
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Number 2, 2014

C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS

GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

Abstract. Reflection is an important tool for serializing objects, creating
mock objects for testing, creating object relational mappings and many
other cases. Without standardized C++ compile-time reflection these
tasks are repetitive and error-prone. Therefore the ISO C++ started a
study group (SG7) to examine the possibilities of compile-time reflection
in C++. With compile-time reflection it would be possible to have a
generic library for serialization or for object relational mappings.

There are several potential notions about how to approach this kind of
reflection, like introducing high-level new language elements like static for,
or creating library interfaces which are hiding compiler intrinsics for each
specific reflection subtask.

In this paper an alternative C++ compile-time reflection approach is
discussed in favor of finding a generic solution for this task. The approach
is based on introducing new library elements. Under the hood these library
element implementations have to be compiler specific intrinsics (compiler
specific expressions). With these expressions, variables and functions could
be declared and defined from results of reflection queries.

1. Introduction

Reflection is the ability of a program to inspect or modify its own structure.
In other words, reflection is referred as the meta information associated with
programming structures like types and functions. For example, in case of a
class type this meta information can provide the names and types of the class’
fields. It is said that a code is doing introspection, if it is observing its own
state and structure. Also, when a code is capable of modifying its structure
or state it is called intercession.

There are several uses of reflection. For instance it is used for serializing
objects, implementing language bindings, creating object relational mappings
(ORM) and implementing unit test frameworks with mock objects.

Received by the editors: August 24, 2014.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.3.3 [Programming Languages]: Languages

Constructs and Features – Classes and objects.
Key words and phrases. C++, Reflection, Unit test.

5



6 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

Compared to other mainstream programming languages, C++ is lagging
behind in reflection. In this paper we analyze and summarize current C++
reflection capabilities and researches about compile-time reflection. Based on
our analysis we introduce a new approach of compile-time reflection. This
approach could be used to implement generic proxy objects and mock objects
for unit test frameworks.

This article is organized as follows: in Section 2 we describe reflection fun-
damentals, summarize other languages reflection capabilities, display current
C++ capabilities and describe how generic problems like serialization is solved
without a mature and native C++ reflection. Later in Section 3 we display the
current researches of C++ compile-time reflection, where the important pro-
posals are summarized. We present and analyze our new reflection approach
for proxy and mock objects in Section 4. Future work is discussed in Section
5. Then our paper concludes in Section 6.

2. Reflection Fundamentals

2.1. Compile-time and Runtime Reflection. Compile-time reflection is
about getting information which is internal to the compiler during the com-
pilation process. Based on this information, the compiler’s internal abstract
syntax tree (AST) can be modified. Usually this modification is not more than
adding new nodes to the AST. This can be done either by normal language
elements (i.e. by adding a new function) or by using some compiler intrinsics.

Runtime reflection is happening during the program’s execution time. Usu-
ally runtime reflection is implemented with the use of runtime meta objects.
This means, there is a meta object associated to each real object. During
runtime these metaobjects provide all the information and methods which are
needed to achieve the reflection. These metaobjects are always part of the fi-
nal executable, therefore making its size bigger. Runtime reflection works also
with objects whose exact type is not known during compile time (i.e. dynamic
polymorphic types).

Runtime reflection has a few drawbacks compared to the compile-time
reflection: the executable’s size will be bigger even if not all runtime objects
are reflected, and our program will perform slower in runtime. There are
languages where this is affordable, but in C++ the performance is a critical
viewpoint, therefore runtime reflection is not a real option for C++. On the
other hand, compile-time reflection is not working with objects of dynamic
polymorphic types.

2.2. Reflection in Other Languages. Managed languages like Java and
C# have a very strong and well developed runtime reflection system.

In Java it is possible to query a class’ name, package info, superclass, imple-
mented interfaces, methods, fields and annotations through the Class object.



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 7

It is even achievable to get information about private members. Regarding
to methods, one can get all the parameters’ type and the return type. It is
also feasible to call one reflected member function (without knowing the exact
name of it). Java reflection can be used to list an enum class’ enumeration
values as well. C# has similar reflection capabilities to Java [6, 7].

Scala provides both runtime and compile-time reflection. The compile-
time reflection is realized in the form of macros, which provide the ability to
execute methods that manipulate abstract syntax trees at compile time. Scala
uses the so-called Universe to set up runtime or compile-time reflection. It is
accomplish-able to control the set of entities that we have reflective access to,
by the so-called mirror [8].

The D programming language provides compile-time reflection through
the Traits extension. It has very similar properties to the C++ type traits
library, but a little bit more can be achieved with it [9].

2.3. Standardized Reflection in C++ at 2014.

2.3.1. RTTI. Run-Time Type Information and dynamic_cast expressions can
be used together to determine the dynamic type of an object of a polymorphic
class. Under the hood dynamic_cast might use similar or common implemen-
tation details to the typeid operator which results a type_info object. Ob-
jects of class type_info can be compared, so the same polymorphic types will
have the same objects. Since C++11, hash_code can be used which returns
a value which is identical for the same types. Also since C++11 type_index

is existing, which is a wrapper around a type_info object, that can be used
as an index in associative and unordered associative containers. RTTI can be
considered as a runtime reflection in C++, however the reflected meta data is
simply not enough to execute higher level reflection tasks [1, 10].

2.3.2. Type Traits. Type traits are type related queries and type modifica-
tions, which can be executed during compile-time. Most of the queries are
returning with a boolean value or with a simple integral value. Examples:

• is_integral checks if a type is integral type
• is_same checks if two types are the same
• rank obtains the number of dimensions of an array type
• remove_reference removes reference from the given type

Type traits are reflecting meta data of types, but with the help of them it can
only be decided whether a type has a specific property or not. Higher level
reflection tasks, like querying names of all the fields of a class are impossible
with them [1, 10].



8 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

2.4. C++ Without Standardized Compile Time Reflection. In this
subsection we discuss current C++ techniques which are widely used in in-
dustrial environments. We demonstrate through examples, why the life of a
C++ programmer is harder without built-in compiler support for static re-
flection.

2.4.1. Serialization. There is a boost serialization library which can be used
both intrusively and non-intrusively [11]. The following example demonstrates
the non-intrusive method (the original class is not modified.)

struct gps_position

{

int degrees; int minutes; float seconds;

};

namespace boost { namespace serialization {

template<class Arch>

void serialize(Arch& ar,gps_position& g,const unsigned int ver) {

ar & g.degrees;

ar & g.minutes;

ar & g.seconds;

} }} // namespace boost::serialization

We can see that for each and every new class a new template specialization
is needed to be written. If there had been static reflection, then serialization
could be solved in a generic way.

2.4.2. Unit Test Mock Frameworks. The following code snipet demonstrates
an abstract class (Turtle) and its mock class. The mock can be used ev-
erywhere, where the original type appears as an interface. The mock class is
created by Google’s mocking framework, gmock [12].

class Turtle {

virtual ~Turtle() {}

virtual void PenUp() = 0;

virtual void PenDown() = 0;

virtual void Forward(int distance) = 0;

virtual void Turn(int degrees) = 0;

virtual void GoTo(int x, int y) = 0;

virtual int GetX() const = 0;

virtual int GetY() const = 0;

};

class MockTurtle : public Turtle {

public:

MOCK_METHOD0(PenUp, void());

MOCK_METHOD0(PenDown, void());



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 9

MOCK_METHOD1(Forward, void(int distance));

MOCK_METHOD1(Turn, void(int degrees));

MOCK_METHOD2(GoTo, void(int x, int y));

MOCK_CONST_METHOD0(GetX, int());

MOCK_CONST_METHOD0(GetY, int());

};

It is an obvious drawback, that each and every function is needed to be defined
by a macro. If the interface (the abstract class in this case) is a subject of
change, then the mock class needs to be updated with the same change fre-
quency. If there was static reflection, then mock classes could be programmed
in a generic way, and they could be created by the compiler.

2.4.3. Static Reflection. There are workarounds for the missing static reflec-
tion though. The below example demonstrates how to add meta data manu-
ally, without the compiler’s help.

// Your existing struct

struct Foo { int i; bool j; /* ... */ };

// "Foo" as a Boost.Fusion sequence

BOOST_FUSION_ADAPT_STRUCT(Foo, (int, i) (bool, j))

struct Action {

template<typename T>

void operator()(T& t) const {

// do whatever you need, e.g. serialize

}

};

void usage() {

Foo foo;

boost::fusion::for_each(foo, Action{});

}

Here, the Boost.Fusion library is used [13], but there are several other similar
libraries for this purpose. Someone, who is building a generic object rela-
tional mapping library, might end up using something similar to this. Note
that, when Foo is changing, the manually provided meta data is needed to be
changed, so again one conceptual change requires at least two change in the
editor.

3. Related Work

The ISO C++ Committee (WG21) is organized into several subgroups.
The Reflection Study Group (SG7) started its work at the fall of 2013 with
the paper N3814 – Call for Compile-Time Reflection Proposals [14]. In this
paper the most important compile-time reflection use cases are enumerated



10 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

and the C++ community is asked to provide proposals to introduce compile-
time reflection into the language. The use cases are:

(1) Generation of common functions like equality operators, serialization
functions. (Note that this implies the enumeration of class members.)

(2) Type transformations like Struct-of-Arrays.
(3) Compile-time context information (replacing assert).
(4) Enumeration of other entities (namespaces, enums, etc).

3.1. Low level intrinsics - N3815. In response to N3814, N3815 had been
written to give a proposal about compile-time reflection of enumeration lists.
N3815 proposes to add three Property Queries to the Metaprogramming and
Type Traits Standard Library that provide compile-time access to the enumera-
tor-list of an enumeration type [15]. Specifically:

• std::enumerator_list_size<E>: the number of enumerator-definiti-
ons in the enumerator-list of E.

• std::enumerator_identifier<E,I>: the identifier from the I’th
enumerator-definition.

• std::enumerator_value<E,I>: the value from the I’th enumerator-
definition.

There is a reference implementation for N3815 in clang, done by Christian
Kaeser [22]. This contains clang specific compiler intrinsics with which the
above mentioned Property Queries can be served.

In this reference implementation amongst the enumerator related intrinsics
there are other intrinsics implemented for querying member fields of a class:

• record_member_field_count<A>: the number of fields in A.
• record_member_field_identifier<A, I>: the identifier from the I’th

field of A.
• object_member_field_ref<A, a, I>: the reference of the I’th field

in object a, where a is an instance of A.

Note: the implementation uses prefixes for each intrinsics. With the above
three intrinsics, the Generation of common functions problem can be solved
either with recursive templates or with variadic templates [16]. This imple-
mentation can be easily extended for example to query the number of methods
[23].

Until the time of writing this paper there was no such proposal for querying
meta data of classes with a ”size + index” interface. On the other hand it is
highly expectable, that in june 2014 in Rapperswil Andrew Tomazos will give
such a proposal [17].

3.2. All In One - typename<>(N3951). N3951 proposes to gather the
meta data at once, without a ”size + index” interface [18]. From a type T,
obtain static typed reflection adding 2 language constructs:



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 11

(1) An instruction typename<T>... that expands members identifiers of type
T into a variadic template. Each type of n-th element of typename<T>... is a
const char* and each n-th value is the identifier of n-th member of T, expressed
in UTF-8 encoded;
(2) An instruction typedef<T>... that expands members of type T into a
variadic template (in the same order of typename<T>...). Each n-th type of
typedef<T>... is the type of the n-th member of T and each n-th value is a
pointer to n-th member of T, or a value if member is a constexpr member
or enum item; typename<T>... and typedef<T>... could be implemented
in terms of the N3815 related lower level ”size + index” reflection traits as a
library. Therefore it is likely that the ”size + index” related proposals will be
accepted finally.

3.3. Exposing the AST - N3883. There is a proposal which aims to solve
reflection related tasks with a completely different aspect. N3883 [19] tries to
answer this question: How to solve enumeration of members without template
recursion? It introduces ”static if” and ”static for” like language constructs.
Therefore template metaprogramming could be avoided in case of reflection
tasks. Also the goal of this proposal is to expose an AST like interface into the
language with which all the meta data can be queried. Though this proposal
has trivial advantages, it is not well elaborated and there are lot of opened
questions. In the far future similar solutions might appear in the language,
but currently it looks like there is a consensus in SG7 to strive for a lower level
and simpler compile-time reflection first.

3.4. Compile-time Strings. Compile-time strings are playing an important
role as being the carrier of a reflected identifier’s name. N3815 and N3951
proposes to use char arrays as a carrier for names, this is because currently
there is no better alternative in C++. However it might be possible that in the
future a basic_string_literal will be introduced as it is stated in D3933
[20]. When that happens, reflection related proposals might be discussed again
to reflect the names into basic_string_literals.

3.5. Code Generators. For the sake of completeness, code generators like
Qt’s Meta Object Compiler (MOC) and OpenC++ Meta Object Protocol
(MOP) must be referenced [4, 5]. The idea behind these approaches is to
extend the base C++ language with some reflection and meta object creation
capabilities. In both cases a pre-compile phase needs to be added to the
compilation process. Before the C++ compiler is called, the meta compiler
must be invoked to translate the extended C++ into standardized C++. We
can see the obvious disadvantages:

(1) One additional compilation step is needed along with a new parsing
and semantic analysis.



12 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

(2) Lack of standardization.

The goal of SG7 is to provide a powerful native reflection, with which such
precompilation is not needed. According to Olivier Goffart, Qt’s MOC might
be replaced with an extended version of N3951 [28].

4. Static Reflection for Proxy and Mock Objects

In the following we describe our reflection approach which could help to
create a generic proxy or mock object. First we describe proxy and mock
objects, then we display the new expressions.

4.1. Mock and Proxy Objects (and Classes). Mock objects are used in
unit tests to substitute real dependencies of a unit. (A unit is typically a
class (struct) or a free function.) The programmer can formulate expectations
towards a mock object, e.g. how many times a member function is called
with a certain value? Proxy objects are those objects which are having the
exact same interface as the original object, but the implementation of each
member function could be different. Therefore mock objects are special kind
of proxy objects. Proxy objects seemed to be so useful that Java introduced
the Dynamic Proxy concept to ease the creation of proxies [21]. Mock objects
are instances of mock classes, proxy objects are instances of proxy classes.

A simple aggregate class is a C++ struct with publicly available fields
and without methods. The definition of a simple aggregate proxy class is a
recursive definition: A simple aggregate class is a proxy class, if all of its
field have a proxy class type. The built in types like int, double, float are
considered as proxy types.

4.2. Proposed Approach - Defining New Expressions. To successfully
solve the problem of creating proxy and mock classes we need to have two new
expressions.

(1) variable_decl for declaring and defining variables based on reflected
types and names.

(2) function_decl for declaring and defining functions based on reflected
types and names.

These expressions ideally would be mapped under std::reflect namespace. This
mapping is needed in order to hide the compiler specific implementation de-
tails. This is the exact case with some already existent type traits as well, e.g.
std::is pod.

4.3. Declare a New Variable. Let’s assume we have the following simple
struct:



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 13

struct A {

int m_a;

float m_b;

};

The usage of variable_decl is shown through the below example:

// B has exactly the same field as A.

// Note: Only m_a is replicated.

struct B {

reflect::variable_decl<

reflect::record_member_field_type<A, 0>,

reflect::record_member_field_identifier<A, 0> >;

};

If we had written this, the above code would have been equivalent to

// B has exactly the same field as A

struct B {

int m_a;

};

In this example variable_decl has two subexpressions

(1) A type-specifier, which refers to the newly declared variable’s type.
(2) A compile-time string, which is equal to the name of the newly de-

clared variable.

The type-specifier is an expression whose value is a type, which can be eval-
uated during the compilation process. For instance this can be a result of
any kind of meta function or can be a result of any kind of reflection ex-
pression. Expression variable_decl is not bound to any concrete reflection
query implementation, it just requires the first parameter to be a type. The
compile-time string can be either the C++14’s compile time string which is a
simple char array; or this can be a basic string literal as described in D3933
proposal [20].

Despite of the independence of reflection implementations, here in this pa-
per record_member_field_identifier is used as it is implemented in the
N3815 proposal related implementation [22]. Here we use the expression
record_member_field_type<T,N> which is equal to the type of T’s N-th field
type. Currently such intrinsic is not implemented.

The expression variable_decl shall be handled as a normal variable dec-
laration/definition, therefore if the variable is needed to be initialized, then
the following code should be written:

struct B {

reflect::variable_decl<

reflect::record_member_field_type<A, 0>,



14 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

// initialize

reflect::record_member_field_identifier<A, 0> > = 0;

};

Once variable_decl is implemented then, an aggregate proxy class can
be created recursively for struct A. Note, the start of the recursion is missing,
that will be elaborated later.

template <unsigned int Index> // C has the same field names as A,

struct C : C<Index-1> { // but all fields are proxied.

reflect::variable_decl<

Proxy<reflect::record_member_field_type<A, Index>>,

reflect::record_member_field_identifier<A, Index> >;

};

template <>

struct C<0> {

reflect::variable_decl<

Proxy<reflect::record_member_field_type<A, 0>>,

reflect::record_member_field_identifier<A, 0> >;

};

Here it is assumed that such a Proxy class is existent, which can do the
proxying for all field types of struct A.

If the proxy task is mocking (being able to create expectations), then it
is assumed that it shall be possible to create a Proxy class for each primary
types (integral type, floating point type, pointer type, etc) and POD types.

Making struct A to be a template parameter we get the generic proxy
aggregate struct:

template <typename A, unsigned int Index>

struct D : D<A, Index-1> {

reflect::variable_decl<

Proxy<reflect::record_member_field_type<A, Index>>,

reflect::record_member_field_identifier<A, Index> >;

};

template <typename A>

struct D<A, 0> {

reflect::variable_decl<

Proxy<reflect::record_member_field_type<A, 0>>,

reflect::record_member_field_identifier<A, 0> >;

};

The template recursion must be started with the number of fields in type A.

template <typename A>

struct GenericAggregateProxy :



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 15

D<A, reflect::record_member_field_count<A>> {};

record_member_field_count is implemented in N3815’s reference implemen-
tation [22]. Expression variable_decl should be implemented similarly as
type traits expressions. In case of clang this means

• A new expression should be introduced in TokenKinds.def.
• Parsing actions should be created in clang::Parser.
• Semantic analysis should be added to clang::Sema.
• A new AST node should be introduced for variable_decl.
• Template instantiation rules for this AST should be given.[24]

The template instantiation rules should include the template transformation
rules, which finally should result a modified AST for this new expression. After
the instantiation the specific AST node should look like if it had been manually
written. The template transformation rules are delegated back to the original
clang::FieldDecl AST transformations. Similarly, intermediate code gener-
ation could be delegated as well. N3815’s reference implementation could be a
good example to follow: there too a new expression – ReflectionTypeTraits

– is introduced in a similar way as it is described above [22].

4.4. Declare a New Method. On the way to provide a generic mock class
the next step is to be able to define functions based on reflected information.
That is the exact purpose of introducing the function_decl expression. The
idea is really similar to the one in case of variable_decl. The following
recursively built struct C will have exactly the same functions declared as
struct A. In this case the start of the recursion will use the number of member
functions in struct A. Note, all member functions in struct A have only one
parameter.

struct A {

int m_func1(int);

float m_func2(float);

};

template <unsigned int Index> // C has the same functions as A

struct C : C<Index-1> { // but they all have one parameter

reflect::function_decl<

reflect::record_member_function_result_type<A, Index>,

reflect::record_member_function_identifier<A, Index>,

reflect::record_member_function_param<A, Index, 0> >;

};

template <>

struct C<0> {

reflect::function_decl<

reflect::record_member_function_result_type<A, 0>,



16 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

reflect::record_member_function_identifier<A, 0>,

reflect::record_member_function_param<A, 0, 0> >;

};

Here function_decl has three subexpressions:
(1) A type-specifier, which refers to the newly declared function’s return type.
(2) A compile-time string, equal to the name of the newly declared variable.
(3) parameter type of the function. In this case the declared function can
have only one parameter.

reflect::record_member_function_param should be exposed as a type
list in case of functions with more parameters:

// C has exactly the same functions as A

template <unsigned int Index>

struct C : C<Index-1> {

reflect::function_decl<

reflect::record_member_function_result_type<A, Index>,

reflect::record_member_function_identifier<A, Index>,

// list of types !

reflect::record_member_function_params<A, Index> >;

};

template <>

struct C<0> {

reflect::function_decl<

reflect::record_member_function_result_type<A, 0>,

reflect::record_member_function_identifier<A, 0>,

reflect::record_member_function_params<A, 0> >;

};

Defining functions based on reflected information is more complex:

template <unsigned int Index>

struct C : C<Index-1> {

reflect::function_decl<

reflect::record_member_function_result_type<A, Index>,

reflect::record_member_function_identifier<A, Index>,

reflect::record_member_function_params<A, Index> >

{

struct Handler {

template <typename... Ts>

auto operator()(std::tuple<Ts...>& args)

{

// ...

}

};



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 17

Handler{}(reflect::function_decl_params);

}

};

template <>

struct C<0> { /* ... similar as before */ };

Here reflect::function_decl_params is again a necessary new expression,
which would be exposed as an std::tuple object. Each n-th type of the tuple
should be the type of the n-th function parameter, and each n-th value shall
be a reference to the n-th function parameter. Note that, it might be more
feasible to use a function parameter pack instead of std::tuple, but for the
ease of explanation, tuple had been used.

When the C++ compiler reaches the parsing of the function’s body, at
that point the function parameters are already parsed and the corresponding
semantic actions had been taken. Therefore it is assumed when the compiler
parses reflect::function_decl_params the parameters can be gathered and
tied into a tuple object.

For instance, the clang compiler provides the getParamDecl() function in
the AST class FunctionDecl, with which the parameters can be queried. As
the following back trace extraction illustrates, in case of the clang compiler
version 3.4 the ActOnStartOfFunctionDef semantic action is executed, during
the parsing of a function declaration:

#6 0x... in clang::Sema::ActOnStartOfFunctionDef (...)

#7 0x... in clang::Parser::ParseFunctionDefinition (...)

#8 0x... in clang::Parser::ParseDeclGroup (...)

#9 0x... in clang::Parser::ParseDeclOrFunctionDefInternal (...)

#10 0x... in clang::Parser::ParseDeclarationOrFunctionDefinition

#11 0x... in clang::Parser::ParseExternalDeclaration (...)

#12 0x... in clang::Parser::ParseTopLevelDecl (...)

If we take a look into this function, it can be seen that the function parameters
are indeed used for registering them into the function’s body scope [25].

Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D)

{

...

FunctionDecl *FD = 0;

if (FunctionTemplateDecl *FunTmpl =

dyn_cast<FunctionTemplateDecl>(D))

FD = FunTmpl->getTemplatedDecl();

else

FD = cast<FunctionDecl>(D);

...

// Introduce our parameters into the function scope



18 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

for (unsigned p = 0, NumParams = FD->getNumParams();

p < NumParams; ++p) {

ParmVarDecl *Param = FD->getParamDecl(p);

Param->setOwningFunction(FD);

// If this has an identifier, add it to the scope stack.

if (Param->getIdentifier() && FnBodyScope) {

CheckShadow(FnBodyScope, Param);

PushOnScopeChains(Param, FnBodyScope);

}

}

...

}

This means our assumption about the parsed function parameters is cor-
rect, at least in case of this specific clang compiler version. The assumption
could be proved similarly for other vendor’s compilers as well.

4.5. Overloading the Dot Operator. By overloading the member access
operator, the simplest proxy cases could be solved. However more complex
cases cannot be implemented with it. For instance if we want to have a class
B with the exact same fields as class A, but fields whose name is starting with
a specific prefix are not needed.

Overloading the dot operator similarly as it is done with the -> operator,
had been proposed by Jim Adcock in 1990 [26], but was rejected for various
reasons [27, 2]. In 2013 Sebastian Redl had a presentation about overloadable
template operator dot, with a compile-time string template parameter [3].
This approach looks promising, but it has its own difficulties and drawbacks.

5. Open Questions and Further Researches

So far, a new approach had been introduced and the basic idea had been
illustrated, but only the simplest cases had been covered. These simple cases
are based on the current reflection proposals, which are providing a quite clear
reflection interface for the most primitive cases, But we have to notice, there
are lots of open questions about this approach. Regarding the variables:

(1) How to declare static variables?
(2) How to handle C++14’s templated variables?

In respect of the functions:

(1) How to handle template functions?
(2) How to handle constructors?
(3) How to handle ellipsis function parameters?
(4) How to handle exception specifications?



C++ COMPILE-TIME REFLECTION AND MOCK OBJECTS 19

These questions cannot be answered at the time of writing this document.
This is because first it must be decided how to reflect ellipsis, template func-
tions, exception specifications, etc. Also a proof-of-concept implementation
for the simple cases would be needed to demonstrate that the approach is
viable.

6. Conclusion

Reflection in C++ is a hot research area and it is a subject of frequent
changes. Many application areas require it, but the approaches to define a firm
interface are different. Lot of people want it, but the approaches are different.
Reflection itself is a large topic, it is not even clear what meta information
could be queried in future C++. For example there is a debate whether
the contents of a namespace should be query able or not. Despite of these
uncertainties it is sure that the most general reflection queries like getting
the fields of a class will be part of some future C++ standard. Generally
speaking, querying meta information is one layer of reflection, though there is
higher layer when this meta data is used to create new program elements like
types, variables, etc. Sometimes it is called intercession.

In this article an approach has been presented, with which declaring or
defining new variables and functions based on reflected meta information is
possible. The main advantage of this approach is that the existing C++
metaprogramming practices can be reused. It is possible to create generic
classes which could behave as generic proxy, mock or serialization classes. The
disadvantages are that new expressions will be introduced, but generally with
introducing reflection this cannot be avoided. The basic idea has been shown
here, but there are lots of opened questions, therefore additional researches
and reference implementations need to be done.

References

[1] ISO International Standard, ISO/IEC 14882:2011(E) – Programming Language C++
[2] Bjarne Stroustrup, Design and Evolution of C++, ISBN 0-201-54330-3
[3] Sebastian Redl, Overloading the Member Access Operator, C++Now 2013
[4] Shigeru Chiba, A Metaobject Protocol for C++, In Proceedings of the ACM Con-

ference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), page 285-299, October 1995.

[5] Shigeru Chiba, OpenC++ Programmer’s Guide for Version 2, Technical Report SPL-
96-024, Xerox PARC, 1996.

[6] Oracle, Trail: The Reflection API, http://docs.oracle.com/javase/tutorial/reflect/
[7] Microsoft Developer Network, Reflection (C# and Visual Basic),

http://msdn.microsoft.com/en-us/library/ms173183.aspx
[8] Scala Documentation, REFLECTION, http://docs.scala-

lang.org/overviews/reflection/overview.html
[9] D Programming Language, Traits, http://dlang.org/traits.html



20 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

[10] C++ Reference, http://en.cppreference.com
[11] Robert Ramey, Boost Serialization Library, http://www.boost.org/doc/libs/1 55 -

0/libs/serialization/doc/index.html
[12] Google, googlemock - Google C++ Mocking Framework,

https://code.google.com/p/googlemock/
[13] Joel de Guzman, Dan Marsden, Tobias Schwinger, Boost Fusion Library,

http://www.boost.org/doc/libs/1 55 0/libs/fusion/doc/html/
[14] Jeff Snyder, Chandler Carruth, Call for Compile-Time Reflection Proposals

(N3814), http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3814.html
[15] Andrew Tomazos, Christian Käser, Enumerator List Property Queries (N3815),

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3815.html
[16] Jonathan Wakely, Compile-time integer sequences (N3658), http://www.open-

std.org/JTC1/sc22/WG21/docs/papers/2013/n3658.html
[17] SG 7 - Reflection Forum, https://groups.google.com/a/isocpp.org/forum/#!forum/ re-

flection
[18] Cleiton Santoia Silva, Daniel Auresco, C++ type reflection via variadic template

expansion (N3951), https://github.com/cleitonsantoia/reflection/blob/master/N3951 -
reflection cpp.pdf

[19] Péter Németh, Code checkers & generators (N3883), http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3883.html

[20] Michael Price, Compile-time string draft (D3933)
[21] Java Platform Standard Ed. 7, Class Proxy,

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html
[22] Christian Kaeser, Clang Reflection, https://github.com/ChristianKaeser/clang-

reflection
[23] Gábor Márton, Clang Reflection, https://github.com/martong/clang-

reflection/tree/member function
[24] Clang 3.5 documentation, CLANG CFE INTERNALS MANUAL - How to add an

expression or statement, http://clang.llvm.org/docs/InternalsManual.html#how-to-add-
an-expression-or-statement

[25] llvm-project Revision 207549, http://llvm.org/svn/llvm-project/cfe/tags/RELEASE -
34/final/

[26] Jim Adcock, Request for Consideration: Overloadable Unary opera-
tor.(), https://groups.google.com/forum/#!msg/comp.lang.c++/GauQas227YM/
XRZVkkyYT3UJ

[27] Bjarne Stroustrup, C++ Style and Technique FAQ, http://www.stroustrup.com/bs -
faq2.html#overload-dot

[28] Olivier Goffart, Can Qt’s moc be replaced by C++ reflection?
http://woboq.com/blog/reflection-in-cpp-and-qt-moc.html

Dept. of Programming Languages and Compilers, Eötvös Loránd University
E-mail address: martongabesz@gmail.com, gsd@elte.hu


