
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Number 1, 2014

ON UML BASED NOTATIONS FOR ASPECTS

GRIGORETA S. COJOCAR AND ADRIANA M. GURAN

Abstract. Separation of concerns was always an important factor in de-
signing easily maintainable and evolvable software systems. However, prac-
tice has shown that it is not easy to clearly separate all the concerns from
a software system in analysis, design and implementation phases. Using
just one programming paradigm most concerns can be clearly separated,
but there are still a few concerns whose design and implementation is en-
tangled with other concerns. New programming paradigms that try to
complement the existing ones by providing new ways for a better separa-
tion of concerns have been developed. Aspect oriented paradigm is one
of the new paradigms. Although the number of languages supporting as-
pect oriented programming has increased, there is no generally accepted
notation for aspects in UML. In this paper we provide an analysis of the
existing UML-based notation for aspects in the class diagram using a set
of comparison criteria.

1. Introduction

Separation of concerns [20] was always an important factor in designing
easily maintainable and evolvable software systems. However, practice has
shown that it is not easy to clearly separate all the concerns from a software
system. Using just one programming paradigm most concerns can be clearly
separated, but there are still a few concerns whose design and implementation
is entangled with other concerns. New programming paradigms that extend
the existing ones in order to better separate the concerns that are still en-
tangled have been developed. Among these we mention the aspect oriented
paradigm (AOP) that usually extends the object-oriented paradigm [18].

There are already a number of aspect oriented languages as AspectJ [4]
and AspectC++ [3] that provide new language constructs for implementing the
crosscutting concerns. At this moment there is no generally accepted design

Received by the editors: May 5, 2014.
2010 Mathematics Subject Classification. 68N19, 68N99.
1998 CR Categories and Descriptors. D.2.2[Software Engineering]: Design Tools and

Techniques – Computer-aided software engineering ; D.1.m [Software]: Programming Tech-
niques – Miscellaneous.

Key words and phrases. aspect oriented paradigm, design, UML class diagram.

116



ON UML BASED NOTATIONS FOR ASPECTS 117

notation that supports the design of aspect oriented systems. The need for a
design notation is justified by the following advantages:

• it would ease the development of aspect oriented systems;
• it would make the understanding of an aspect oriented system much

easier (by using a graphical representation);
• it would serve as a basis for assessing the impact of crosscutting con-

cerns on their base classes (core classes);
• it would allow the adaptation and reuse of existing design constructs.

The Unified Modeling Language (UML) is a graphical language for visu-
alizing, constructing, specifying and documenting the artefacts of a software
system. The goal of UML is to provide tools for analysis, design, and im-
plementation of software based systems to all parties involved: developers,
system architects, etc [7, 22, 28]. One of the main advantages of using UML is
that it has defined a set of modeling concepts that are now generally accepted,
and it also contains visual representation of the defined concepts that are easy
to understand and interpret by humans.

The concepts defined by UML can be used to represent the static structure
(such as classes, components, node artifacts) or the behavior (such as activities,
interactions, state machines) of the software system [27]. The concepts can
be used to build different kind of diagrams (i.e., class diagrams for the static
structure and sequence diagrams for the behavior).

Even though UML contains a very large set of concepts, it does not include
all the concepts that may appear during the development of different kinds of
software systems, mainly because some of the concepts are specific to a certain
application domain. That is why, the language also contains extension mech-
anisms that allow us to add new modeling elements, modify the specification
of the existing ones or change their semantics [7].

The extension mechanisms provided by UML are stereotypes, tagged val-
ues, constraints, and profiles [27]:

• A stereotype extends the vocabulary of the UML, by allowing the cre-
ation of new kinds of modeling elements that are derived from existing
ones, but that are specific to a particular domain or problem. The
information content of the stereotyped element is the same as the ex-
isting model element [7, 22].

• A tagged value extends the properties of a UML stereotype by allowing
the creation of new information in the stereotype’s specification [7]. It
is a name-value pair that denotes a characteristic of the corresponding
stereotype.

• A constraint extends the semantics of a UML modeling element al-
lowing addition of new rules or changing the existing ones [7]. The



118 G.S. COJOCAR AND A.M. GURAN

constraints may be written as free-form text or using the Object Con-
straint Language (OCL) [29] for a more precise specification of the
semantics.

• A profile is a UML model with a set of predefined stereotypes, tagged-
values, constraints and base classes. It also selects a subset containing
only those modeling concepts that are needed and should be used for
a particular application area. This mechanism is not considered a
first-class extension mechanism, as it does not allow the addition or
modification of existing elements. The intention of profiles is to give
a simple and easy to use mechanism for adapting an existing set of
modeling concepts with constructs that are specific to a particular
domain, platform, or method [7, 22].

In UML a classifier is a mechanism that describes structural and behav-
ioral features. Classifiers include classes, associations, interfaces, datatypes,
components, nodes, use cases, etc. The classifiers that are usually represented
in a class diagram are classes and interfaces.

The main contribution of this paper consists in using a new set of com-
parison criteria for analyzing UML based notations for the aspects displayed
in an UML class diagram. The considered criteria are useful in deciding what
notation to use for representing aspects as they show the expressiveness of the
notation, how easy will be to learn and adopt the new notation.

The paper is structured as follows. In Section 2 we present the new con-
cepts introduced by the aspect oriented paradigm. The considered notations
are briefly described in Section 3. An analysis of the described proposals is
given in Section 4. Section 5 presents related work. Some conclusions and
future research directions are given in Section 6.

2. AOP Concepts

The aspect oriented paradigm introduces new concepts: join point, point-
cut, advice, aspect and introduction for the design and implementation of cross-
cutting concerns, and weaving for building the final software system. Aspect
oriented programming can be used only for crosscutting concerns, the core
concerns are still designed and implemented using the base programming par-
adigm, that usually is object-oriented programming, but it can be any other
programming paradigm.

2.1. Join point. A join point is a well-defined point in the execution of a
program. Any software systems can be seen as a sequence of execution points
like: assignments, conditional statements (if, switch), loop statements (for,
while, do-while or repeat), function/method calls, function/methods execu-
tions, etc. regardless of the programming paradigm used for developing the



ON UML BASED NOTATIONS FOR ASPECTS 119

system. Aspect oriented programming only uses some of these points, called
join points, in order to add new behavior.

The types of execution points that can be used for developing crosscutting
concerns depend on the aspect oriented language. AspectJ [4] offers the great-
est variety of execution points, like: method calls, method executions, object
instantiations, constructor executions, field references and handler executions,
etc., while others allow only a small subset. In Spring AOP [23] a join point
always represents a method execution.

2.2. Pointcut. The execution of a software system consists of many join
points. However, not all of them are necessary for the design and implemen-
tation of crosscutting concerns. A pointcut selects join points, and exposes
some of the values in the execution context of those join points. AspectJ [4]
and AspectC++ [3] allow pointcuts to be defined as abstract in order to be
able to define reusable aspects and aspect libraries.

2.3. Advice. A pointcut allows selecting join points from the software sys-
tem, however they do not change its behavior. An advice defines crosscutting
behavior and it is defined in terms of pointcuts. The code of an advice runs
at every join point selected by its pointcut. There are different options as to
when the code of the advice is executed relatively to the corresponding join
point(s). The aspect oriented languages developed so far allow three types:
before, after and around the join point.

• Before: the advice code is executed before the selected join point.
This type of advice does not have the ability to prevent execution flow
proceeding to the join point (unless it throws an exception).

• After : the advice code is executed after the selected join point. There
can be three situations, depending on the execution of the join point:

– After returning : the advice code is executed only if the join point
execution completes normally.

– After throwing : the advice code is executed only if the join point
execution ends by throwing an exception.

– After (finally): the advice code is executed regardless of the means
by which the selected join point exits (normal or exceptional re-
turn). This type of advice is usually called after finally, because
of its similarity with the finally clause of the try-catch block
from programming languages.

• Around : the advice code surrounds the selected join point. It can
perform custom behavior before and after the selected join point. It
can also decide whether the selected join point should still be executed



120 G.S. COJOCAR AND A.M. GURAN

or not (called proceeding), or it may cause multiple executions of the
selected join point.

2.4. Introduction. It is sometimes necessary to modify the static structure
of a type (by adding new members - attributes/methods or by modifying its
inheritance hierarchy) in order to design and implement a crosscutting concern.
Even though advices add new behavior to existing types, they do not modify
their static structure. An introduction allows developers to extend the static
structure of existing types. New methods and/or attributes can be added, or
the type inheritance hierarchy can be modified (by adding new interfaces or
by modifying the base type of the existing type).

2.5. Aspect. An aspect is a new kind of type specified by the aspect oriented
paradigm that is used to implement one crosscutting concern in a modular
way. An aspect is similar to a class, it can contain attributes and methods
declarations but it also encapsulates pointcuts, advice and introductions. Be-
cause of their similarity with classes, an aspect declaration is often almost the
same as a new class declaration, where the class keyword is replaced with
the aspect keyword. In some aspect oriented languages aspects (i.e., AspectJ,
AspectC++) can inherit from other classes, implement some interfaces or even
inherit from other aspects. However some constraints must be followed when
inheriting from another aspect. For example, in AspectJ an aspect can inherit
only from an abstract aspect.

2.6. Weaving. When the aspect oriented paradigm is used for developing
software systems, the core concerns are developed independently of the cross-
cutting concerns. However, in the end, they still have to be put together
in order to obtain the final executing system. Weaving is the process that
produces the final systems, and the weaver is the tool used to produce it.

The weaver takes some representation of the core concerns (source code
or binaries), some representation of the crosscutting concerns (source code or
binaries) and produces the output, which is often a binary representation.

Some aspect oriented languages allow the weaving process to take place at
different times. For example, AspectJ allows three different times: compile-
time, post-compile time and load-time. Other languages allow only one possi-
bility which is either compile-time or run-time.

The approach used for weaving depends on the aspect oriented language:
AspectJ uses byte-code modification, Spring AOP uses dynamic proxies, while
AspectC++ uses source code preprocessing.

Not all the concepts introduced by the aspect oriented paradigm can and
should be represented in a class diagram. The join points from a software
system do not provide any relevant information about the static structure of



ON UML BASED NOTATIONS FOR ASPECTS 121

the system. However, the visual representation of other concepts can provide
useful informtion to the developers. For example, some consider that one
of the main difficulties when using the aspect oriented paradigm is that the
control flow of the system will be difficult to follow and understand since not
all the relevant data about a piece of code can be seen at that code. Some
additional information may exist in the aspect that affect that part of code.
That is why we consider that adding aspects to the class diagram may ease
the understanding of the overall static structure of a software system. The
information that should be represented in a class diagram is:

• The aspects that are used for building the system, and their type
(abstract or concrete). The internal static structure of an aspect is
important as it will show, besides the normal fields and methods, the
defined pointcuts together with the collected context, the type of the
pointcut (abstract or concret), and the defined advice and their type
(before, after, around).

• If and how they change the static structure of other existing elements
from the class diagram (classes, interfaces). It should represent the
type whose static structure will be modified either by introducing new
members (fields, methods, constructors, etc. ) or by modifying the
inheritance hierarchy of the type (adding a base class or implementing
interfaces).

• Relationships with other elements from the class diagram. We consider
important the following relationships:

– Aspect-aspect: An aspect may inherit from another aspect, or an
aspect may have precedence over another aspect during weaving.

– Aspect-interface: An aspect may implement one or more inter-
faces.

– Aspect-class: An aspect may inherit (or extend) from a class, it
may modify the static structure of an existing class, or it may
modify the behavior of a class through one or more advices.

3. Existing UML-based Notations for Aspects

During the last fifteen years, many attempts to identify an appropriate
notation of aspect oriented design have been made. Most approaches focused
on introducing new modeling elements for the concepts defined by AOP: as-
pect, advice, pointcut and the relevant relationships, while other approaches
(like the one proposed by Herrero et al. [14]) focused on a particular crosscut-
ting concern and tried to introduce special notations for the elements needed
to design that crosscutting concern. In this study we have included only the
approaches that tried to represented the new concepts introduced by AOP.



122 G.S. COJOCAR AND A.M. GURAN

Suzuki and Yamamoto were the first to extend the UML with concepts
for the design of aspect-oriented programs [25]. The aspect is a stereotype
derived from the Classifier element. Aspect can have attributes, operations
and relationships. The operations corresponding to an introduction or an
advice are represented using the weave stereotype followed by the advice or
introduce constraint. The signature of a weave operation also shows which
elements (e.g. classes, methods and variables) are affected by the aspect.
Relationships of an aspect include generalization, association and dependency.
The relationship between an aspect and the classes that the aspect affects is a
stereotype of abstraction dependency defined in the UML, called realize. They
also introduced the stereotype woven class into the Class element in order to
represent a woven class that should specify the source class and the aspect
used to generate it using a tagged value. They do not propose new notations
for concepts like pointcut or advice. The proposed model was used to design
the Observer design pattern.

Aldawud et al. [2] have proposed an UML profile for aspect oriented
modeling. The profile contains an aspect stereotype of the Class classifier for
representing an aspect, and a control stereotype of the Association element for
representing relationships, however what kind of relations can be represented
using this stereotype is left as a further research question. No notations are
provided for join points, pointcuts or advices. They also proposed the use of
complex statecharts for modeling aspects behavior [1]. No example of using
the profile for designing a crosscutting concern is given.

Kande et al. [17, 16] have first studied the suitability of using UML for
representing aspect oriented designs of software system, and then proposed
new notations for aspect oriented concepts. The aspect is a stereotype of
the Classifier, and a new stereotype of UML collaboration and connection
points have been proposed in order to represent the relationships between
aspects and other classifiers and pointcuts. Advices and introductions are
each represented in their special compartment of the aspect stereotype, and
pointcuts are represented as connection points. The proposed design model
was used to represent the Logging crosscutting concern.

Zakaria et al. [30] have proposed another UML extension for designing
aspect oriented systems. The proposal is a more detailed version of the one
made by Aldawud et al. in [2]. An aspect is represented as a stereotype of the
Class classifier, a pointcut is also modeled as a stereotype of the Class, and
advices are represented as stereotypes of the Operation element. They define
different stereotypes for each type of advice: before, after, after returning,
after throwing and around. For aspect-class relationships they proposed the
use of the UML association model element tagged with different values for



ON UML BASED NOTATIONS FOR ASPECTS 123

different kind of associations (control, track, validate, etc), and for aspect-
aspect relationships they either used the UML generalization relationship or
the dominates stereotype of the Association element. The proposed extension
was used to model MoveTracking crosscutting concern.

Pawlak et al. [21] introduced the notion of groups in order to represent
objects that are not necessarily having the same class or superclass, but that
could be the result of a pointcut selection criteria. An aspect is represented as
an aspect-class stereotyped with aspect, and it may contain special methods
called aspect-methods. These aspect-methods are stereotyped with before, af-
ter, around, corresponding to the advice type. To represent pointcuts, they
use pointcut relations from aspect-class to another class or group. The point-
cut relations are oriented associations stereotyped with pointcut and the roles
have special semantics. The notation was used to design Authentication and
Session aspects.

Stein et al. [24] have proposed an aspect-oriented design model that ex-
tends UML using the standard extension mechanism, called AODM. They
started from the concepts introduced by AspectJ [4] and they tried to propose
the most suited modeling element for each concept. An aspect is a stereo-
type of the Class classifier (aspect), pointcuts and advices are represented as
operations of special stereotypes (pointcut or advice), join points are repre-
sented as links (some of the links may be stereotyped, depending on the join
point kind), and introductions are represented as special stereotype of collab-
oration template. They also tried to model the weaving mechanism using a
use case stereotype. For aspect-class or aspect-aspect relations they mostly
used the already defined relations for the Class classifier with some additional
constraints. They also introduced a new relation, called crosscut, in order to
describe the other modeling elements (classes, interfaces or aspects) that are
affected by the associated aspect. The proposed design model was used to
design the Observer design pattern [11].

Jacobson and Ng [15] in their book Aspect-Oriented Software Development
with Use Cases also proposed the extension of UML in order to graphically
represent aspects. An aspect is a stereotyped classifier, named aspect, with
two compartments: one for pointcuts and one for class extensions. Aspects
have a class extensions compartment to overlay class extensions onto existing
class. With AOP the overlay can be achieved with introductions or advices.
Each class extension contains a subset of features (attributes, operations and
relationships) that are used to represent which class and which operation is
extended by the aspect (using introduction or advice). The pointcuts com-
partment contains the pointcuts defined by the aspect. The authors also
introduced the notion of parametrized pointcuts (marked with < and >) that
can be used to display an operation extension at multiple join points.



124 G.S. COJOCAR AND A.M. GURAN

Basch and Sanchez [6] have taken another approach in representing aspects
in class diagrams. They have considered the package UML element as the
most appropriate to be used for aspects. These packages are stereotyped
with the aspect stereotype. Join points are represented as circles with a cross
inside. Inside the aspect package, a class diagram is used to show which
other component classes are crosscut by the corresponding aspect. The aspect
package should also include interaction diagrams to display the behavior of the
aspect. No example of using the proposed approach to design a crosscutting
concern is given.

Zhang has also considered using the package UML element to represent
aspects [31]. The aspect contains two compartments: one for pointcuts and one
for advices. The pointcut and the advice are also represented as stereotyped
packages. The proposed model was used to design the Logging crosscutting
concern.

Some researchers, like Han et al. [13] or Chavez and Lucena [8] have taken
the approach of first defining meta-model for AspectJ, and then, based on this
metamodel, to define graphical notations for the concepts introduced by AOP.

4. Analysis of UML Based Notations for Aspects

In this section we compare the previously described UML-based notations
for aspects from different points of view: the UML representation used for
displaying the new concepts introduced by AOP in the class diagram (aspect,
advice, pointcut, join point, introduction), the concepts that were represented,
the kind of relationships considered between elements from the class diagram
(as discussed in Section 2) and statically vizualizing the affected parts of the
system.

4.1. AOP Concepts Represented. All the proposals described in Section
3 have considered a way of representing the aspect concept into the class
diagram. Most of them also considered representing the advice [17, 21, 24, 25,
30, 31] and the pointcut [15, 17, 21, 24, 31]. Very few proposals considered
representing introductions [15, 24, 25] and even fewer considered representing
join points [6, 24].

4.2. UML Notations for AOP Concepts. Most of the approaches de-
scribed in Section 3 represent the aspect starting from the Class classifier
enhanced with the aspect stereotype [2, 21, 24, 30]. Others have considered
using the Classifier as a base for aspect [15, 17, 25]. Only a few proposals
considered using a non classifier as a starting element, namely the package
with two compartments for pointcuts and advices [6, 31].



ON UML BASED NOTATIONS FOR ASPECTS 125

For the rest of the concepts introduced by AOP, there is very little consen-
sus related to the appropriateness of a chosen representation. In the following,
we will present the proposed representation for the other concepts:

• Join point - There are only two proposals for representing them, con-
sisting in links [24] and a notation in the form of a circle with a cross
inside [6].

• Pointcut - There is very little overlapping between the proposals for
representing pointcuts. In [17] and [24] pointcuts are represented using
the pointcut stereotype, while Pawlak et al. [21] propose a representa-
tion based on an association from an aspect class towards a classifier
stereotype with pointcut. Zakaria et al. [30] model a pointcut based
on the Class classifier and by providing a link to its aspect by a has
pointcut association. Zhang sees it as a stereotype package [31]. Ja-
cobson and Ng [15] proposed representing pointcuts as operations in
their own compartment of the aspect stereotype.

• Advice - Stein et al.[24] and Zakaria et al.[30] model an advice as
an UML operation of a stereotyped named advice; while Suzuki and
Yamamoto [25] provide a suggestion of using a constraint for the cor-
responding weave and Kande et al. [17] suggest to represent it as a
compartment in the new aspect classifier.

• Introductions - There is only one approach, proposed by Stein et al.
[24], in explicitly modeling introductions that uses parameterized tem-
plates. The class extensions compartment introduced by Jacobson et
Ng [15] in their proposal can also be used to represent introductions,
however from their representation it is not very clear how the exten-
sions will be realized (introduction or advice).

4.3. Relationships. Only a few proposals have taken into consideration the
relationships that the aspects can have with the other elements from the class
diagram (classes, interfaces). Aldawud et al. [2] proposed to use the control
relationship to represent which other classes the aspect code controls. Suzuki
and Yamamoto [25] proposed the usage of the already existing realize relation-
ship to represent an aspect and the classes that the aspect affects. Zakaria
et al. [30] proposed to use one of the newly introduced control, track, report,
customize, validate, save, handleerror, handleexception relationships to rep-
resent the relation between an aspect and a class. Each aspect should have
at least one association with a class in order to affect the system. They also
introduced the dominates relationship between two aspects in order to repre-
sent the precedence between those aspects. Kande et al. [17] introduced the
binding relationship to specify what class of objects an instance of the aspect
can be bound to. Stein et al. [24] introduced the crosscut relationship between



126 G.S. COJOCAR AND A.M. GURAN

an aspect and a class to specify that the aspect affects the class. The crosscut
relationship also implies that the aspect requires the presence of the class in
order to behave as expected.

4.4. Vizualising Affected Parts. Very few proposals considered explicilty
vizualizing the parts that will be affected by introducing one or more aspects,
however for some proposals the structure of the aspect notation or the relation-
ships introduced can be used for determining the parts of the software system
that are affected by the aspects presence. Jacobson and Ng proposal [15] dis-
play the affected parts in the Class extensions compartment that contains all
the classes from the system that will be affected by the aspect (either statically
by introductions or dynamically through advice). The aspect notation pro-
posed by Kande et al. [17] contains compartments that display introductions,
meaning that those classes will be affected by the aspect. Also, the binding
relationship introduced by them show other affected parts (through dynamic
crosscutting). The aspect-class relationships described in Section 4.3 can also
be considered as relationships that show the affected parts of the software
system.

The analysis shows that most approaches have considered representing
only a subset of the new concepts introduced by AOP. However in order to
properly communicate and describe an aspect oriented design all the concepts
should be possible to represent. The results of the analysis also show there is
still a need for further investigation in order to represent and include aspect
oriented concepts into the UML class diagram of a software system that can
be easily adopted by software developers.

5. Related Work

Chitchyan et al. [9] analyzed four proposed approaches that provided
support for crosscutting concern at design level: Composition Patterns [10],
Aspect-Oriented Component Engineering [12], Hyperspaces [26] and Suzuki
and Yamamoto’s approach [25]. They defined a set of ”good design” criteria
that is used for their analysis. The set contains traceability, change propa-
gation, reusability, comprehensibility, flexibility, ease of learning and use, and
parallel development.

Asteasuain et al. [5] analyzed the UML suitability for specifying and visu-
alizing aspect oriented design. They considered two types of UML extensions
that can be used: a general one that extends the UML with specific concepts
from AOP, and a specific one that extends UML only with a few concepts from
AOP that are used for the design and implementation of a particular cross-
cutting concern. From this perspective they compared the extension proposed
by Suzuki and Yamamoto [25] considered as a general one, with the extension



ON UML BASED NOTATIONS FOR ASPECTS 127

proposed by Herrero et al. [14] for the synchronization crosscutting concern,
considered as a specific one. The criteria used for comparison are the same
with the ones introduced and used by Chitchyan et al. [9] in their analysis.

Lovavio et al. [19] described in their article different notations that were
proposed for Aspect Oriented Software Development (AOSD). They first iden-
tified the notions used for AOSD (i.e., crosscutting concern, aspect, advice,
join point, weaving, relationships, etc.) and then they presented the UML-
based notations proposed until that time. However, their focus was not on
analyzing and comparing these notations but on using UML for including and
modeling aspects early in the software system development life-cycle (not only
in the implementation phase).

Our study is different from the above mentioned studies in that it focuses
on comparing the way the static structure of an aspect oriented software sys-
tem can be modeled using UML. Our approach focuses only on the inclusion of
aspects in the class diagram, on what AOP concepts can be represented in this
diagram and how, and on their relationships with other elements that are dis-
played in the diagram (classes and interfaces). The first two studies consider
other comparison criteria like the ease of tracing crosscutting requirements
to design and even to code or how easily the design can be reused for other
software systems. The study made by Lovavio et al. also discusses the way
the AOP concepts can be represented in UML, but their focus is not mainly
on the class diagram. They are interested more in the way UML can be used
for identifying and managing crosscutting concerns during requirements and
analysis phases.

6. Conclusions and Further Work

We have described in this paper nine existing proposals to introduce as-
pects into the UML class diagrams of a software system. We have also provided
an analysis of the described proposals using different criteria: the aspect ori-
ented concepts represented, the UML notation proposed, the relationships in-
troduced, and if they allow vizualing the affected parts of the software system.
Even though there already exist many proposals, none of them is generally ac-
cepted nor used in the literature to describe the static structure of an aspect
oriented software system. The reasons for this lack of acceptance may be that
some of them are incomplete, some of them have as starting point the AspectJ
language meaning that some of the features introduced are particular to As-
pectJ but not to all aspect oriented languages, or the notations proposed are
difficult to use for different crosscutting concerns. As described in Section 3,
the examples used for presenting the notation are usually small (the Observer
pattern, Logging, MoveTracking, Authentication and Session).

Further work should be done in the following directions:



128 G.S. COJOCAR AND A.M. GURAN

• To propose another notation for representing aspects and their rela-
tionships in UML class diagram, starting from the good points of the
existing notations.

• To apply the new notation for designing different crosscutting con-
cerns.

• To facilitate the use of the proposed notation by developing a profile
or an add-in/plug-in package for an existing CASE tool.

References

[1] Omar Aldawud, Atef Bader, C. Constantinos, and Tzilla Elrad. Modeling intra ob-
ject aspectual behavior. In Automating Object-Oriented Software Development Methods
Workshop at ECOOP 2001, pages 1–6, 2001.

[2] Omar Aldawud, Tzilla Elrad, and Atef Bader. A UML Profile for Aspect Oriented
Modeling. In Aspect Oriented Programming Workshop at OOPSLA 2001, pages 1–6,
2001.

[3] AspectC++ Homepage. http://www.aspectc.org/.
[4] AspectJ Project. http://eclipse.org/aspectj/.
[5] Fernando Asteasuain, Bernardo Contreras, Elsa Estevez, and Pablo R. Fillottrani. Eval-

uation of uml extensions for aspect oriented design. In Proceedings of the 4th Ibero-
American Symposium on Software Engineering and Knowledge Engineering (JIISIC
2004). Madrid, Spain, 2004.

[6] Mark Basch and Arturo Sanchez. Incorporating aspects into the uml. In Proceedings of
the Aspect Oriented Modeling Workshop at AOSD, 2003.

[7] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide (2nd Edition). Addison-Wesley Professional, 2005.

[8] Christina Chaves and Carlos Lucena. A metamodel for aspect oriented modeling. In
Workshop on Aspect-Oriented Modeling with UML (held in conjunction with the 1st
Aspect Oriented Software Development Conference AOSD, 2002.

[9] Ruzanna Chitchyan, Ian Sommerville, and Awais Rashid. An analysis of design ap-
proaches for crosscutting concerns. In Workshop on Aspect-Oriented Design (held in
conjunction with the 1st Aspect Oriented Software Development Conference AOSD,
2002.

[10] Siobhán Clarke and Robert J. Walker. Composition patterns: An approach to design-
ing reusable aspects. In Proceedings of the 23rd International Conference on Software
Engineering, ICSE ’01, pages 5–14. IEEE Computer Society, 2001.

[11] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, March 1995.

[12] John Grundy. Multi-perspective specification, design and implementation of software
components using aspects. International Journal of Software Engineering and Knowl-
edge Engineering, 10(6):713–734, Dec 2000.

[13] Yan Han, Gnter Kniesel, and Armin B. Cremers. Towards visual aspectj by a meta model
and modeling notation. In Proceedings of 6th Aspect Oriented Modeling Workshop at
AOSD, 2005.

[14] J.L. Herrero, F. Sanchez, F. Lucio, and M. Torro. Introducing Separation of Aspects
at Design Time. In Aspect-Oriented Programming (AOP) Workshop at ECOOP 2000.
2000.



ON UML BASED NOTATIONS FOR ASPECTS 129

[15] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases.
Addison Wesley, 2004.

[16] Mohamed M. Kande, Jorg Kienzle, and Alfred Strohmeier. From AOP to UML- A
Bottom-Up Approach. In Proceedings of the 1st International Workshop on Aspect-
Oriented Modeling with UML. Enschede, The Netherlands, 2002.

[17] Mohamed M. Kande, Jorg Kienzle, and Alfred Strohmeier. From AOP to UML: Towards
an Aspect-Oriented Architectural Modeling Approach. Technical report, Swiss Federal
Institute of Technology, Lausanne, Switzerland, 2002.

[18] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings
European Conference on Object-Oriented Programming, volume LNCS 1241, pages 220–
242. Springer-Verlag, 1997.

[19] Francisca Losavio, Alfredo Matteo, and Patricia Morantes. UML Extensions for Aspect
Oriented Software Development. Journal of Object Technology, 8(5):85–104, 2009.

[20] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

[21] Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-Aubry, Lionel Sein-
turier, and Laurent Martelli. A uml notation for aspect-oriented software design. In
Proceedings of the Aspect Oriented Modeling with UML workshop at AOSD (2002, 2002.

[22] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[23] Aspect Oriented Programming with Spring. http://docs.spring.io/spring/docs/
4.0.3.RELEASE/spring-framework-reference/htmlsingle/#aop.

[24] Dominik Stein, Stefan Hanenberg, and Rainer Unland. An UML-based Aspect-Oriented
Design Notation for AspectJ. In AOSD 2002, pages 1–7, 2002.

[25] Junichi Suzuki and Yoshikazu Yamamoto. Extending UML with Aspects: Aspect
Support in the Design Phase. In Aspect-Oriented Programming (AOP) Workshop at
ECOOP’99, pages 14–18. 1999.

[26] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton Jr. N Degrees
of Separation: Multi-Dimensional Separation of Concerns. In Proceedings of the 21st
International Conference on Software Engineering, pages 107–119, May 1999.

[27] UML 2.4.1 Superstructure. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.
[28] Unified Modeling Language(UML). http://www.uml.org/.
[29] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling

with UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
[30] Aida Atef Zakaria, Hoda Hosny, and Amir Zeid. A uml extension for modeling aspect-

oriented systems. In Second International workshop on Aspect-Oriented Modeling with
UML at UML 2002. 2002.

[31] Gefei Zhang. Towards aspect-oriented class diagrams. In Proceedings of 12th Asia-
Pacific Software Engineering Conference, pages 763–768, 2005.

Babeş-Bolyai University, Department of Computer Science, 1, M. Kogălniceanu
street, 400084 Cluj-Napoca, Romania

E-mail address: grigo@cs.ubbcluj.ro

E-mail address: adriana@cs.ubbcluj.ro


