lava Packages=
£ packageRestructuring.distance
1
<<Java Packages» <<Java Class>= <=<lava Class=>
fit packageRestructuring.assign (S FeatureConstants (4 AbstractDistance
L] 1\
<<lava Class»» /c?
(® AssignClass - <<Java Classs>
(@ NewDistanceWithPackage
A
=<Java Class=>=
:]
GASSlgner <= tava Packages>
3 packdgeRestructuring.core
e ==lava Class=»
@ StopCondition (® PackageCluster
==Java Class»>= T =
<<Java Llass=>
Cluster<T=
i—] © (® PackageClustering

==lava Package=>

0.2 A
{4 packageRestructuring.cip {

<<]ava Class=» A
(@ CIPComputer "_‘_‘—-—-—-—-.________} <=Java Class==

| 5| @Partition<T>(<......

«<lava Clags=> |— | T <<Java élass»
@ CIPMetric<T> (® PackageRestructurer

F1GURE 4. Simplified class diagram for the PackageRestruc-
turing module.

abstract than the previous two modules. The simplified class diagram of this
module is presented on Figure 4.

The abstract and reusable part of this module is in the core subpackage,
where general classes related to the clustering process can be found, such
as: Cluster and Partition. This subpackage also contains classes that extend
them, and implement the tasks specific for restructuring at package level, for
example the PackageCluster class, which contains a list of MClass objects.

The other three subpackages contain the implementation of the algorithms
and measures defined for our package-level restructuring and presented in [18].

3.3. Example of using the FAOS framework. In this section we will
present how an analysis can be performed with the FAOS framework. As
an example we will use an open-source software framework, called DbUtils
(version 1.5) [5], a library consisting of a small set of classes, which are designed
to make working with JDBC easier. It consists of 25 classes, which are divided
into three packages. Using the DbUtils framework, we will give examples of
the results of the analysis of the three modules of the FAOS framework.

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 77

Class name: BeanHandler
Package name: org/apache/commons/dbutils/handlers
Super class name: java/lang/Object
Interfaces implemented: org/apache/commons/dbutils/ResultSetHandler
Is abstract: false Is interface: false
Number of fields: 3
List of fields:
this of type org/apache/commons/dbutils/handlers/BeanHandler
type of type java/lang/Class
convert of type org/apache/commons/dbutils/RowProcessor
Number of methods: 3
List of methods:
<init > with parameter of type java/lang/Class
<init > with parameters of type java/lang/Class;
org/apache/commons/dbutils/RowProcessor
convert with parameter of type java/sql/ResultSet
TABLE 1. Information extracted about the BeanHandler class.

Using the Analyzer module. Using the analyzeProject method of the
Analyzer class for the analysis of the Db Utils framework, the method returns a
list of 25 M Class objects, each of them corresponding to one of the classes from
the analyzed framework. One of these objects corresponds to the BeanHandler
class, and the information that was extracted from it is presented on Table 1.

The list of fields attribute contains a list of MField objects, from which we
presented only the name and type of the field. Similarly, the list of methods
attribute contains a list of MMethod objects, but here we only presented the
name and parameters of the methods. The <init > method name represents
the constructor of the class. Since MMethod objects are more complex than
MField objects, on Table 2 we will present the information extracted for the
convert method of the BeanHandler class.

From the description attribute of the method it can be seen that it has
only one parameter of type java/sql/ResultSet and that it returns an object of
type java/lang/Object. It has one single local variable, which is actually the
parameter, because local variables include the parameters of the methods as
well. It calls the toBean method of this parameter once (in a separate map,
whose components are not presented on Table 2 we retain the frequency of
these calls as well, because some software metrics need such information), and
it uses all the fields of the BeanHandler class.

78 ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

Name: handle
Owner class: org/apache/commons/dbutils/handlers/BeanHandler
Description: (java/sql/ResultSet;)java/lang/Object;
Is abstract: false Is static: false Is private: false Is public: true
Is constructor: false Is setter or getter: false Is from superclass: false
Local variable: rs of type java/sql/ResultSet
Called method:
toBean from class org/apache/commons/dbutils/RowProcessor
Used fields:
this of type org/apache/commons/dbutils/handlers/BeanHandler
type of type java/lang/Class
convert of type org/apache/commons/dbutils/RowProcessor
TABLE 2. Information extracted about the convert method of
the BeanHandler class.

EVM | MQ | ITPE | ITPED | ITPU | ITPUD | IPCI | IPSC | PF
-78 | 1.16 | 0.53 1 0.43 1 0.83 1 1
TABLE 3. The value of package-level software metrics from the
Metrics module computed for the partitioning of the DbUtils

framework.

Using the analyzeProjectPackage method of the Analyzer class will return
the exact same MClass objects, but inside some MPackage objects, repre-
senting the packages in which these classes can be found. For the DbUtils
framework, we will have a list of three MPackage objects.

Using the Metrics module. We have first used the Metrics module to
compute the value of different class-level software metrics for the application
classes of the DbUtils framework.

On Table 3 we have presented the value of some package-level software
metrics for the DbUtils software framework. More exactly, we have computed
the value of all implemented package-level software metrics, whose value is
computed for a whole partition.

Using the PackageRestructuring module. The third module of the
FAOS framework can be used for the package-level restructuring of a soft-
ware framework. For the DbUtils framework our package-level restructuring
approach, implemented in the PackageRestructuring module, identifies a par-
tition composed of four packages, instead of the original three. As presented
in [18], we consider that this package structure is better than the original one.

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 79

4. DISCUSSION AND COMPARISON TO RELATED WORK

In the previous section we have presented in detail the three components of
the FAOS framework. Since it has both abstract components (like the Metrics
module, which can be easily extended with other metrics) and implementations
of different algorithms (like our package-level restructuring implemented in
the PackageRestructuring module) it is quite different from existing software
frameworks, but the frameworks presented in Section 2.1 can be compared to
different parts of it.

Both the JDeodorant [13] Eclipse plugin and the iPlasma [12] tool have
internal models for the representation of the analyzed system similar to the
datamodel from the FAOS framework. iPlasma’s internal representation is
called Memoria and in case of JDeodorant the representation is extracted
from the Abstract Syntax Tree and is more detailed than our datamodel, it
contains the individual statements from a method as well (which can be easily
understood, because JDeodorant can actually perform different refactorings
and for this they need the exact instructions from the code).

Both JDeodorant and iPlasma are complete tools, ready to be used for
different functionalities, which is an advantage over the FAOS framework.
iPlasma can analyze software systems written in the C++ programming lan-
guage too, a feature which is not present neither in FAOS nor in JDeodorant.
On the other hand, the FAOS framework is more flexible than the other two
frameworks, the Analyzer module returns a list of MClass objects which can
be used for different tasks, one of them being the identification of refactoring
opportunities.

The Bunch tool does not have any internal representation or analyzer
module for the software system it works with, it needs as input the Module
Dependency Graph (MDG) of the software system. On the other hand this
makes it programming language-independent, since tools to generate the MDG
of a software system can be found for different programming languages.

In conclusion, there are some other tools in the literature which have
similar features like the FAOS framework, but there is no other tool which can
perform the same tasks. JDeodorant and iPlasma are suitable for situations
when somebody wants just to analyze the source code, look for abnormal
metric values or bad smells. The FAOS framework is suitable when somebody
wants to analyze a system, and perform some tasks on the resulting list of
entities. Thus the main advantage of FAOS can be considered that it is easily
extendable: new software metrics can easily be added to it, and the list of
entities returned by the Analyzer module can be used for further analysis.

We summarize in the following the main advantages of using the framework
proposed in this paper. First, it offers a mechanism to model and analyze a
software system and to provide the user with different software metrics which

80 ZSUZSANNA MARIAN, GABRIELA CZIBULA, AND ISTVAN GERGELY CZIBULA

are useful to measure different characteristics of the software. Moreover, when
developing the framework we have made an abstraction of the process of ex-
tracting from a given software system the entities and the existing relationships
between them. The generality of our approach gives the user the possibility
to easily define new software metrics by using the information extracted from
the analyzed software system. Not least, our framework may offer support for
researches in the direction of analyzing object-oriented software systems and
developing various machine learning-based software engineering techniques (as
shown in Subsection 2.2).

5. CONCLUSIONS AND FURTHER WORK

In this paper we have introduced a software framework which has been
developed for supporting several machine learning-based techniques that were
already introduced in machine learning-based software engineering literature.
The FAOS framework was used for developing several methods for software
remodularization at the class and package level and for software design defect
detection.

As further work, we would like to apply the FAOS framework for develop-
ing a machine learning-based solution for solving the software cost estimation
problem, which is another important software engineering activity. We will fo-
cus on developing a plugin for Eclipse that is based on the interface described
in this paper. Extensions of the framework in order to handle software systems
written in other programming languages (e.g. C++, Python) will be further
considered.

REFERENCES

[1] ObjectWeb: Open Source Middleware. http://asm.objectweb.org/.

[2] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality.

In Proceedings of the 2nd international conference on Software engineering, ICSE 76,

pages 592-605, Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting software

design defects using relational association rule mining. Knowledge and Information Sys-

tems, published online in January 2014.

[4] Istvn Gergely Czibula and Gabriela erban. Improving systems design using a clustering
approach. International Journal of Computer Science and Network Security (IJCSNS),
6(12):40-49, 2006.

[5] Commons dbutils. http://commons.apache.org/proper/commons-dbutils/index.html.

[6] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, and Andre Cavalcante Hora.
Software metrics for package remodularization. Technical report, Institut National de
Recherche en Informatique et en Automatique, 2011.

[7] Metrics plugin for eclipse. http://eclipse-metrics.sourceforge.net/.

[8] Martin Fowler. Refactoring: Improving the Design of Ezisting Code. Addison-Wesley,
Boston, 1999.

3

[10]

[11

[12
[13
[14]

15

16

17

18

[19]

[20
21

[22

23]

A FRAMEWORK FOR ANALYZING OBJECT-ORIENTED SOFTWARE SYSTEMS 81

Mark Harman and Bryan F. Jones. Search-based software engineering. Information &
Software Technology, 43(14):833-839, 2001.

Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based software engi-
neering: Trends, techniques and applications. ACM Comput. Surv., 45(1):11:1-11:61,
December 2012.

Rui hua Chang, Xiaodong Mu, and Li Zhang. Software defect prediction using non-
negative matrix factorization. JSW, 6(11):2114-2120, 2011.

iplasma, 2013. http://loose.upt.ro/reengineering/research/iplasma.

Jdeodorant, 2013. http://www.jdeodorant.com/.

S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool
for the recovery and maintenance of software system structures. In In Proceedings of
the IEEE International Conference on Software Maintenance, pages 50-59, 1999.
Zsuzsanna Marian. Aggregated metrics guided software refactoring. In Proceedings of
the 8th IEEE International Conference on Intelligent Computer Communication and
Processing, pages 259-266, 2012.

Zsuzsanna Marian. A study on hierarchical clustering based software restructuring. Stu-
dia Universitatis Babes-Bolyai Informatica, LVII(2):20-31, 2012.

Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Using software met-
rics for automatic software design improvement. Studies in Informatics and Control
(SIC), 21(3):249-258, 2012.

Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Software packages
refactoring using a hierarchical clustering-based approach. Fundamenta Informaticae,
2014. Under review.

Radu Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis, Po-
litechnica University Timisoara, Faculty of Automatics and Computer Science, 2002.
Metrics plugin for eclipse. http://metrics.sourceforge.net/.

Brian S. Mitchell and Spiros Mancoridis. On the evaluation of the bunch search-based
software modularization algorithm. Soft Comput., 12(1):77-93, 2008.

Wei-Feng Pan, Bo Jiang, and Bing Li. Refactoring software packages via community
detection in complex software networks. International Journal of Automation and Com-
puting, 10(2):157-166, 2013.

Kata Praditwong, Mark Harman, and Xin Yao. Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering, 37(2):264-282,
2011.

DEPARTMENT OF COMPUTER SCIENCE77 FacuLTy OF MATHEMATICS AND COMPUTER

SCIENCE,, BABES-BoOLYATI UNIVERSITY, KOGALNICEANU 1, CLUJ-NAPOCA, 400084, ROMA-

NIA.

E-mail address: {marianzsu, gabis, istvanc}@cs.ubbcluj.ro

