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DATA TRANSFER OPTIMIZATION IN DISTRIBUTED

DATABASE QUERY PROCESSING

LEON ŢÂMBULEA, ADRIAN SERGIU DĂRĂBANT, AND VIORICA VARGA

Abstract. Query execution in a distributed database requires data trans-
fers between the processing nodes of the system. An important step in the
query optimization is the minimization of the data transfers which often
incur larger latencies than local data processing. In this paper we propose
a new method and algorithms for determining the processing nodes for the
evaluation of each relational operator of a query so that data transfer is
minimal. We model our method as a data transfer minimal cost problem.

1. Introduction

Distributed database system design and query processing is an active re-
search area. The main topics are fragmentation, the allocation of the fragments
to various sites, generation of subqueries for sites. Query processing includes
designing algorithms that analyze queries and convert the queries into a set
of data manipulation operations. An important aspect of query processing is
query optimization. The distributed query optimization problem is NP-hard
([10]), which makes finding efficient solution methods and effective heuristics
a high priority. Good surveys on query optimization can be found in [5], [11],
[20] and [8].

The primary task of query processing is to find a strategy for executing
each query over the network in the most efficient way. Query processing takes
into consideration the distribution of the data, the communication cost, and
the lack of sufficient locally available information. Query optimization refers
to the process of ensuring that either the total cost or the total response
time for a query is minimized. The choices to be made by a query optimizer
sub-module of the query processor include: the order of executing relational
operations; the access methods for the relating relations; the algorithms for
carrying out the relational algebra operations; the order of data movements
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between sites. A good measure of resource consumption is the total cost that
will be incurred in processing the query. In a distributed database system, the
total cost to be minimized usually includes: CPU, I/O and communication
costs.

Query optimization and the selection of join order are critical to the per-
formance of practical relational database management systems. A query op-
timizer selects among the many alternative query execution plans, the one
with the least estimated execution cost, according to a given cost function.
The objective functions of query optimization may take many different forms.
One may try to find a query evaluation plan that optimizes the most relevant
performance measures, such as the response time, CPU, I/O, and network
time and efforts, memory or storage costs, resources usage. The complexity of
query optimization is basically determined by the number of alternative query
execution plans, which grows exponentially with the number of relations in-
volved in the query. Consequently, enumerative optimization strategies are
prohibitively expensive and therefore unacceptable as the query sizes grow.
Moreover, a database management system usually supports a variety of join
algorithms for processing joins and a variety of indices for accessing individual
relations, which increase the complexity. All query optimization algorithms
primarily deal with the join queries.

Let’s consider a distributed database with data and processing on m nodes
S = {si|i = 1,m}. On each node of the system there is a subset of the data
that is subject to query and update operations. The database is composed of
a set of n fragments F = {fj |j = 1, n}. A given fragment f ∈ F has a size
dim(f) (given in bytes, pages, etc). Let S(f) be the nodes where fragment
f ∈ F is stored and F (s) the fragments stored on node s ∈ S.

A set Q of operations needs to be executed against the database in a given
time interval. We assume for simplicity that most operations are read-queries.
In order to execute a query q ∈ Q, the system generates an execution plan
that can be represented as a tree. The leaf nodes are actual fragments of the
distributed database, while internal nodes correspond to relational operators
(unary or binary) to be evaluated.

A query execution needs data access to different fragments and interme-
diary results obtained by evaluating relational operators of the query. These
intermediary results need to be transferred between processing nodes of the
system. The fragment allocation order could have a large impact on the
query execution time. Various fragment allocation methods are described in
[2, 4, 6, 9, 12, 14, 15, 16, 17, 19].

During each query execution the system gathers various statistical infor-
mation about the evaluation of relational operators in the execution plans.
Using statistics and knowledge about data distribution, one could generally
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propose an optimal query execution plan that minimizes the cost of inter-node
data transfer.

The remaining of this paper is organized as follows. Section 2 presents
relevant research on this subject, Section 3 describes the various information
an evaluation engine could obtain while evaluating execution plans. In section
4 we provide an algorithm for finding the optimal node where each operator
needs to be evaluated in order to minimize the cost of inter-node data transfer,
for a given fragment allocation. In the last section we present the conclusions
and future developments.

2. Related work

Many algorithms have been proposed for various aspects of query optimiza-
tion, fragmentation, data and operation allocation. These algorithms may be
divided into three major categories: deterministic search algorithms, random-
ized algorithms and genetic algorithms. The most prevalent technique in first
category is dynamic programming, as used in System R [10]. The algorithm
exhaustively searches through all plans for the query and prunes away bad
sub-plans as early as possible. This algorithm is not time efficient for large
number of joins and relations as it is exponential. There are many variations
of this classical algorithm. Randomized algorithms make random choices as
they walk thru the state space to find a local minima. The most successful
of these algorithms called Two Phase Optimization [7] combines iterative im-
provement (a variant of hill climbing) with simulated annealing. The query
optimization problem is a difficult combinatorial optimization problem with
complicated objective functions. Genetic algorithms may be very effectively
applied to search for solutions in the query optimization problem with a very
large number of relations, see [21], [2].

Apers has discussed in detail the data allocation problem and their frag-
mentation in [1]. An heuristic algorithm for redistributing the fragments is
proposed in [16]. The algorithm minimizes the size of the data transferred for
solving a request. Assuming that a distribution of the fragments in the nodes
of a network is known, the algorithm generates a plan to transfer data frag-
ments, plan that will be used to evaluate a request. Other fragment allocation
methods are described in [2, 4, 6, 9, 12, 14, 15, 16, 19].

3. Query Evaluation

Before actual execution and data retrieval for a given query q, the system
generates a query execution plan. The execution plan decomposes q in a set
of sub-queries, each sub-query corresponding to an evaluation algorithm for
an operator from the relational algebra. Generally, and in our approach, the
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execution plan is represented as a tree where leaf nodes are fragments and
internal nodes are relational operators. Some of these operators need a single
argument (unary - projection, selection), while others need two arguments
(binary - join). The operator arguments in various phases of the execution are
either fragments or the results of evaluating some other operators.

For a given query q we can determine a cost for the evaluation of all its
sub-queries, a cost for transferring the required data between the nodes where
sub-queries are executed and a cost for transferring the intermediate results
from the where the root operator from the query execution plan is evaluated
to the node where the final result of q is needed [5].

Let cij be the cost for transferring a data unit from a given node si to a
different node sj . When transferring an entire fragment, table or intermediary
result T from si to sj the actual transfer cost is given by cij × dim(T ). We
can assume without any over-simplifying that the transfer costs are constant
cij = 1 if i 6= j, cii = 0, 1 ≤ i, j ≤ m.

The execution of a query q implies the postorder traversal of the associated
execution plan (tree) and the evaluation of the relational operators from the
internal nodes. Each operator is evaluated on a node of the system and implies
a potential data transfer from other nodes of the system where its arguments
are evaluated. After the operator in an internal node is evaluated we obtain
a result of a given size that is independent of the nodes that provide the
argument data. In order to assess the computation of the data transfer cost
when executing a query q, we associate a tag to each node of the execution
plan (node, dim, ct), where:

• node - is the node where the fragment is stored (if a leaf), or where
the relational operator is evaluated (if an internal node);
• dim - the size if the fragment or intermediate results;
• ct - the cost of data transfer required to evaluated the current operator.

It is obtained as the sum of data transfer cost for the arguments of
the current node and the required costs for the evaluation of these
arguments at their origin.

For a leaf node, corresponding to the fragment f , the tag is (node, dim, cost),
where dim is the fragment size and ct = 0 if node ∈ S(f), or ct = dim if node /∈
S(f).

In the following paragraphs we introduce the tag computation methods
for a binary and unary operators.

Let Θ1 be an unary relational operator. Figure 1 shows the computation
values involved in the computation of the tag for the Θ1 node.

Using the tag for node A we obtain for Θ1:
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Figure 1. Unary operator tag

Figure 2. Binary operator tag

ctΘ1 =

{
ctA if s = sA

ctA + dA if s 6= sA
The case of a binary operator is depicted in Figure 2:

if sA = sB then: ctΘ2 =

{
ctA + ctB, if s = sA

(ctA + ctB) + (aA + dB), if s 6= sA

otherwise if sA 6= sB, then: ctΘ2 =


(ctA + ctB) + dB, if s = sA,

(ctA + ctB) + dA, if s = sB,

(ctA + ctB) + (dA + dB), if s /∈ sA, sB
A and B are the relations in our database fragmented horizontally as

follows:

A = A1 ∪A2; B = B1 ∪B2

Let us consider the following query:

(1) q = A× σC(B)
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Figure 3. Node tags for query q.

where ”×” is the join operator and σC is a selection operator over C. This
query can be transformed as follows:

q = A× σC(B) =

= (A1 ∪A2)× σC(B1 ∪B2) =

= [A1 × σC(B1 ∪B2)] ∪ [A2 × σC(B1 ∪B2)] =

= [A1 × (σC(B1) ∪ σC(B2))] ∪ [A2 × (σC(B1) ∪ σC(B2))]

Suppose the database fragments are stored on four nodes:

(2)
F (s1) = {A1, B1} ;F (s2) = {B1} ;
F (s3) = {B2} ;F (s4) = {A2} .

Supposing that the results for the query q needs to be returned on s3,
figure 3 presents the tags that appear in the nodes of the execution plan.

The figure also presents an additional node corresponding to the entire
query q. Node tags (in the tree) correspond to a possible execution plan and
allows to infer the data transfer costs. For each node of the execution plan a
database node has been chosen for evaluating its operator.



DATA TRANSFER OPTIMIZATION 77

We note here that the size of the fragments and intermediate results does
not change if the operator evaluation is done on different nodes of the database
system. In the next section we propose a method for finding the database node
(station) where each operator needs to be evaluated such that the total data
transfer cost be minimal.

4. Finding the query evaluation plan with minimal data transfer
cost

For each node in the query evaluation tree, with its attached tags (like in
figure 3) we add an additional root node corresponding for the whole query
result and we determine the following values:

• d - size of data associated with a node;
• A vector c = [c1, . . . , cm], where m is the number of stations compos-

ing the distributed database. A component of the vector ci has the
following meaning:

– for a leaf node,corresponding to a fragment f , is the cost of data
transfer for the given fragment to station (node) si;

– for an internal node, corresponding to a relational operator, is
the minimum data transfer cost if the evaluation of this operator
takes place on si;

• sr - a database station where is recommended to evaluate the current
operator (for an internal node of the execution plan), or where the
fragment needs to be read (for a terminal node).

In the first step of our method we compute the vector c for each node
of the query evaluation plan using a post-order traversal order. For a given
current node, the computation of the c uses the values of d and c associated
with the operands nodes. If the current node is a leaf node, corresponding to

a fragment f , then: ci =

{
0, if si ∈ S(f),

dim(f), otherwise.

The second step starts from the root of the query evaluation plan. The
network station where the response of the query q needs to be returned will be
the sr value associated to this node. For a given current node, starting from
the root, we will compute the values sr for the associated operand nodes.

There are two ways for computing the values of the c vector for the current
node depending if the associated operator is binary or unary.

Let Θ1 be an unary operator. The ci values i = 1,m are the minimum data
transfer costs if Θ1 is evaluated on station si. Figure 4 shows the construction
of the c vector for an unary operator. If the argument (operand) A is evaluated
(or stored) in a station sj , i 6= j, then overall cost of evaluating the node A on
sj is incremented with dA, the cost of data transfer from station sj to station
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si. The total transfer cost for A becomes thus cAj + dA. If i = j, then the cost

for the node A is cAi . In the general case, the formula for a node is given by:

(3) ci = min
{
cA1 + dA, . . . , c

A
i−1 + dA, c

A
i , c

A
i+1 + dA, . . . , c

A
m + dA

}

Figure 4. Cost vector attached to an unary operator node.

For a binary operator we use a similar computation method as for the
unary operator. Figure 5 shows the intervening values and their computation
is explained bellow.

Figure 5. Cost vector attached to a binary operator node.

The value of the ci, i = 1,m components in the case of a binary operator
Θ2 are the minimum transfer costs if the operator is evaluated on station si.
They are obtained as follows:

(4)
ci = min

{
cA1 + dA, . . . , c

A
i−1 + dA, c

A
i , c

A
i+1 + dA, . . . , c

A
m + dA

}
+

+ min
{
cB1 + dB, . . . , c

B
i−1 + dB, c

B
i , c

B
i+1 + dB, . . . , c

B
m + dB

}
In the following we assume that the value of the d and the components of

the c vector have been computed for a given query q on all nodes of the query
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evaluation plan (tree). The value for d is usually obtained from statistics and
estimations stored in the database dictionary.

Let cq be the vector associated with query q, represented in the evaluation
plan as the root node (or node q). The value sr associated to node q is given
by the station sq where we need to return the result of the query execution, so
srq = sq. The value cqsq from the cq =

[
c1

1, . . . , c
q
m

]
vector is the minimum data

transfer cost if q is evaluated on station sq. This value is computed according
to equation 3 using the operand node of q like depicted in figure 4.

We start with this initial value for the root node and sr. We traverse the
nodes of the evaluation tree from the root node to the leafs (this can be a pre-
order traversal) and compute the values for sr for each operand (argument) of
a given current node.

For an unary operator Θ1, as in figure 4, the values for c and sr are
known. This operator needs to be evaluated on station ssr. The csr value
is the minimum data transfer cost if Θ1 is evaluated on station ssr and is
computed according to equation 3. The minimum value (according to equation
3) could be obtained on multiple stations. For simplicity, in the case we obtain
the minimum value on multiple stations we choose one (any one) station that
achieves the minimum. Let this station be srA - the station attached to node
A. Figure 6 show a numerical example for c computation on unary operators.

Figure 6. Example: Cost vector computed for an unary operator.

sr = 4 ⇒ c4 = 80 = min {65 + 35, 45 + 35, 70 + 35, 80} ⇒ srA ∈ {2, 4}.
Stations s2 and s4 are the stations that incur the lowest data transfer cost
when evaluating Θ1.

For a binary operator node, like in figure 5, we can compute the values of
srA and srB using the Θ2’s sr value and sizes of operands A and B. Figure 7
shows a numerical example for computing these values.

sr = 4→ d4 = 80 = min {50 + 30, 25 + 30, 40 + 30, 30}+

+ min {15 + 35, 20 + 35, 30 + 35, 50} .
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Figure 7. Example: Cost vector computed for a binary operator.

We obtain thus: srA = 4, srB ∈ {1, 4}.

5. Experiments and numerical test

In the following, we are going to compute the tags associated with the
evaluation plan for the query expressed in equation 1, on the evaluation tree
presented in figure 3. Using actual values for fragment sizes and intermediate
results, we traverse in the first step the tree in post-order, from the leafs to the
root in order to compute the c values on each node. The second traversal of
the evaluation tree, from the root to the leafs (pre-order) is used to compute
the sr values, and thus the stations where each query operator needs to be
evaluated in order to minimize the data transfer cost. The obtained results
are depicted in figure 8.

The c values for the leaf nodes (fragments) are computed from the the
information on the fragment allocation to database stations given by the equa-
tion 2.

6. Conclusions and future work

In this paper we propose a cost based optimization of a query in a dis-
tributed relational database, by applying some metrics to its evaluation tree.
We start from the general assumption that the evaluation plan is represented
as a tree with the leaf nodes storing the actual database fragments and the in-
ternal nodes representing operators of the query. Once a candidate evaluation
plan is determined, our method tries to minimize the cost of data transfers
when executing the query against the real database by dynamically computing
the stations of the system that are optimal for each query operator evalua-
tion. We also take in account the data transfer to the station where the results
needs to be obtained. The proposed method mathematically chooses the op-
timal node for each query operator evaluation, based on some usual statistical
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Figure 8. Evaluation of the query in equation 1

database information and by attaching tags to operator nodes such that overall
data transfer cost is minimal. The algorithm uses two traversals of the query
evaluation tree in order to extract the operator-to-station execution affinity.
We aim to use the results of the proposed method to propose dynamic re-
fragmentation of the database or data replications in order to minimize data
transfer and processing costs in distributed databases.
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