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MULTIOBJECTIVE APPROACH OF MULTI-DIMENSIONAL

TIME SERIES CLUSTERING

RAMONA STOICA

Abstract. The multidimensional time series are a generalization of the
single time series and are more difficult to cluster due to the higher num-
ber of parameters used to characterize a data instance. In this work we
formulate the multidimensional time series clustering problem as a multi-
objective problem and implement several distance measures in the k-means
clustering algorithm in order to see the effect of the similarity measure in
the clustering process. All the measures are geometrical distances. We
used four data sets in order to validate the results. The Euclidean dis-
tance which is the most used one does not seem to be the most adequate
measure in multidimensional clustering.

1. Introduction

Time series data is a sequence of real numbers that represent the measure-
ments of a real variable at equal time intervals. A data stream is an ordered
sequence of points x1, . . . , xn. These data can be read or accessed only once
or a small number of times. A time series is a sequence of real numbers, each
number indicating a value at a time point. Data flows continuously from a
data stream at high speed, producing more examples over time in recent real
world applications. Most of the time series encountered in cluster analysis
are discrete time series. When a variable is defined at all points in time the
time series is continuous. Clustering of time series data has applications in
an extensive assortment of fields and has attracted a large amount of research
[1, 2, 3, 4, 5, 6, 7]. Multidimensional time series are an extension and general-
ization of regular time series. They have more impact nowadays as most of the
data consists of more parameters which are measured over time and decision
has to be made considering the behavior of all these parameters together. We
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propose to investigate in this paper the behavior of k-means algorithm for sev-
eral multidimensional time series data. We compare versions of k-means for
several distance measures. The paper is organized as follows: Section 2 intro-
duces the clustering problems, some similarity distances and some approaches.
Section 3 describes the multidimensional time series data, Section 4 presents
the k-means for multidimensional time series data clustering and the distance
measures that we used, Section 5 contains experiments and comparisons and
Section 6 presents the conclusions of this work.

2. Clustering: basic notions

Clustering refears to grouping together data samples that are similar in
some way, according to some criteria. It is a form of unsupervised learn-
ing because there are no examples showing how the data should be grouped
together.

A cluster is a collection of data objects that are:

• similar to one another within the same cluster
• dissimilar to the objects in the other clusters.

There are several ways to define similarity and dissimilarity between clus-
ters. These definitions depend on:

• the type of the data considered
• what kind of similarity we are looking for.

Similarity and dissimilarity between objects is often expressed in terms of
a distance measure d(x, y). Ideally, every distance measure should be a metric,
i.e., it should satisfy the following conditions [8]:

(1) d(x, y) ≥ 0
(2) d(x, y) = 0 iff x = y
(3) d(x, y) = d(y, x)
(4) d(x, z) ≤ d(x, y) + d(y, z)

2.1. Similarity and dissimilarity measures. In this section we briefly re-
view the concepts of similarity and dissimilarity in the context of clustering
and we present the similarity measures used later on in the paper.

2.1.1. Similarity. The similarity measure indicates the strength of the rela-
tionship between two data points. The more the two data points resemble
one another, the larger the similarity coefficient is [1]. A metric is a distance
function f that satisfies the following four properties [9]:

(1) non negativity: f(x, y) ≥0
(2) reflexivity: f(x, y) = 0 ⇔ x = y
(3) commutativity: f(x, y) = f(y, x)
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(4) triangle inequality: f(x, y) ≤ f(x, z) + f(y, z)

where x, y, and z are arbitrary data points.
Several similarity distances exist. We present some of them which are

further used in our implementation.
Euclidean distance. For two data points x and y in d-dimensional space,
the Euclidean distance between them is defined by:

deuc(x, y) = [
d∑

j=1
(xj − yj)

2]
1
2 = [(x− y)(x− y)T ]

1
2 ,

where xj and yj are the values of the jth attribute of x and y, respectively.
The squared Euclidean distance is defined as:

deuc(x, y) = deuc(x− y)2 =
d∑

j=1
(xj − yj)

2 = (x− y)(x− y)T

Manhattan distance. Manhattan distance is defined to be the sum of the
distances of all attributes. That is, for two data points x and y in a d-
dimensional space, the Manhattan distance between them is given by:

d(x, y) =
d∑

j=1
|xj − yj |

Maximum distance. Maximum distance is defined to be the maximum value
of the distances of the attributes; that is, for two data points x and y in d-
dimensional space, the maximum distance between them is given by:

dmax(x, y) = max1<i<j<d|xj − yj |
Average distance. The average distance is derived from the Euclidean dis-
tance. Given two data points x and y in a d-dimensional space, the average
distance is defined by:

dave(x., y) = (1d
∑d

j=1(xj − yj)
2)

1
2

2.2. Clustering algorithms: k-means. Clustering algorithms can be di-
vided into two main classes:

(1) hierarchical algorithms: divide the data set into a sequence of parti-
tions

(2) partitioning algorithms: divide the data set into a single partition

In this paper we deal with a variation of the k-mean clustering algorithm.
The k-means algorithm [10] is one of the most used clustering algorithms.

It was designed to cluster numerical data in which each cluster has a center
called the mean. The k-means algorithm is classified as a partitional or non-
hierarchical clustering method [11]. In this algorithm, the number of clusters
k is assumed to be fixed.

The algorithm has the following main steps:

(1) Pick a random number k of cluster centers
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(2) Assign every item to its nearest cluster center using a similarity or
distance measure (e.g. Euclidean distance)

(3) Move each cluster center to the mean of its assigned items
(4) Repeat steps 2 and 3 until change in cluster assignments is less than

a threshold

There is an error function in this algorithm which, for given initial k clus-
ters, allocates the remaining data to the nearest clusters and then repeatedly
changes the membership of the clusters according to the error function un-
til the error function does not change significantly or the membership of the
clusters no longer changes. The k-means algorithm [12, 13, 8] is described
below.

K-means algorithm
Require: Data set D, Number of Clusters k, Dimensions d:
{Ci is the ith cluster}
{1. Initialization Phase}
1: (C1, C2,. . . ,Ck) = Initial partition of D.
{2. Iteration Phase}
2: repeat

2.1: dij = distance between data i and cluster j;
2.2: ni = arg min1≤j≤kdij ;
2.3: Assign case i to cluster ni;
2.4: Recompute the cluster means of any changed clusters above;

3: until no further changes of cluster membership occur in a complete
iteration

4: Output results.
The computational complexity of the algorithm is O(nkd) per iteration

[14, 8], where d is the dimension, k is the number of clusters, and n is the
number of data points in the data set.

There are some drawbacks with the k-means algorithm:

• result can vary significantly depending on initial choice of seeds (both
number and position);

• can get trapped in local minimum – it often terminates at a local
optimum;

• to increase the chance of finding the global optimum: restart with
different random seeds;

• must pick number of clusters before hand;
• all items are forced into a cluster;
• it is too sensitive to outliers;
• it does not perform well on high dimensional data;
• it only works with numerical data.
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3. Time series and multidimensional time series clustering

Time series data is a sequence of real numbers that represent the measure-
ments of a real variable at equal time intervals. Figure 1 shows an example of
a time series that has years as unit time intervals.

Figure 1. A time series data example.

A data stream is an ordered sequence of points x1...xn. These data can
be read or accessed only once or a small number of times. A time series is
a sequence of real numbers, each number indicating a value at a time point.
Data flows continuously from a data stream at high speed, producing more
examples over time in recent real world applications.

Most of the time series encountered in cluster analysis are discrete time
series. When a variable is defined at all points in time the time series is
continuous. In general, a time series can be considered as a mixture of the
following four components [15, 8]:

(1) a trend (the long-term movement);
(2) fluctuations about the trend of greater or less regularity;
(3) a seasonal component;
(4) a residual or random effect.

Clustering time series is a problem that has applications in an extensive as-
sortment of fields and has recently attracted a large amount of research. Time
series data are frequently large and may contain outliers. In addition, time
series are a special type of data set where elements have a temporal ordering.
Therefore clustering of such data stream is an important issue in the data
mining process. Numerous techniques and clustering algorithms have been
proposed earlier to assist clustering of time series data streams. The cluster-
ing algorithms and their effectiveness on various applications are compared to
developing a new method to solve the existing problem.
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Clustering of time series data has applications in an extensive assortment
of fields and has attracted a large amount of research [16, 15, 17, 18, 19, 20,
21, 22].

3.1. Multidimensional time series clustering. A time series is defined as
an array X = (x1, x2,. . . , xn) of measurements in time for a given parameter
(or variable).

A multidimensional time series is defined as:

X =


X1

X2
...
XN


where each Xi, 1 ≤ i ≤ N is a time series on its on. The size of these
time series can vary.

In the multidimensional case, clustering involves grouping entities of the
form X. Figure 2 shows an example of hierarchical clustering for 2-dimensional
time series (there are 5 entries or instances that are clustered).

Figure 2. Two dimensional time series: example of hierarchi-
cal clustering.

Multi-dimensional time series occur if one deals with multiple measure-
ments on some objects, phenomena, or variables.

In time series clustering, each item in the set of items to be clustered is
a series of records in time. For instance, the temperatures measured each



98 RAMONA STOICA

day, over the course of 2 years in a certain city are a time series. The same
measurements for a number of cities represent the set of the time series which
are to be clustered, based on the temperature values recorded in two years.

Each data in this case consists of 730 points (two years of 365 days each)
in a two dimensional space. In the multidimensional case, each data consists
of more than just one time series. For instance, we want to clusters cities
which are not similar only with respect to temperature values over the course
of two years, but also the wind speed, pressure, precipitations volume, etc,
each of them measured daily. The figures below show some examples of items
having two time series each. Some of them may be more similar with respect
to one of the time series, while the other will be more similar with respect to
the other. In multidimensional clustering we want to cluster together items
which are similar with respect to all the time series, regarded in general. This
example is illustrated in Figure 3.

Many times, the multidimensional time series data are converted into a
single time series by concatenating all the time series into a single one. But
this will conduct to loss of generality. The advantage of dealing with a multi-
dimensional time series as such without transforming them is that, on the
one hand, it offers a global point of view and shows some critical pathologies
arising from evident discrepancies, whereas, on the other hand, it permits to
integrate the information contained in each one-dimensional time series of X
and therefore it is useful when each array is sparse and short [23].

4. A variant of multidimensional time series data clustering

The similarity between two time series is usually calculated using a dis-
tance or a similarity measure. In this section we consider the difference be-
tween each time series (of a multidimensional time series instance) as an ob-
jective function which has to be minimized. Thus, for comparing how similar
two objects X and Y are, where X and Y are given by:

X =


X1

X2
...
XN

, Y =


Y1
Y2
...
YN


we define an N dimensional objective function F= (f1, f2, . . . , fN ) as:

F =


f1 = d (X1, Y1)
f2 = d (X2, Y2)
...
fN = d (XN , YN )


where d(·) defines a similarity measure.
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Figure 3. Example of two sets of measurements (two time
series) over the course of two years (730 days).

We use k-means for clustering multidimensional time series data. In our
case, each item is assigned to a cluster based on the values of the F function.
We consider a weighted combination of all fi,1≤ i ≤ N as a result of the
similarity and denote this by dsim:

dsim =

N∑
i=1

wifi

where w is a vector of weights denoting the importance of that particulate
time series in the clustering. For our experiments we considered all time series
as having equal importance and in this case wi =1, 1≤ i ≤ N.

We implemented four different distances d(·):
• Euclidean distance
• Manhattan distance
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Table 1. Weather records

Algorithm Number of clusters Silhouette coefficient
k-means with Euclidean distance 8 0.2105
k-means with Manhattan distance 10 0.1574
k-means with Maximum distance 12 0.0200
k-means with Average distance 8 0.2105

• Maximum distance
• Average distance

Setting the value of k. One of four distance measures (Euclidean distance,
Manhattan distance, Maximum distance, Average distance) is selected from
the main menu, and sent as parameter for the algorithm to use while comput-
ing. Also a Maximum Distance Percent can be introduced before running the
algorithm; the default value for this variable is 0.6 in our experiments.

The algorithm starts with a large k (equal to the no. of items to cluster)
which is decreased step-by-step (by moving data, if convenient, from initial
clusters - containing only one item from the data set - to new clusters - con-
taining similar items) until it reaches a value that satisfies the stability of each
cluster (small distance between data belonging to same cluster, large distance
between data belonging to distinct clusters).

4.1. Numerical experiments. We perform experiments considering three
datasets from various domains. Silhouette coefficient [2] is used to compare
the performance of k-means for various distance measures.

4.2. Weather records data set. This data set contains data about countries
with respect to temperature, precipitation level, atmospheric pressure and
humidity. The countries have to be clustered based on the records over time
for all these parameters together.

The details of the data set are:

• 14 (Countries);
• No. of parameters: 5 (Precipitations Level (L/mˆ2), Wind Speed
(m/s), Temperature (grC), Atm. Pressure (mmHg), Humidity (%RH));

• No. of time points: 77.

The results obtained by k-means are presented in Table 1.
From the experiments we observe that:

• Best average silhouette coefficient: Euclidean distance and Average
distance;
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• Better average silhouette coefficient for cluster 0 is obtained using
Manhattan distance (0.745) not Euclidean/Average distance (0.181)
or Maximum distance (0.240);

• Better average silhouette coefficient for cluster 1 is obtained using Eu-
clidean distance or Average distance (0.674);

• Best average silhouette coefficient obtained for a cluster is 0.828 using
Euclidean, Average or Manhattan distance.

4.3. Sensors recordes data set. This data set if from the Machine Learning
Repository. The file contains 19 activities (like sitting, lying on back and on
right side, ascending and descending stairs, running on a treadmill with a
speed of 8 km/h, etc). Data is acquired from one of the sensors (T xacc) of
one of the units (T) over a period of 5 sec, for each subject and for each of
the activities.

Results obtained by k-means are presented in Table 2. In this case we
tested the algorithm with two values for the maximum Distance Percent pa-
rameter (used to decide which k (number of clusters) is best): 0.6 and 0.9.

We observed that:

• Best average silhouette coefficient: Manhattan distance using Max
Distance Percent 0.9;

• The same average silhouette coefficient for cluster 1 is obtained using
Manhattan distance, Euclidean distance or Average distance and the
default Max Distance Percent (0.6) or Average distance and a Max
Distance Percent = 0.9 (0.521)

• The same average silhouette coefficient for cluster 0 is obtained us-
ing Maximum distance and the default Max Distance Percent or Eu-
clidean distance or Average distance and a Max Distance Percent =
0.9 (0.491);

• Best average silhouette coefficient obtained for a cluster is 0.613 using
Manhattan distance and Max Distance Percent 0.9;

• For Max Distance Percent lower than default (0.6) worse clustering
results have been obtained.

4.4. KEGG biological data set. The third dataset if from the KEGG
[24]database and is not a time series dataset. We wanted to test the algo-
rithm for this kind of data as well, in order to validate the findings. The data
is a Metabolic Relation Network (Directed) Data Set. It has 8 attributes such
as: Nodes (min:2, max:116), Edges (min:1, max:606), Connected Components
(min:1, max:13), Network Diameter (min:1, max:30), Network Radius (min:1,
max:2), Shortest Path (min:1, max:3277), Characteristic Path Length (min:1),
Average number of Neighbors (min:1))
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Table 2. Sensors recordes

Algorithm Number of clusters Silhouette coefficient
Max Distance Percent = 0.6

k-means with Euclidean dis-
tance

18 0.028

k-means with Manhattan
distance

18 0.028

k-means with Maximum dis-
tance

17 0.028

k-means with Average dis-
tance

18 0.028

Max Distance Percent = 0.9

k-means with Euclidean dis-
tance

17 0.028

k-means with Manhattan
distance

16 0.038

k-means with Maximum dis-
tance

17 0.028

k-means with Average dis-
tance

18 0.028

The data set has 1,000 instances.
The results obtained by k-means are given in Table 3.

Table 3. KEGG data set

Algorithm Number of clusters Silhouette coefficient
k-means with Euclidean distance 618 0.0014
k-means with Manhattan distance 618 0.0014
k-means with Maximum distance 618 0.0014
k-means with Average distance 618 0.0014

We can observe that:

• The same average silhouette coefficient is obtained for all distance
measures (0.0014);
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• Using different values for Max Distance Percent (0.2, 0.6, 0.9) hasn’t
improved the results;

• The best average silhouette coefficient obtained for a cluster is 0.920.

4.5. Comparison with traditional methods. In the traditional methods
the data is usually pooled, that is a single parameter is inferred for all time
series. In this way, a multi-dimensional time series item is transformed into a
single dimensional one as it can be seen in Figure 4. We have implemented this
approach and tested it using the same settings and under the same conditions
as for our approach. For the first data set, for two of the similarity metrics –
Manhattan and Average – the number of clusters obtained by the traditional
methods was higher that the real one. For the average measure in the second
data set the number of clusters obtained by the traditional methods was again
higher.

Figure 4. Comparison with traditional methods

5. Conclusions

This paper investigates the role of various distance measures in k-means
algorithm for clustering multidimensional time series data. Euclidean distance
is the most frequent used and most common measure. Our experiments on
– three different data sets – reveal that Manhattan distances (and sometimes
the average distance) are better candidates for similarity between two mul-
tidimensional time series instances. This work only investigates geometrical
distances, but as future work, geometric distances presented here will be com-
pared with other similarity measures (such as descriptive measures, pattern
finding measures, etc.).
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