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FINDING, MANAGING AND ENFORCING CFDS AND ARS

VIA A SEMI-AUTOMATIC LEARNING STRATEGY

KATALIN TÜNDE JÁNOSI-RANCZ

Abstract. This paper describes our strategy, which finds Conditional
Functional Dependencies (CFDs) and Association Rules (ARs), and in-
stead of using them to clean dirty data we use them to prevent their appear-
ance in the database. We achieve this by differentiating strict CFDs/ARs
from apparent CFDs/ARs. If we know about a CFD/AR that it will be
valid in the future, we can rely on them by creating constraints which
guarantee that the CFD-rule will not be breached by insertions or modifi-
cations. Along with complete management of CFDs/ARs our implemented
application called DependencyManager also uses Formal Concept Analysis
(FCA) methods to analyze the strict CFDs/ARs and draw useful conclu-
sions, helping the users of the application to prevent inconsistencies, fix
bugs and optimize their queries and applications by providing a lattice of
CFDs/ARs, using usefulness as the relation.

1. Introduction

It is not enough to store data, as the correctness of stored data is also
very important. Data cleanups are lowering the frequency of inconsistencies
but they are also introducing new inconsistencies, because it’s impossible to
guarantee that these algorithms are choosing the correct pattern from more
patterns. Data quality rules can be defined in the form of FDs, CFDs [6] and
ARs among others.

An FD X → Y asserts that any two tuples that agree on the values of
all the attributes in X must agree on the values of all the attributes in Y.
However, many interesting constraints hold conditionally, that is, on only a
subset of the relation. For example if in a dataset we have customers data
from different countries, than for customers in the UK, Zip code determines
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Street, which is not true for other countries. This will be a CFD: [Country =′

UK ′, ZipCode]→ [Street].
A CFD ϕ on R is a pair (R : A → B, Tp), where (1) A,B are sets of

attributes in Attr(R), (2) A → B is a standard FD, referred to as the FD
embedded in ϕ; and (3) Tp is a tableau with attributes in A and B, referred
to as the pattern tableau of ϕ, where for each X in A ∪ B and each tuple
t ∈ Tp, t[X] is either a constant a in Dom(X), or an unnamed variable “ ”
that draws values from Dom(X). CFDs can be described as sets of ARs,
which are dependencies holding on particular values of attributes.

An AR is a dependency c ⇒ A = a, where A = (A1, . . . , An) and a =
(a1, . . . , an), knowing that c is a condition, A is a set of columns and a is a
set of constants. In our implementation only those conditions are supported,
which can be represented in the form of C = ct, where C is a column and ct is
a constant. ARs can be defined as special CFDs with an additional property,
namely the determinant column set is empty set.

If a formula for a dependency is almost met, because the number of records
which are inconsistent with the rule is very small comparing to the total num-
ber of affected records, then one should not consider it to be a CFD/AR just
yet, because the inconsistence of the rule’s exceptions with the rule might be
caused by incorrect or correct data. This leads to the conclusion that the
correctness of the rule’s exceptions must be checked. If there is at least a cor-
rect exception, then the rule is not correct. Otherwise the exceptions should
be cleaned up and the rule is a CFD/AR. As a consequence we believe that
a dependency learner should only consider some rules to be dependencies if
there is no valid exception from the rule. After dependencies were successfully
learned they should be validated. By validating dependencies we can deter-
mine whether they are Strict Dependencies (SDs) or Apparent Dependencies
(ADs). ADs are all dependencies which are applicable to the current dataset
but there is no guaranty that after any correct inserts or updates the depen-
dency will be still applicable. Most of the previous works omitted the step
of validation, they considered all CFDs/ARs to be valid, but that is a false
presumption.

Example 1. Let us consider the example of a company where in a given
moment the position determines the salary; all managers have a salary of X,
all technicians have a salary of Y and all cleaners have a salary of Z. If this
is not a company policy, just a coincidence, then the FD is invalid, as there is
no guarantee that the position will determine the salary in the future too. The
functional dependency of work-position determining the salary is an AD.There
is no way to automatically determine the validity of such dependencies, because
programs are not aware of the nature of the entities stored as records and
cannot make logical conclusions. This is the job of human specialists, who
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understand the business logic of the system and the nature of the records stored
in the table.

1.1. Our contributions. As part of our research we have implemented an ap-
plication called DependencyManager, which learns FDs, CFDs and ARs from
an arbitrary database. We can validate the learned dependencies by accepting
or rejecting them, thus modifying its data from candidate to Strict(SD) or
Apparent Dependencies(AD). We have created support for the simplification
of the validation by using the relation of MU as the most useful candidates
should be taken into account from all the other dependencies, therefore we
drastically reduce the number of dependencies to be taken into account and
we only store the most useful SDs because all the other dependencies are im-
plied by them. The result of our research is a system which is able to prevent
all the possible inconsistencies resulting from inserts or updates which do not
comply to the schema of the accepted SDs using constraints. We use FCA
methods to analyze the strict CFDs/ARs and draw useful conclusions.

Our approach is useful, because: 1. It prevents inconsistencies to appear in
the database. 2. If an error occurs because of mishandling data where a strict
CFD/AR is applicable, then in the error logs the problem can be identified
and potentially bugs can be found and fixed. 3. Knowing that a CFD/AR is
strict, using all the known value sets for determinant columns and dependent
columns we can determine the values of dependent columns using a value
set of determinant columns. This way data-processing and backup-creating
algorithms can be optimized.

2. Related work

CFDs have recently been proposed for pattern-finding purposes; CFD-
patterns are frequently used by data-cleaners. In [6, 3, 11, 7], the authors
employed exact and approximate CFDs to characterize the semantics of data,
for example, discovering and verifying the confidence, support, and parsimony
of CFDs on a given relation instance. Recent research on CFDs focused mainly
on implication analysis, consistency and axiomatizability, see [7]. In [5], the
authors studied how to efficiently estimate the confidence of a CFD with a
small number of passes over the input using small space. Fan at al in [9]
developed three algorithms for discovering minimal CFDs and a novel opti-
mization technique via closed-item-set mining. A hierarchy of CFDs, FDs
and ARs has been proposed in [16] with some theoretical results on pattern
tableaux equivalence. Many integrity constraints have been studied for data
cleaning in [4, 17, 2, 13]. Existing data repair techniques do not guarantee to
find correct fixes in data monitoring, because they may deteriorate the data in-
troducing new errors when trying to repair it. [8] proposed editing rules that,
compared to constraints used in data cleaning, are capable to find precise
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fixes by updating input tuples with master data. [17] proposed a framework
called GDR (Guided Data Repair), to handle the problem of data cleaning.
This framework involves the user in controlling the cleaning process side by
side with existing automatic cleaning techniques through an interactive pro-
cess. In these previous works we have seen algorithms which find the CFDs
and for each CFD, the presence of CFD was periodically checked. Previous
works focused on finding dirty data and cleaning them. We believe it is easier
to prevent the appearance of dirty data instead of cleaning an already dirty
database. So, our algorithm, instead of finding CFDs and applying them for
cleaning data, finds CFDs and if a CFD is validated to be an SD, then con-
straints are generated to prevent any insertion/modification that results in
breaking the rule.

It is well known that, FDs admit interesting characterizations in terms of
FCA [10, 12]. Different authors in [1, 14] considered that the internal logic
of data can also be displayed, by means of the so-called implications, which
proved to be the proper framework to describe functional dependencies with
FCA tools. In [1], the authors studied the lattice characterization and its
properties for Armstrong and symmetric dependencies. In [15], the authors
present the relation between CFDs and FCA. They showed that the lattice of
CFDs is a synthetic representation of the concept lattice. In contrast to these
works, which focused mainly on application of FCA in mining different types
of dependencies, we analyze the properties of CFDs and ARs discovered with
our application by an implemented FCA. In other words, we exploit FCA here
to derive ontology containing concepts.

3. Learning, Presentation, Validation and Forgetting

In this section we share our strategy, which is based on automatic learning,
semi-automatic validation and automatic forgetting.

3.1. Learning. To gather CFDs in a database, we must iterate all the con-
ditions of all columns of all tables. In our case a condition is of the form of
R.C = ct, where R is a table, C is a column and ct is a constant.

ARs can be found like CFDs; we just have to iterate every condition of
every column of every table. For each condition we must find the ARs.

If A is the set of determinant columns R.A = {R.A1, . . . , R.Am}; B is the
set of dependent columns R.B = {R.B1, . . . , R.Bn}; a = {a1, . . . , am} is an m-
dimensional constant and the condition can be checked by a Boolean function
c for any record r, then the CFD is valid if and only if it is inconsistent
to insert/update record r1 in such a way that the following criteria holds:
∃ r2 ∈ R such as

((r1.A1 = r2.A1) ∧ · · · ∧ (r1.Am = r2.Am)

∧ ((r1.B1 6= r2.B1) ∨ · · · ∨ (r1.Bn 6= r2.Bn))) ∧ c(r2) ∧ c(r1)
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and the AR is valid if and only if it is inconsistent to insert/update record r1

in such a way that the following criteria holds:

((r1.A1 6= a1) ∨ · · · ∨ (r1.Am 6= am)) ∧ c(r1).

Periodical checking for new ARs and CFDs is essential if one intends to handle
them. Newly found dependencies are stored in the database. As new rules are
discovered and stored, this periodical action is called learning. If a dependency
is already known by the system, then the rule will not be learned again. Essen-
tially all the rows of any table in any given moment can be described as a record
which fulfills a dependency. This would generate many dependencies, slowing
down the learning algorithm and storing a lot of dependencies, while most of
them are ADs. As a consequence, constraints are needed to increase the speed
of the algorithm and store only relevant ARs and CFDs. For now, we have
created two constraints: MinOccurrenceFrequency and MinOccurrenceRate.
With these constraints we can prevent over-learning. DependencyManager al-
lows its users to set the values of these constraints. The first step is to discover
conditions. Condition Occurrence is the number of occurrence of a condition
in a table. Condition Occurrence depends on a Relation, a Column and a
Value and determines the occurrence number of the condition defined by R,
C and V . The formula of R.C = V is considered to be a condition if the
constraints of MinOccurrenceFrequency and MinOccurrenceRate are met.
Let us introduce the notations

CO(R,C, V ) = card(r ∈ R : r.C = V )and{
c : R× C × V → {0; 1},
c(R,C, V ) = (R.C = V ).

Observe that CO(R,C, V ) ≥ MinOccurrenceFrequency,

CO(R,C, V )

card(r ∈ R)
≥ MinOccurrenceRate.

The learner in a cycle iterates through all the columns of all tables and learns
the potential conditions. If the set of columns of R is Cols and c(R,C, V ) is
a condition, where C is a column from Cols, then the possible AR and CFD
scenarios can be described as:

ARScenarios(R,C) = SubCols ⊂ (Cols \ {C}) and SubCols 6= ∅.
CFDScenarios(R,C) = Determinant ⊂ (Cols \ {C}) and Dependent ⊂ (Cols \ {C}),
such as Determinant ∩ Dependent = ∅, Determinant 6= ∅, Dependent 6= ∅.

We have defined an algorithm (Algorithm 3.1) which is used by the applica-
tion to learn new CFDs and ARs. Intuitively speaking the algorithm iterates
all the interesting conditions of all columns of all tables in the database ex-
cept the system tables. In each step, all the possible AR and CFD scenarios
are generated and if no equivalent is found as a CFD, SD or AD, then the
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Algorithm 3.1 Sd-candidate learner

1: for all R in Tables do
2: Conditions← ∅
3: for all C in R.Cols do
4: Conditions.Clear()
5: Conditions.AddRange(GetConditions(R,C))
6: for all c in Conditions do
7: ARScenarios← GetARScenarios(R,C)
8: for all ARScenario in ARScenarios do
9: if ((IsAR(c,R,C,ARScenario)) And

(Not(IsAlreadyLearnedAR(c,R,C,ARScenario)))) then
10: StoreAR(c,R,C,ARScenario)
11: end if
12: end for
13: CFDScenarios← GetCFDScenarios(R,C)
14: for all CFDScenario in CFDScenarios do
15: if ((IsCFD(c,R,C,CFDScenario))And

(Not(IsAlreadyLearnedCFD(c,R,C,CFDScenario)))) then
16: StoreCFD(c,R,C,CFDScenario)
17: end if
18: end for
19: end for
20: end for
21: end for

given scenario will be considered to be a new CFD. In Algorithm 3.1 Condi-
tions is the set of conditions applicable on R.C, fulfilling the constraints of
MinOccurrenceFrequency and MinOccurrenceRate. Complexity of Algo-
rithm 3.1. can be calculated knowing the number of tables, the average num-
ber of table columns and the average number of column conditions, while its
space complexity depends on the number of dependencies, the average number
of determinant columns and the average number of dependent columns.

Complexity of Algorithm 3.1

= Θ (T ·AFN ·ACN · (card(ARScenarios(T,AFN))

+ card(CFDScenarios(R,AFN)))

= Θ(T ·AFN ·ACN · (2AFN−1 − 1 + 3AFN−1 − 2 · 2AFN−1))

= Θ(T ·AFN ·ACN · (3AFN−1 − 2AFN−1 − 1)),

where T is the number of Tables, AFN is the average number of table columns,
ACN is the average number of column conditions.

Space complexity of Algorithm 3.1 =

Θ((card(Dependency)) · (1 + avg(card(Determinant)) + avg(card(Dependent))))
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One of our experiment were conducted on a database containing excep-
tions and we will present this example in entire paper to illustrate the steps
of our method. For our experiments, we used the attribute Message, AppID,
CrossAppException and OperatingSystemException, where Message repre-
sented an Exception message, AppID was the ID of the Application where
the given Exception occurred, CrossAppException and OperatingSystem-
Exception were Boolean values. Possible values for AppID were 1 (Forum), 2
(Wiki), 3 (Desktop), 4 (Website) and 5 (Engine). Table 3.1. shows some SDs,
a part of accepted dependencies.

Id Condition Determinant Dependent
3 e.Message=’Authenti- e.CrossAppException CrossAppException=’1’ and

cation needed’ e.OpSystException OpSystException=’0’
6 e.Message=’Connection e.CrossAppException AppID=’3’

to DB failed’ e.OpSystException CrossAppException=’0’
e.AppID OpSystException=’0’

5 e.Message=’File not e.CrossAppException AppID=’3’
found’ e.OpSystException CrossAppException=’0’

e.AppID OpSystException=’1’
2 e.Message=’Thread was e.CrossAppException AppID=’1’

already closed’ e.AppID CrossAppException=’0’
e.OpSystException OpSystException=’0’

4 e.OpSystException=’1’ e.CrossAppException Message=’File not found’
e.AppID AppID=’3’
e.Message CrossAppException=’0’

Table 1. SDs, accepted CFDs

3.2. Usefulness. In this section we define the More Useful relation. Let D1

and D2 be two CFDs, and D1.c, D1.A, D1.B and D2.c, D2.A, D2.B be the
condition, determinant column set and dependent column set of D1 and D2

respectively. We define the More Useful (MU) relation as:

D1 MUD2 ⇔ (D1.c = D2.c) ∧ (D1.A ⊆ D2.A) ∧ (D1.B ⊇ D2.B).

It is impossible to compare the usefulness of D1 and D2 if their conditions are
not the same, because they are not applicable on the same record set. Also, if
D1 is more useful than D2, then D1 is more descriptive, because D1.A cannot
contain any column outside of D2.A and D2.B cannot contain any column
outside of D1.B. MU is not a strict relation; D1 MUD1 is true to guarantee
reflexivity and anti-symmetry. If D1 is a CFD and there is no D2 6= D1 which
is more useful than D1, then D1 is a most useful CFD. Note that a non-AR
cannot be more useful than an AR, because the determinant column set of
an AR is empty set, the smallest set in the “⊆” relation. MU is reflexive,



DEPENDENCY MANAGEMENT AND INCONSYSTENCY PREVENTION 41

transitive and anti-symmetric. On a set of CFDs defined for a database MU
is an order.

3.3. Validation. Validation is not always easy for users, because there can
be many dependencies learned, but we used the More Useful relation, which
reduces significantly the difficulty of validation if used properly. As we men-
tioned earlier, the user sees a list of most useful CFDs/ARs. He can decide
whether they are SDs or ADs. If the user accepts a dependency D1, then all
D2 will instantly become invalid which meets the criteria of D1 MUD2. As a
result any D2 less useful than D1 is redundant with D1. If the user rejects a
CFD/AR D1, then it will become invalid and all CFDs/ARs D2 which meet
the criteria of

(D1 MUD2) ∧ (@D3 such that D1 MUD3 MUD2)

will be shown to the user, because they will become most useful ARs/CFDs.
DependencyManager lets the user decide whether a dependency is an SD or
AD. The following example illustrates the relation of usefulness between some
CFDs.

Example 2. D1 is a CFD, D1.c = (Exception.CrossAppException =′ 0′),

D1.A = (Exception.Message), D1.B = (Exception.AppID).

D2 is a CFD, D2.c = D1.c, D2.A = (Exception.Message),

D2.B = (Exception.OperatingSystemException,Exception.AppID).

D3 is a CFD, D3.c = D1.c, D3.B = (Exception.AppID),

D3.A = (Exception.OperatingSystemException,Exception.Message).

D4 is a CFD, D4.c = D1.c, D4.A = (Exception.Message),

D4.B = (Exception.OperatingSystemException).

D5 is a CFD, D5.c = D1.c, D5.A = (Exception.AppID,Exception.Message),

D5.B = (Exception.OperatingSystemException).

In our experiment D1 was SD and D2, D3, D4, D5 were ADs.
(D1.c = D2.c) ∧ (D1.A = D2.A) ∧ (D2.B ⊃ D1.B)⇒ D2 MUD1.

(D1.c = D3.c) ∧ (D1.A ⊂ D3.A) ∧ (D1.B = D3.B)⇒ D1 MUD3.

D2 MUD1 MUD3 ⇒ D2 MUD3.

(D2.c = D4.c) ∧ (D2.A = D4.A) ∧ (D2.B ⊃ D4.B)⇒ D2 MUD4.

(D2.c = D5.c) ∧ (D2.A ⊂ D5.A) ∧ (D2.B ⊃ D5.B)⇒ D2 MUD5.

(D4.c = D5.c) ∧ (D4.A ⊂ D5.A) ∧ (D4.B = D5.B)⇒ D4 MUD5.

D2 is a most useful element. The user did not see D1, D3, D4 and D5 because
D2 was more useful. When we invalidated D2, then D1 and D4 appeared on
the view, because after we excluded D2 from the set, D1 and D4 became most
useful. D5 was still hidden, because D4 is more useful than D5 and D3 was
hidden, because D1 is more useful than D3.

The size of needed space depends on the number of dependencies. If there
are n dependencies, where k columns appear in a dependency on average,
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Case Type Description Automatically
detectable

1 SD-candidate It is no longer a CFD/AR Yes
2 AD It is no longer a CFD/AR Yes
3 AD It was mistakenly rejected No
4 SD It was mistakenly accepted No
5 SD A more useful SD appeared Yes
6 SD Schema change Yes

Table 2. Cases when forgetting is useful

then the system uses n ∗ (k + 1) records to store the dependencies. If we
accept m CFDs/ARs, then the number of generated constraints will be m,
those constraints need to be stored. We conclude that the space complexity
of DependencyManager is relatively low.

3.4. Forgetting. After CFDs/ARs are learned, they are stored as SD-candidates.
When they are accepted, they will be stored as SDs and removed from the
SD-candidates. When SD-candidates are rejected, they will be stored as ADs,
but not as SD-candidates. When we completely delete an SD, an AD or an
SD-candidate, then we forget them and delete it along with its constraint.
Table 2. describes the possible cases when an SD-candidate, and AD or an SD
should be forgotten. Forgetting is useful to simplify dependency maintenance
and it is included into DependencyManager.

4. Experimental results

We have evaluated efficiency and effectiveness of our algorithm on four
datasets. In datasets named Numbers1 and Numbers2 the rows were generated
numbers, using formulas to guarantee the occurrence of CFDs and ARs. We
also conducted experiments used real datasets from the UCI machine learn-
ing repository http://archive.ics.uci.edu/ml/, namely, the Wisconsin breast
cancer (WBC). The Exceptions dataset was also generated by us using real
data.

Dataset Arity No. Rows MOF MOR SD AD
Numbers1 6 20000 200 0.15 95 13
Numbers2 5 200000 650 0.2 118 11
WBC 11 699 37 0.06 242 21
Exceptions 5 11192 1000 0.1 43 8

Table 3. Experimental results (MOF = MinOccurrenceFre-
quency, MOR = MinOccurrenceRate)
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Our algorithm doesn’t represent a new approach for finding CFDs, there-
fore there is no point to compare it to the CFD-finders of previous works. Our
algorithm represents a new approach to CFD-handling.

Table 3. describes the parameters of the used datasets, the MinOccur-
renceFrequency and MinOccurrenceRate used in our experiments and the
number of accepted/rejected dependencies: SDs and ADs for each dataset.
We use MOF and MOR to set the sensitivity of the system. If we choose
low occurrence frequency then it is very sensible even to low numbered oc-
currences of dependencies than we will store a lot of dependency candidates
from which many might be invalid, or if we set the sensitivity to be too high
then we might not discover all the valid dependencies. The occurrence rate
is the rate specified to be the minimum ratio between the number of records
where the dependencies are applicable and the total number of records. We
have to choose the sensitivity which potentially enabled us to find all the valid
dependencies. Table 3. shows these settings chosen in our cases, but these
numbers can vary from database to database or preferences.

If an SD pattern is accepted (validated), then a constraint prevents inserts
and updates inconsistent with the accepted pattern. We quantified the amount
of data protected by our system against inconsistency violation. In our dataset
Numbers1 8620, Numbers2 102034, BCW 384, Exceptions 7083 presents the
records complied to at list an SD and an arbitrary insert or update in the future
has a probability of 43.1 %, 51.01 %, 54.93 % and 63.28% to be protected
by our system against inconsistencies violating our SDs. If an error occurs
because of mishandling data where an SD is applicable, then in the error logs
the problem can be identified and potentially bugs can be found and fixed.

SD management is simplified by the More Useful relation, showing only
the most useful SDs to the system/users, therefore we drastically reduce the
number of dependencies to be taken into account and we only store the Most
Useful SDs because all the other dependencies are implied by them.. We
estimated the benefit of using the MU relation. If a table has n columns
and a dependency has a column for the condition, s columns in the determi-
nant column set and d columns in the dependent column set, then there are
2(n−s−d−1)+2d−1 possible dependencies which are less useful. If we accept the
given dependency, we automatically refuse all the less useful dependencies,
which optimizes by helping the system/user with the automatic reduction of

the dependencies to be taken into account by a maximum of 2(n−s−d−1)+2d−1
dependencies. This method helps a lot in the validation and the usage of the
dependencies. This is an exponential optimization.

As a result of our experiments we have seen that the constraints were
successfully generated and prevented any attempt to breach their CFDs, we
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have easily identified the SDs which were ready for our FCA module for further
analysation.

5. Studying the set of SDs with FCA

We have used FCA (Formal Concept Analysis) methods to analyze SDs
and draw conclusions from them. Our approach was agnostic towards the
nature of the content of the database; we have implemented an FCA applicable
to accepted dependencies of any database using our system.

FCA [10] is a useful algorithm that can be used to draw conceptual con-
clusions based on a set of data; its steps are as follows: 1. Creating a context
which will contain objects and attributes. 2. Creating concepts by grouping
objects which have the same set of attributes; objects with different attribute
sets will be grouped into different concepts. 3. Each formal context is trans-
formed into a concept lattice, which is the basis for further data analysis.

We have a smallest and a biggest possible value in the lattice and we know
that not any concepts C1, C2 from C are comparable. We use the Join and
the Meet operations between concepts, knowing that

(Meet(C1, C2) = C3) ⇔ (((C1.A ∩ C2.A = ∅) ∧ (C3 = CMin)) ∨ ((C1.A ∩ C2.A 6= ∅)
∧ (C1.O ∪ C2.O = C3.O) ∧ (C1.A ∩ C2.A = C3.A))), and

(Join(C1, C2) = C3) ⇔ (((C1.O ∩ C2.O = ∅) ∧ (C3 = CMax)) ∨ ((C1.O ∩ C2.O 6= ∅)
∧ (C1.O ∩ C2.O = C3.O) ∧ (C1.A ∪ C2.A = C3.A))),

the result of which is a concept from C, because ∅ ⊆ C1.O ⊆ All(O,C) and
∅ ⊆ C1.A ⊆ All(A,C) for any C1 ∈ C.

Using FCA we can draw interesting conclusions. In DependencyManager
we have implemented an FCA module, which studies the SDs. In this module
the objects are the SDs and the attributes are possible properties for the
objects. The attributes are Weakness, Determinant Column Cluster’s Size,
Column Cluster’s Size, Frequency of Occurrence and Almost Symmetrical.

Weakness measures the smallness of the dependencies in the more useful
relation. The less useful dependency the more weaker it is. We consider D1

to be weaker than D2 if D2 MU D1. If an SD is fairly weak, then it is normal
to assign it lower priority in our researches than the priority assigned to its
more useful counterparts.

Definition 1. (Weakness) The formula of

Weakness(C1, C2, CT ) =
1

2
+

C1 − C2

2CT

defines the attribute weakness of concepts C1 and C2, where C1 is the number
of determinant columns, C2 is the number of dependent columns and CT is
the total number of columns in the table.
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Proposition 1. The numerical value of Weakness is between 0 and 1.

We have defined the Fuzzy sets of None, Very Low, Low, Medium, High,
Very High and Total for this attribute. Based on this formula we believe that a
dependency having weakness of zero can be considered to having no weakness
or an other dependency having a value between 0 and 0.2 having a very low
weakness rate and so on.

Determinant Column Cluster’s Size is the number of SDs having
the same set of determinant columns. We have defined the Fuzzy sets of Tiny,
Small, Medium, Big and Huge for this attribute. If we have many dependencies
having the same determinant column set then the given determinant column
set is the source of multiple potential implication schema which is the starting
point of many learning algorithm.

Column Cluster’s Size is the number of SDs having the same dependent
columns and the same determinant columns. This type of attribute shows
concepts which have the same schema different only in condition. If we have
many such schemas then we have to think about the scheme of the database
because we might learn FDs with dirty data. We have defined the Fuzzy sets
of Tiny, Small, Medium, Big and Huge for this attribute. We consider cluster
size of 1 being tiny, cluster size of 6 being big.

Frequency of Occurrence is the percentage of occurrence of an FD
pattern. This number is the sum of the number of all records matching any
SDs with the same FD-pattern. For instance, if a CFD is fulfilling R.A→ R.B,
where R.A and R.B are column sets from the R table with the condition of
T.C = somevalue, then the CFD is matching the FD pattern of R.A→ R.B.
Of course it is not an FD because of the condition, but still it matches an
FD-pattern. We have defined the Fuzzy sets of Nonexistent, Very Rare, Rare,
Medium, Frequent, Very Frequent and FD.

If D1 and D2 are SDs such as DependentColsD1 = DeterminantColsD2

and DependentColsD2 = DeterminantColsD1 , then D1 is Almost Symmet-
rical with D2. We have used Fuzzy values for these attributes, Table 4. shows
the quantitative metrics concerning our point of view of the meaning of these
values. Example 3. illustrates the power of the combination of SDs and FCA.

Example 3. Let’s consider a table R, which holds many records, with a lot
of white noise due to dirty data. Also, let’s consider that there is a pattern of
R.A → R.B where R.A and R.B are sets of columns. Because of the white
noise there is no tool able to find the FD of R.A → R.B. However, Column
Cluster’s Size of CFD’s matching the pattern of R.A→ R.B is Big, all CFDs
matching the pattern are not almost symmetrical, their weakness is the same,
the Determinant Column Cluster’s Size of the pattern is Big, the Frequency
of Occurrence of all CFDs matching the pattern is either frequent or very
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W None Very Low Low Medium High Very High Total
0 <0.2 <0.4 <0.6 <0.8 <1 1

D Tiny Small Medium Big Huge
1 <= 3 <= 5 <=7 >7

C Tiny Small Medium Big Huge
1 <= 3 <= 5 <=7 >7

O Nonexistent Very Rare Rare Medium Frequent Very Frequent FD
0% <0.15% <0.4% <0.6% <0.75% <1% 1%

A Yes No

Table 4. Quantitative metrics used for Fuzzy Attribute sets(
W=Weakness, D=Determinant Col. Clusters Size, C= Col.
Clusters Size, O=Occurrence, A=Almost Symmetrical)

frequent (because of the table has many records and many dirty data). Because
of these facts all the SDs meeting the FD pattern of R.A→ R.B will be objects
of Concept1. If a user studies the results of the FCA algorithm, he will find
many objects with the FD pattern of R.A → R.B in Concept1. He will study
the records of the table and will discover that the FD pattern is generating so
many CFDs because in fact it is an FD obfuscated by dirty data, so he will
know a useful information for certain which is a great starting point of fixing
inconsistency problems in this case. Thanks to the analysis provided by FCA
the user got a clue which has led him to the important conclusion that the FD
pattern of R.A→ R.B is essentially an FD instead of many CFDs.

Determinant Weakness Fd Occurrence Symmetrical Universal
ID:7 small low true rare false tiny
ID:8 small medium false medium false tiny
ID:3 medium very low false rare false tiny
ID:6 medium none false very rare false small
ID:5 medium none false very rare false small
ID:2 medium none false very rare false small
ID:4 medium none false very rare false tiny

Table 5. FCA Context of SDs

Example 4. We have created the FCA context, shown in Table 5, by pair-
ing the fuzzy and boolean attributes to objects which are SDs in our Database
about Exceptions. The IDs in the table represents the ID of an SD, see Ta-
ble 3.1. From the context we built the concepts and generate the lattice from
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Level 3:
C68 = ({6, 5, 2, 4}, {W:None, D:Medium, O:Very rare});
C69 = ({4}, {W:None, D:Medium, U:Tiny});
C70 =( {6, 5, 2}, {W:None, D:Medium, U:Small});
C91 = ({4}, {W:None, O:Very rare, U:Tiny});
C154 = ({3}, {W:Very low, D:Medium, O:Rare});
C155 = ({3}, {W:Very low, D:Medium, U:Tiny});
C173 = ({3}, {W:Very low, O:Rare, U:Tiny});
...
Level 4:
C344 =( {4}, {W:None, D:Medium, O:Very rare, U:Tiny});
C345 = ({6, 5, 2}, {W:None, D:Medium, O:Very rare, U:Small});
C441 = ({3}, {W:Very low, D:Medium, O:Rare, U:Tiny});
C484 = ({7}, {W:Low, D:Small, O:Rare, U:Tiny});
C515 = ({8}, {W:Medium, D:Small, O:Medium, U:Tiny})

Table 6. Part of the generated concepts

which we can read useful conclusions. Some of the generated concepts can be
found in Table 6. For example at level 3 we have the concept (C70, Objects
= {6, 5, 2}, Attributes = {Weakness:None, Determinant:Medium, Univer-
sal:Small}); and from this concept we can read that maybe we should think
more about this dependencies because the determinant cluster is medium and
is paired with virtually no weakness and this might lead to useful conclusion
about our exception. At level 4 we can see another concept containing the
same object (C345, Objects = {6, 5, 2}, Attributes = {Weakness:None, De-
terminant:Medium, Occurrence:Very rare, Universal:Small}); and by the extra
information of the occurrence being very rare we can be assured that this might
not be the highest priority for further analysis because the occurrence rate dis-
couraged us from focusing on this three objects otherwise if we were not using
FCA then we might have been allocating a lot of time to analyze this FDs. The
human mind can comprehend object-attribute pairs but in the lattice generated
with our FCA the higher the level is the more difficult is for the human mind
to comprehend it without FCA analysis. If a human observes that the size
of the determinant cluster is big and sometimes even the dependent column
cluster size is raised. If this is paired with virtually no weakness then we might
allocate a lot of time to get more information about this object set = {6,5,2},
however at the fourth level we can see that they are very rare which lowers the
priority of further investigations.

As we can see, FCA is relevant in this study, as it provides conceptual in-
formation as the result of SD-analysis with the attributes described in Section
5. To our knowledge no previous work contained FCA implementation where
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the input objects were SDs and the input attributes were properties of these
dependencies.

6. Conclusions and Future Works

In this paper we have focused on inconsistency prevention instead of fixing
them. Our method prevents inconsistencies by learning CFD and AR patterns.
If such a pattern is accepted (validated), then a constraint prevents inserts
and updates inconsistent with the accepted pattern. DependencyManager
has a novel strategy for consistency protection with the additional benefit
of preventing inconsistencies before they appear in the database, is scalable,
easy to use and powerful in preventing inconsistencies. We have used FCA to
analyze the SDs and draw useful conclusions; this way the users of the database
can understand the db-schema deeper. We have introduced a novelty for FCA
analysis by using FCA for dependency; analyzing abstract database patterns
with it.

In the future we intend to make this strategy even more useful, we intend
to find and analyze cross-table SD-candidates. We also want to generalize the
set of conditions by using more columns in the boolean functions instead of
only one and using more operator types, (our current implementation considers
equality as the only conditional operator). Automatization of the validation
process would be useful, this feature will probably be based on user-defined
rules which will help the learner module to automatically determine whether
an SD-candidate is an AD or an SD. The system stores the errors originating
from unsuccessful inserts and updates which were prevented by the constraints
created for SDs; this will generate knowledge which can be used to determine
the cause of failure of inserts and updates. If the cause of failure is an in-
correctly accepted pattern, the pattern should be dismissed; otherwise the
incorrect user action or incorrect functionality can be detected.

Known SDs can be used to increase application performances. This can
easily be understood by knowing that these rules are enforced by constraints,
so it is enough to load all possible combinations for determinant column sets
along with their corresponding values in the dependent column set where the
condition of the SD is met. In this way it will be possible to determine the
values of the dependent columns of other records. If there are too many
possible combinations, the knowledge base can still be filled with only the
most frequent or most recent combinations. This method for caching SDs
can enhance performance, especially in applications where data is periodically
loaded, such as applications responsible for the creation of backups.
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