
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Number 1, 2014

ON EVALUATING THE STRUCTURE OF SOFTWARE

PACKAGES

ZSUZSANNA MARIAN

Abstract. In this paper we present a study on how a measure previously
introduced in the literature can be used to evaluate the structure of soft-
ware packages in a software system. Three open-source case studies are
used and for each case study the value of this measure for four different
divisions into packages is investigated. For these case studies we compute
the value of other metrics from the literature as well, and a comparison
on how they evaluate these divisions is given. We conclude about the rele-
vance of the analyzed measure for evaluating the quality of a partitioning
into packages.

1. Introduction

Modern software systems are increasingly complex, made of a great num-
ber of different components, which are usually organized into some kind of
hierarchical structures. For example, in case of object-oriented systems, the
components of the system are the classes, which are organized into packages.
Finding how exactly should classes be divided between the packages is not
at all a trivial problem, since many different criteria have to be considered,
when designing these packages. Usually, the main criterion is related to the
dependencies between the classes, but others can be used as well: how similar
the names of the classes are, what other classes are used by the classes in the
package, and so on.

How classes are organized into packages depends also on the architecture of
the software system. There is a general rule, “low coupling, high cohesion”, but
this cannot be applied for every software system. While in case of frameworks
this rule is true, one wants separate, loosely coupled packages, in case of a
layered architecture there are relations between elements belonging to different

Received by the editors: April 2, 2014.
2010 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.8 [Software Engineering]: Metrics – Perfor-

mance measures; D.2.10 [Software Engineering]: Design.
Key words and phrases. software engineering, software package, evaluation measure.

58

ON EVALUATING THE STRUCTURE OF SOFTWARE PACKAGES 59

layers, and classes belonging to visualization and business layers should not
be placed in the same package, just to reduce coupling between packages.

In [11] we have proposed a novel clustering-based [9] method, called HASP,
for restructuring classes into packages in a software system. Our method,
applicable in case of frameworks, is based on the value of several features,
aggregated into a single score, which was used as a distance measure during the
clustering process. In the same paper we have introduced a second measure,
which can evaluate how well-structured a software system is, with respect to an
apriori known good structure. In this paper we present a study performed in
order to evaluate how well packages in a software system are structured using
the evaluation measures introduced in [11]. In our study we will consider
and evaluate four different package structures for three open-source software
systems using the above-mentioned measures.

The rest of this paper is structured in the following way: Section 2 presents
a background on package structure measures existing in the literature. Section
3 represents the experimental part of our paper, consisting of the description
of the case studies and of the performed experiments. The results of the
experiments, their analysis and a comparison to other metrics presented in
the literature are given in Section 4. Finally, Section 5 concludes the paper
and outlines some further research directions.

2. Background

In this section we will briefly present the evaluation measure previously
introduced in [11] that will be used in our experiments to evaluate how well
a software system is divided into software packages. A brief review of other
metrics presented in the literature to measure how well the packages of a
software system are structured will also be presented.

2.1. Evaluation measure for software package structures. In [11] we
have introduced a new evaluation measure (Formula 1), which measures how
well one package is structured in a software system. In order to formally define
this measure, we will consider that a software system S is a set of application
classes, S = {s1, s2, ..., sn}. The set K = {K1,K2, ...,Kv} is called a partition
into packages of the software system S iff:

• 1 ≤ v ≤ n;
• Ki ⊆ S, Ki ̸= ∅, ∀i, 1 ≤ i ≤ v;

•
v∪

i=1

Ki = S, Ki

∩
Kj = ∅, ∀i, j, 1 ≤ i, j,≤ v, i ̸= j.

In order to characterize how well-structured a package Ki is, with respect
to a partition K, we have defined five features. In defining these features we

60 ZSUZSANNA MARIAN

have concentrated on characterizing packages from frameworks, and tried to go
beyond the simple “low coupling, high cohesion” principle. The five features
for a package P , as presented in [11], are the following:

• F1 - Package cohesion - measures how cohesive the classes inside a
package P are, by counting the dependencies between elements of the
package P .

• F2 - Package reuse - measures how many packages from the system
depend on package P .

• F3 - Package coupling - measures on how many packages from the
system does the package P depend on.

• F4 - Name cohesion - measures how similar the names of the classes
in package P are.

• F5 - Dependency similarity - measures how similar the classes on
which classes from package P depend on are.

Using the above presented five features we have defined a measure to eval-
uate the division into packages of a whole software system. For a partition
K of a software system, this measure, called overallScore, is computed in the
following way [11]:

(1) overallScore(K) =

v∑
i=1

sc(Ki,K)

v
where sc is a score that denotes how well-structured a package Ki is, with
respect to the partition K, and is computed as [11]:

(2) sc(Ki,K) =

2∑
i=1

wi ∗ Fi − w3 ∗ F3

|Ki|2−1
+

5∑
i=4

wi ∗ Fi, if |Ki| > 1

0, otherwise

In Formula (2) Fi (1 ≤ i ≤ 5) denotes the features presented above, while
wi (1 ≤ i ≤ 5) represents some weights associated to these features.

2.2. Literature Review. There are several methods presented in the litera-
ture for evaluating the quality of a software package. A set of 13 such metrics is
presented by Sarkar et al. in [13]. They consider a large set of possible relations
between classes and methods, and define metrics which measure, for example,
module interaction, intermodule coupling, association-induced coupling, and
so on. Unfortunately, their metrics have a disadvantage: they consider that
each module from a software system has some declared APIs (which can be of

ON EVALUATING THE STRUCTURE OF SOFTWARE PACKAGES 61

two types, Service API and Extension API), but there are many cases, when
such APIs are not defined, so their metrics cannot be computed.

This disadvantage is overcome in [6] and [10], where a set of non-API based
metrics are proposed for evaluating the remodularization of a software system.
Ducasse et al. firstly define the modularity principles on which their metrics
are based (for example, information hiding, encapsulation and changeabil-
ity) then introduce seven metrics that measure these principles. The metrics
are based on two different types of dependencies between the packages (con-
structed from dependencies between the classes from the packages): extension
and usage.

A different set of package metrics is introduced by Abreu et al. in [7],
not just for characterizing the modularization of a software systems, but also
for remodularizing it in a better structure, using a clustering-based approach.
They consider 12 different kinds of relations/coupling types between classes,
such as: direct inheritance, attribute type, return in operation, local attribute,
and so on, but also claim that only minimizing coupling and increasing cohe-
sion is not sufficient for achieving a good package structure.

Ponisio et al. in [12] propose one single cohesion metric for packages, called
Common-Use. In order to compute it, they consider four types of dependen-
cies/interactions: inheritance, state, class reference and message sends. The
main idea behind the Common-Use metric is that if all clients of a package
use all classes from the package together, then the package is cohesive, even if
the classes from the package do not use each other directly.

3. Main results

In this section we will describe the experiments that we have performed
in order to evaluate different package structures for software systems. More
precisely, for three different software systems (described in Section 3.2) we
will evaluate four different package structures using the overallScore measure
presented in Section 2.1.

3.1. The CIP measure. Besides overallScore, we have introduced in [11]
another measure, called CIP - Cohesion of Identified Packages, which adapts
the measure introduced in [8] for evaluating the results of aspect mining tech-
niques. The value of CIP measures how close one partition (one division of
classes into packages) is to another partition. More exactly, given a partition
known to be correct, denoted by Kgood, and another partition, denoted by K,
CIP (Kgood,K) measures the cohesion of the packages from Kgood in K. CIP

62 ZSUZSANNA MARIAN

is computed in the following way [11]:

(3) CIP (Kgood,K) =
1

q

q∑
i=1

cip(Kgood
i ,K).

where q is the number of packages in the partition Kgood, Kgood
i is the i-th

package in Kgood and cip(Kgood
i ,K) measures the cohesion of package Kgood

i in
partition K defined as:

(4) cip(Kgood
i ,K) =

∑
k∈M

K
good
i

|Kgood
i ∩ k|

|Kgood
i ∪ k|

|M
Kgood

i
|

where M
Kgood

i
is:

(5) M
Kgood

i
= {k|k ∈ K,Kgood

i ∩ k ̸= ∅}

The value of the CIP measure is always between 0 and 1, the value of 1
being achieved when K coincides with the good structure Kgood. The higher
the value of CIP, the better the structure of K with respect to Kgood.

3.2. Case studies. Since both the overallScore measure and the five features
presented in Section 2.1 were defined in order to evaluate software systems
which are frameworks, we have chosen three different open-source frameworks
for this case study. All three systems are part of the Apache Commons [4]
project.

The first case study is the DbUtils framework, version 1.5, available at [1],
which is a small set of classes designed to make working with JDBC easier. It
consists of 25 classes, divided into three packages: handlers, wrappers and the
default package.

The second case study is the Email framework, version 1.3.2, available at
[3], which is a framework for sending emails, built on top of the Java Mail API,
but tries to simplify it. It consists of 19 classes, divided into three packages:
resolver, util and the default package.

The third case study is the EL framework, version 1.0, available at [2],
a JSP 2.0 Expression Language interpreter. It consists of 57 classes, divided
into two packages: parser and the default package.

The reasons for choosing these software systems as case studies are the
following:

• All three of them are frameworks, which is very important, since the
overallScore measure was defined for frameworks.

• They are openly available.

ON EVALUATING THE STRUCTURE OF SOFTWARE PACKAGES 63

• They have a relatively small number of classes, which allows manual
verification and analysis.

3.3. Experiments. Through the performed experiments we aim at empha-
sizing that the overallScore measure is well-correlated with the CIP measure.
Thus, instead of CIP, which requires the apriori knowledge of a good partition,
overallScore can be used for evaluating a software package structure.

For all three open-source cases studies presented in Section 3.2 we have
considered four different package structures, created in the following way:

• Original - is the original package structure for the system.
• HASP - the package structure indicated by our HASP approach in-
troduced in [11].

• WP1 - a “wrong partition” created by taking some classes from the
packages in the original package structure and moving them into one or
more newly created packages. In this way, part of the original structure
is kept, but new, incorrect, packages are created.

• WP2 - a second “wrong partition” created by dividing randomly all
the classes into packages.

During the experimental evaluation we have computed the value of the
overallScore measure for each partition. We have also computed the value of
the CIP measure for each partition. When computing the CIP measure, one
has to provide a correct partition, Kgood. Out of the four partitions, WP1 and
WP2 cannot be considered as a correct partition, so we had to decide between
the original partition and the one provided by our algorithm. After an analysis
of both partitions, we have decided to consider the partition provided by the
HASP approach as the correct one for the DbUtils and the EL system, while for
the Email system we have computed the CIP measure twice, once considering
as Kgood the original partition and once the HASP partition. In the following
these values will be denoted by CIPO and CIPH , respectively. Our reasons
for these decisions are:

• For the DbUtils system we have explained in detail in [11] why we
consider the HASP partition better than the original one.

• In case of the Email system, there are four classes which are placed
in a different package in the HASP partition than in the original one.
Out of these four classes we consider that two were moved correctly
(they should rather be in that package), but the other two were better
placed in their original package. This is why we consider both the
original and the HASP partition as a possibly correct partition when
computing the value of the CIP measure.

64 ZSUZSANNA MARIAN

• In case of the EL system, there is quite a big difference between the
original and the HASP partition. The original partition has two pack-
ages, while the HASP partition has seven. Out of these seven packages,
one corresponds exactly with the parser package from the original par-
tition, while the remaining six packages contain the classes which were
originally in the default package. Out of these classes, divided in the
six packages, our analysis concluded that six classes are not placed
correctly. Even with these misplaced classes, we consider that this
structure is better than one huge package containing 50 classes.

For computing the overallScore measure, values for the weights from For-
mula (2) are needed. In [11] we have described a grid-search process, through
which we identified good values for the weights. Thus, for the experiments pre-
sented in this paper, we used the weights reported in [11], namely: w1 = 0.22,
w2 = 0.25, w3 = 0.2, w4 = 0.52 and w5 = 0.72.

4. Results and discussion

For all three open-source case studies presented in Section 3.2 we have
computed both the overallScore and the CIP measure, for all four package
structures described in Section 3.3. The results are presented in Tables 1, 2
and 3.

Analyzing the values in these tables we can observe that in case of the
overallScore measure the two “wrong partitions”, WP1 and WP2, have lower
overallScores than the two other partitions. Moreover, WP2, the partition
where the classes were randomly assigned to the packages, has always the
lowest overallScore value. Considering the Original and the HASP partitions,
we can see that in case of the first two projects, the Original partition has
higher overallScore, while for the EL project, overallScore is higher for the
HASP partition.

Analyzing the values of the CIP measure we can see that it always has the
value 1 for the HASP partition, which is caused by the fact that we consider the
HASP partition the correct one, with the exception of the Email system where

Partition OverallScore CIP
Original 0.9009 0.4183
HASP 0.7349 1
WP1 0.5658 0.4146
WP2 0.2436 0.1372

Table 1. Values for the overallScore and CIP measures for
the DbUtils system.

ON EVALUATING THE STRUCTURE OF SOFTWARE PACKAGES 65

Partition OverallScore CIPO CIPH

Original 1.146 1 0.6874
HASP 0.9696 0.6688 1
WP1 0.8335 0.54 0.4895
WP2 0.4026 0.1781 0.1912

Table 2. Values for the overallScore and CIP measures for
the Email system.

Partition OverallScore CIP
Original 0.5241 0.2857
HASP 0.8261 1
WP1 0.3752 0.2672
WP2 0.1601 0.1299

Table 3. Values for the overallScore and CIP measures for
the EL system.

we consider as the correct partition the Original one as well. For DbUtils, EL
and CIPH for Email (i.e., the partition provided by the HASP algorithm for
the Email system), the order of partitions given by the CIP measure is the
same: the Original partition has the second highest value, WP1 the third one
and finally, WP2 has the lowest value. In case of CIPO for Email (i.e., the
original partition for the Email system), the Original partition has the highest
value and the HASP partition has the second highest value.

In order to see how correlated these values are, we have computed two rank-
based correlation measures between the overallScore and the CIP values: the
Spearman correlation [14], [15] and Spearman’s footrule [5], which is computed
as the sum of the absolute values of the differences between the ranks of the
elements. These values are presented in Table 4. Since for the Email system
we computed two CIP values, we will have two lines with correlation values
as well. From this table we can see that the values for the correlations are
quite high, especially for the EL system and CIPO for Email, both having
perfect values. The lowest correlation values are achieved for the DbUtils
system and CIPH for Email, but even these values show a strong positive
correlation between the two measures. In case of Spearman’s footrule a lower
value corresponds to a better association, so the values for Spearman’s footrule
from Table 4 show a strong positive correlation of overallScore and CIP as
well.

66 ZSUZSANNA MARIAN

Project Spearman correlation Spearman’s footrule
DbUtils 0.8 2

Email - CIPO 1 0
Email - CIPH 0.8 2

EL 1 0

Table 4. Correlations between overallScore and CIP for the
three case studies.

In order to compare our evaluation measure with other measures from the
literature, we computed the value of the seven metrics introduced in [6]. These
metrics are:

• IIPU - Index of Inter-Package Usage.
• IIPE - Index of Inter-Package Extending.
• IPCI - Index of Package Changing Impact.
• IIPUD - Index of Inter-Package Usage Diversion.
• IIPED - Index of Inter-Package Extending Diversion.
• PF - Package Focus.
• IPSC -Index of Package Services Cohesion.

For each metric, we considered as extending relation the implementation of
interfaces as well. Each metric takes values in the [0, 1] interval, according
to [6], higher values correspond to better package structures. The values of
these metrics for the four partitions of the three case studies are presented on
Tables 5, 6 and 7.

Analyzing the values from Tables 5, 6 and 7 we can observe that generally
the same tendency is followed as for the overallScore and CIP measures: out
of the total of 21 cases, in 20 the smallest value was for the WP2 partition
(but in the remaining one case it has a value of 1, which means a perfect
structure). Moreover, in 16 cases, the values for the Original and the HASP
partitions are higher than the ones for WP1 and WP2.

Partition IIPU IIPE IPCI IIPUD IIPED PF IPSC
Original 0.4286 0.5333 0.8333 1 1 1 1
HASP 0.2857 1 0.8333 1 1 1 1
WP1 0.1429 0.6667 0.65 0.9 0.9 0.8333 0.9667
WP2 0.1429 0.1333 0.15 0.8 0.5333 0.7667 1

Table 5. Values for metrics from [6] for the DbUtils system.

ON EVALUATING THE STRUCTURE OF SOFTWARE PACKAGES 67

Partition IIPU IIPE IPCI IIPUD IIPED PF IPSC
Original 0.8889 1 0.8333 1 1 1 1
HASP 0.7778 1 0.8333 1 1 1 1
WP1 0.6667 0.5 0.7 1 0.9 0.9 1
WP2 0.2222 0.25 0.25 0.9167 0.75 0.6806 0.9167

Table 6. Values for metrics from [6] for the Email system.

Partition IIPU IIPE IPCI IIPUD IIPED PF IPSC
Original 0.9362 1 0.5 1 1 1 1
HASP 0.3404 0.8571 0.7381 0.8881 0.9286 0.9524 0.9841
WP1 0.4894 0.3143 0.4167 0.9167 0.625 0.8125 0.9688
WP2 0.1064 0.1714 0.3 0.6347 0.5 0.4972 0.8901

Table 7. Values for metrics from [6] for the EL system.

Still, there are a lot of cases, when the values of a metric are the same
for more partitions, in nine cases two partitions have the same value (usually
Original and HASP, having a value of 1) and in three cases there are three
equal values, which shows that the metrics can not always differentiate between
two partitions. Moreover, we have computed the values of these seven metrics
for a fifth partition, one where all classes are in the same package. We did not
use this partition for the rest of the experiments, because it is a trivial one, but
in case of these seven metrics we noticed that when all classes are in the same
package, the value of these metrics is 1, suggesting a perfect “modularization”.

To compare the value of these metrics with the value of the overallScore
measure, we have decided to compute the value of Spearman’s footrule for the
overallScore measure and some of the metrics. In order to avoid having equal
ranks we have only considered those metrics which had four distinct values for
the partitions. Thus, for the DbUtils system we have only considered the IIPE
metric, for Email only the IIPU metric and for the EL system we considered
all seven of them. The values for Spearman’s footrule for these projects are
presented on Table 8.

A visual comparison of the footrule is presented on Figure 1, where dark
gray bars represent the footrule values between the overallScore and CIP mea-
sures (presented in Table 4), while the light gray bars represent footrule values
between overallScore and metrics from [6] (presented in Table 8). In case of
systems where we had multiple footrule values (there were two values for the
Email system in Table 4 and there were seven different values for EL in Table
8) we used the average of the values. From Figure 1 we can see that for the

68 ZSUZSANNA MARIAN

Project Metric Spearman’s footrule
DbUtils IIPE 4
Email IIPU 0

EL

IIPU 4
IIPE 4
IPCI 0
IIPUD 4
IIPED 2
PF 2
IPSC 2

Table 8. Spearman’s footrule for the case studies between the
value of overallScore and some metrics from [6]

DbUtils and EL systems the light gray bars are a lot higher than the dark
gray ones, meaning that the footrule values between overallScore and CIP are
a lot better. In case of the Email system this is reversed, the footrule value
between overallScore and other metrics is lower.

Figure 1. Comparison of footrule values.

Considering the comparison of the footrule values presented in Figure 1
and the fact that the considered metrics, presented in [6], often return equal
values for different partitions, we can conclude that the overallScore measure
is more suitable for evaluating a partition of a software system than the other

ON EVALUATING THE STRUCTURE OF SOFTWARE PACKAGES 69

metrics. Moreover, since the values of the overallScore and CIP measures are
strongly positively correlated, as presented in Table 4, overallScore can be used
instead of CIP. This is important, since CIP measures how close a partition
is to an apriori known correct partition, but when one has to restructure into
packages a software system, the good partition is not known. Since the values
of the two measures are correlated, overallScore can be used, instead of CIP,
to evaluate a partition.

5. Conclusions and further work

In this paper we have presented a study on the value of two measures
designed to evaluate different modularizations of a framework software system.
We have considered three open-source case studies and four different partitions
for each of them and computed the value of two measures, overallScore and
CIP for them. These two measures were used to automatically restructure a
framework into packages. We have also computed the values of other metrics
presented in the literature that measure modularization of a software system
for these case studies.

Analyzing the values of these metrics and the correlations between them,
we have observed that our measures, overallScore and CIP, are capable of
differentiating between a good and a bad partitioning of a software system,
which did not always happen in case of the other metrics taken from the
literature.

As further work, we would like to perform experiments on other open-
source case studies, and compare our measures to other metrics reported in
the literature, besides the ones used in this paper. Since our overallScore
measure was defined for software systems which are frameworks, we would
also like to define such a score for systems with other architectures.

References

[1] Dbutils. http://commons.apache.org/proper/commons-dbutils/.
[2] El. http://commons.apache.org/proper/commons-el/.
[3] Email. http://commons.apache.org/proper/commons-email/.
[4] Apache commons project. http://commons.apache.org/.
[5] Persi Diaconis and R. L. Graham. Spearman’s footrule as a measure of disarray. Journal

of the Royal Statistical Society, 39(2):262–268, 1977.
[6] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, and Andre Cavalcante Hora.

Software metrics for package remodularization. Technical report, Institut National de
Recherche en Informatique et en Automatique, 2011.

[7] Fernando Brito e Abreu and Miguel Goulão. Coupling and cohesion metrics as modu-
larization drivers: Are we being over-persuaded? In Software Maintenance and Reengi-
neering, 2001. Fifth European Conference on, pages 47–57, 2011.

70 ZSUZSANNA MARIAN

[8] Istvan Gergely Czibula Gabriela Czibula, Grigoreta Sofia Cojocar. Evaluation measures
for partitioning based aspect mining techniques. International Journal of Computers,
Communications & Control, VI(1):72–80, 2011.

[9] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[10] Houari Sahraoui Hani Abdeen, Stéphane Ducasse. Modularization metrics: Assessing
package organization in legacy large object-oriented software. In International Work-
ingConference on Reverse Engineering, pages 394–398, 2011.

[11] Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Software packages
refactoring using a hierarchical clustering-based approach. Information Systems, 2014.
Under review.

[12] Laura Ponisio and Oscar Nierstrasz. Using contextual information to asses package
cohesion. Technical report, 2006.

[13] Santonu Sarkar, Avinash C. Kak, and Girish Maskeri Rama. Metrics for measuring the
quality of modularization of large-scale object-oriented software. IEEE Transactions on
Software Engineering, 34(5):700–720, 2008.

[14] C. Spearman. The proof and measurement of association between two things. Amer. J.
Psychol.15, pages 72–101, 1904.

[15] Kelly H. Zou, Kemal Tuncali, and Stuart G. Silverman. Correlation and simple linear
regression. Radiology, (227):617–622, 2003.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

E-mail address: marianzsu@cs.ubbcluj.ro

