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AN INFEASIBLE FULL-NEWTON STEP ALGORITHM FOR

LINEAR OPTIMIZATION WITH ONE CENTERING STEP IN

MAJOR ITERATION

ZSOLT DARVAY, INGRID-MAGDOLNA PAPP, AND PETRA-RENÁTA TAKÁCS

Abstract. Recently, Roos proposed a full-Newton step infeasible interior-
point method (IIPM) for solving linear optimization (LO) problems. Later
on, more variants of this algorithm were published. However, each main
step of these methods is composed of one feasibility step and several cen-
tering steps. The purpose of this paper is to prove that by using a new
search direction it is enough to take only one centering step in order to ob-
tain a polynomial-time method. This algorithm has the same complexity
as the best known IIPMs.

1. Introduction

In this paper, we define a new interior-point algorithm (IPA) for LO, which ap-
proximates the optimal solution, starting from infeasible points. Karmarkar’s
publication [7] appeared in 1984 and meant a paradigm shift in the area of
optimization algorithms. Following this, a large amount of IPAs has been pub-
lished. These algorithms have many applications in different fields, such as
engineering, economics, transportation, statistics, machine learning and data
mining. The first infeasible methods were developed by Lustig [9] and Tan-
abe [18]. The complexity of IPAs was analysed at first by Kojima, Meggido,
Mizuno [8] and Zhang [23]. Bonnans and Potra [3] defined infeasible algo-
rithms for linear complementarity problems. The predictor-corrector method
for LO problem was studied by Potra [14, 15]. We can read about new results
on infeasible interior-point algorithms in books wrote by Wright [21], Ye [22]
and Vanderbei [19].
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Roos [16] introduced a new algorithm, which uses only full-Newton steps
and starts from infeasible points. Mansouri and Roos [10] proposed a sim-
plified IIPM. Gu et al. [6] presented an improved variant of the algorithm.
Darvay [4, 5] defined a new technique for finding search directions for LO
problems. Achache [1] generalized this approach to convex quadratic opti-
mization, and Wang and Bai [20] to symmetric optimization. Ahmadi, Hasani
and Kheirfam [2] adapted this technique to IIPMs. Pan, Li and He [13] pro-
posed an IIPM using a logarithmic equivalent transformation of the centering
equations. Mansouri, Siyavash and Zangiabadi [11] extended the algorithm
introduced by Roos to semidefinite optimization problems using the method
proposed in [5].

In the full-Newton step IIPMs defined in these papers two types of steps
are used, one feasibility step and a few centering steps. In this paper, we
present a new full-Newton step IIPM based on the technique introduced in
[4, 5] and we prove that it suffices to take only one centering step in order to
get a well-defined algorithm.

We introduce some notations used throughout the paper. Let x and s
be two n-dimensional vectors. Then, xs denotes the componentwise product

of the vectors x and s. Similarly, we define x
s =

[
x1
s1
, x2s2 , ....,

xn
sn

]T
, where

si 6= 0 for all 1 ≤ i ≤ n. If x ≥ 0, then
√
x is the vector obtained by taking

square roots of the components of x. Let e be the n-dimensional all-one
vector. Furthermore, diag(x) is a diagonal matrix, which contains on his main
diagonal the elements of x in the original order. Besides these, ‖x‖ denotes
the Euclidean norm, ‖x‖∞ the Chebyshev norm, ‖x‖1 the 1-norm, and min(x)
the minimal component of x. Finally, if f(t) ≥ 0 and g(t) ≥ 0 are real valued
functions, then f(t) = O(g(t)) means that there exists a positive constant γ
so that f(t) ≤ γg(t).

The paper is organized in the following way. Firstly, we present the LO
problem. In the next section the feasible primal-dual algorithm and its com-
plexity analysis are revisited. Then, we introduce the perturbed problems
and the new infeasible primal-dual algorithm. The purpose of the next sec-
tions is to provide the complexity analysis of the algorithm and to prove its
polynomiality. Finally, the paper ends up with a conclusion.

2. The Linear Optimization Problem

Let us consider the following primal problem

min cTx,

Ax = b,(P )

x ≥ 0,
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where A ∈ Rm×n, rank(A) = m, b ∈ Rm and c ∈ Rn.
The dual of this problem is

max bT y,

AT y + s = c,(D)

s ≥ 0.

In case of the feasible LO algorithms we assume that the interior-point condi-
tion (IPC) holds for the primal and dual problems, i.e., there exists (x0, y0, s0)
so that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.
(IPC)

Using the self-dual embedding technique we can always construct a LO prob-
lem in such a way that the IPC holds. So, the IPC can be assumed without loss
of generality. Furthermore, the self-dual embedding model yields x0 = s0 = e.

Denote µ0 = (x0)T s0

n = 1.
The optimal solution of the primal-dual pair is characterized by the following
system of equations:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(1)

xs = 0.

The first and the second equation of system (1) are called feasibility condi-
tions. They serve for maintaining feasibility. The last equation is named
complementarity condition. Primal-dual interior-point methods replace the
complementarity condition with a parameterized equation. Hence we obtain:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(2)

xs = µe,

where µ > 0. If the IPC holds, then for a fixed µ > 0 the system (2) has a
unique solution, called the µ-center or analytic center (Sonnevend [17]). The
set of µ-centers for µ > 0 formes a well-behaved curve, called central path. As
µ tends to zero, the central path converges to the optimal solutions of (P ) and
(D).

3. Feasible Primal-Dual Algorithm

In this section we present the new technique for finding search directions intro-
duced in [5]. Let R+ = {x ∈ R | x ≥ 0} and ϕ : R+ → R+ be a continuously
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differentiable and invertible function. The system of equations, which defines
the central path (2) can be written in the following equivalent form:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(3)

ϕ

(
xisi
µ

)
= ϕ(1), for all 1 ≤ i ≤ n.

Applying Newton’s method to (3) we can obtain new search directions. If
ϕ(t) =

√
t, then we get the following system:

A∆x = 0,

AT∆y + ∆s = 0,(4)

s∆x+ x∆s = 2(
√
µxs− xs).

We can give a proximity measure to the central path [5]:

(5) σ(xs, µ) =

∥∥∥∥e−√xs

µ

∥∥∥∥ .
The feasible primal-dual algorithm can be described as in Figure 1.

Feasible primal-dual algorithm [5]

Let ε > 0 be the accuracy parameter, 0 < θ < 1 the update parameter (default
θ = 1

2
√
n

) and 0 < τ < 1 the proximity parameter (default τ = 1
2). Assume

that for (x0, y0, s0) the IPC holds, and µ0 = (x0)T s0

n . Furthermore, suppose

that σ(x0s0, µ0) < τ .
begin

(x, y, s) := (x0, y0, s0);
µ := µ0;
while xT s > ε do begin
µ := (1− θ)µ;
calculate (∆x,∆y,∆s) from (4)
x := x+ ∆x;
y := y + ∆y;
s := s+ ∆s;

end
end.

Figure 1. Feasible primal-dual algorithm
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The following lemmas (cf. [5]) are meant to prove the polynomiality of the
algorithm. Let x+ = x + ∆x and s+ = s + ∆s be the vectors we get after a
full-Newton step.
Lemma 3.1 Let σ = σ(xs, µ) < 1. Then x+ > 0 and s+ > 0, so the
full-Newton step is strictly feasible.
Lemma 3.2 Let σ = σ(xs, µ) < 1. Then

σ(x+s+, µ) ≤ σ2

1 +
√

1− σ2
,

which means that the full-Newton step ensures local quadratic convergence of
the proximity measure.
Lemma 3.3 Let σ = σ(xs, µ). Then

(x+)T s+ = µ(n− σ2),

thus (x+)T s+ ≤ µn.
Lemma 3.4 Let σ = σ(xs, µ) < 1 and µ+ = (1−θ)µ, where 0 < θ < 1. Then

σ(x+s+, µ+) ≤ θ
√
n+ σ2

1− θ +
√

(1− θ)(1− σ2)
.

Furthermore, if σ < 1
2 , θ = 1

2
√
n

and n ≥ 4, then σ(x+s+, µ+) < 1
2 .

Lemma 3.5 Suppose that (x0, s0) are strictly feasible, µ0 = (x0)T s0

n and

σ(x0s0, µ0) < 1
2 . Let xk and sk be the vectors obtained after k iterations.

Then, for every

k ≥
⌈

1

θ
log

(x0)T s0

ε

⌉
we get (xk)T sk ≤ ε.
Lemma 3.6 Assume that x0 = s0 = e. Then, Algorithm 1 demands no more
than ⌈

1

θ
log

n

ε

⌉
interior-point iterations.

Theorem 3.7 Suppose that x0 = s0 = e. Using the default values for θ and
τ we get that Algorithm 1 requires at most

O
(√

n log
n

ε

)
interior-point iterations. The resulting vectors satisfy xT s ≤ ε.
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4. The Perturbed Problems

From now on we don’t assume that the initial points are feasible solutions of
the primal and dual problems, but we suppose that an optimal solution exists.
Let ζ > 0 be given so that

(6) ‖x̄+ s̄‖∞ ≤ ζ,

where x̄ and (ȳ, s̄) are optimal solutions of (P ) and (D). Hence, the algorithm
will start with the following initial iterates:

(7) x0 = s0 = ζe, y0 = 0, µ0 = ζ2.

Instead of the original problem, we consider the following perturbed problem,
which was studied by many researchers (see for example Ye [22] and Roos
[16]):

min (c− ν(c−AT y0 − s0))Tx,

Ax = b− ν(b−Ax0),(Pν)

x ≥ 0,

and its dual problem:

max (b− ν(b−Ax0))T y,

AT y + s = c− ν(c−AT y0 − s0),(Dν)

s ≥ 0,

where 0 < ν ≤ 1. The following lemma holds.
Lemma 4.1 ( cf. [22], Theorem 5.13). The problems (P ) and (D), are
feasible if and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems
(Pν) and (Dν) satisfy the (IPC).

The system of equations, which defines the central path of the perturbed
problems can be written in the following form:

b−Ax = ν(b−Ax0), x ≥ 0,

c−AT y − s = ν(c−AT y0 − s0), s ≥ 0,(8)

xs = µe.

Let us consider the function ϕ defined in Section 3. Then the system (8) is
equivalent to

b−Ax = ν(b−Ax0), x ≥ 0,

c−AT y − s = ν(c−AT y0 − s0), s ≥ 0,(9)

ϕ

(
xisi
µ

)
= ϕ(1), for all 1 ≤ i ≤ n.
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Now we apply Newton’s method for system (9). Assuming that ϕ(t) =
√
t,

and x and (y, s) are strictly feasible solutions of (Pν) and (Dν), we obtain
system (4).

5. A New Primal-Dual Algorithm

Let ν+ = (1− θ)ν, where 0 < θ < 1. Let us introduce the following notations:

r0
b = b−Ax0, r0

c = c−AT y0 − s0.

Assuming that x and (y, s) are strictly feasible solutions of (Pν) and (Dν), we
define the (∆fx,∆fy,∆fs) step in order to get feasible solutions of (Pν+) and

(Dν+). Thus, using ϕ(t) =
√
t, we obtain the following system:

A∆fx = θνr0
b ,

AT∆fy + ∆fs = θνr0
c ,(10)

s∆fx+ x∆fs = 2(
√
µxs− xs).

We introduce the following notations:

v =

√
xs

µ
, dx =

v∆fx

x
, ds =

v∆fs

s
,

we obtain

(11) µv(dx + ds) = s∆fx+ x∆fs

and

(12) dxds =
∆fx∆fs

µ
.

Using these notations we get the scaled form of system (10):

Ādx =
θν

µ
r0
b ,

ĀT∆fy + ds = θν
r0
cv

s
,(13)

dx + ds = pv,

where pv = 2(e− v) and Ā = 1
µAdiag

(
x
v

)
. The proximity measure defined by

(5) can be written as follows:

σ(v) = σ(xs, µ) =
‖pv‖

2
= ‖e− v‖.

Let qv = dx − ds. Then

dx =
pv + qv

2
, ds =

pv − qv
2

.
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Multiplying the two equalities, we get

(14)
q2
v

4
=
p2
v

4
− dxds.

It follows that

(15)
‖qv‖2

4
=
‖pv‖2

4
− dTx ds.

The algorithm is defined in Figure 2.

Infeasible primal-dual algorithm

Let ε > 0 be the accuracy parameter and 0 < θ < 1 the update parameter
(default θ = 1

8n). We assume that the initial points are (x0, y0, s0), x0 > 0,

s0 > 0 and x0s0 = µ0e (default x0 = ζe, y0 = 0, s0 = ζe, µ0 = ζ2, where
ζ > 0).
begin

(x, y, s) := (x0, y0, s0);
µ := µ0; ν := 1;
while max(xT s, ‖b−Ax‖, ‖c−AT y − s‖) ≥ ε do begin

(x, y, s) := (x, y, s) + (∆fx,∆fy,∆fs);
µ := (1− θ)µ;
ν := (1− θ)ν;
(x, y, s) := (x, y, s) + (∆x,∆y,∆s);

end
end.

Figure 2. Infeasible primal-dual algorithm

In the following sections we analyse the complexity of the algorithm.

6. Analysis of the Algorithm

Let xf = x+∆fx and sf = s+∆fs be the vectors obtained after the feasibility
step. In the next lemma we give a condition, which guarantees the feasibility
of xf and sf . Let 0 < θ < 1 and denote

ω(v) =
1

2

√
‖dx‖2 + ‖ds‖2,

vf =

√
xfsf

µ
, v+ =

√
xfsf

µ+
, µ+ = (1− θ)µ.
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Lemma 6.1 Let x > 0 be a feasible solution of (Pν) and s > 0 a feasible
solution of (Dν), and σ(v) = σ(xs, µ), which satisfies σ(v)2 + 2ω(v)2 < 1.
Then we have

(16) xf > 0 and sf > 0,

thus xf and sf are strictly feasible solutions of (Pν+) and (Dν+).

Proof. From the definition of xf and sf and system (10) we deduce that
we have to prove (16). For each 0 ≤ α ≤ 1 denote xf (α) = x + α∆fx and
sf (α) = s+ α∆fs. Thus

xf (α)sf (α) = xs+ α(s∆fx+ x∆fs) + α2∆fx∆fs.

Using (11) and (12) we may write

(17)
1

µ
xf (α)sf (α) = v2 + αv(dx + ds) + α2dxds.

By (14) we have

1

µ
xf (α)sf (α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2
v

4
− q2

v

4

)
.

Moreover, from pv = 2(e− v) we get

(18) v2 + vpv = 2v − v2 = e− (e− v)2 = e− p2
v

4
,

so

(19)
1

µ
xf (α)sf (α) = (1− α)v2 + α

(
e− (1− α)

p2
v

4
− αq

2
v

4

)
.

The inequality xf (α)sf (α) > 0 holds if∥∥∥∥(1− α)
p2
v

4
+ α

q2
v

4

∥∥∥∥
∞
< 1.

Using (15) we obtain∥∥∥∥(1− α)
p2
v

4
+ α

q2
v

4

∥∥∥∥
∞
≤ (1− α)

‖p2
v‖∞
4

+ α
‖q2
v‖∞
4

≤

≤ (1− α)
‖pv‖2

4
+ α
‖qv‖2

4
= σ(v)2 − αdTx ds.

Moreover,

(20) −dTx ds ≤ |dTx ds| ≤ ‖dx‖ ‖ds‖ ≤
1

2

(
‖dx‖2 + ‖ds‖2

)
= 2ω(v)2.

Using this inequality we may write

σ(v)2 − αdTx ds ≤ σ(v)2 + 2ω(v)2 < 1,
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thus we obtain that for each 0 ≤ α ≤ 1 the xf (α)sf (α) > 0 inequality holds.
Therefore, the linear functions of α, xf (α) and sf (α) do not change sign on
the interval [0, 1]. Consequently, xf (0) = x > 0 and sf (0) = s > 0 yield
xf (1) = xf > 0 and sf (1) = sf > 0. �
In the following lemmas we analyse how far are the vectors obtained after
the feasibility step from the next points of the central path of the perturbed
problems.
Lemma 6.2 Let x > 0 be a feasible solution of (Pν) and s > 0 a feasible
solution of (Dν), and σ(v) = σ(xs, µ) such that σ(v)2 + 2ω(v)2 < 1. Then

σ(v+) = σ(xfsf , µ+) ≤ θ
√
n+ σ(v)2 + 2ω(v)2

1− θ +
√

(1− θ)(1− σ(v)2 − 2ω(v)2)
.

Proof. From Lemma 6.1 we get xf > 0 and sf > 0. Using (18) and the
last equation of (13), from (17) we obtain

(21)
1

µ
xf (α)sf (α) = (1− α)v2 + α(2v − v2) + α2dxds.

Substituting α = 1 into (21) and using (14) we get

1

µ
xfsf = (vf )2 = 2v−v2 +dxds = e−(e−v)2 +dxds = e− p

2
v

4
+dxds = e− q

2
v

4
.

From this we obtain

(22) e− (vf )2 =
q2
v

4
.

Using σ(v+) =
∥∥∥e−√xf sf

µ+

∥∥∥ we get

σ(v+) =
1√

1− θ

∥∥∥√1− θe− vf
∥∥∥ =

1√
1− θ

∥∥∥∥(1− θ)e− (vf )2

√
1− θe+ vf

∥∥∥∥ .
From (22) it follows that

σ(v+) =
1√

1− θ

∥∥∥∥∥ −θe+ q2v
4√

1− θe+ vf

∥∥∥∥∥
and

min(vf ) ≥
√

1− ‖q
2
v‖∞
4

≥
√

1− ‖q
2
v‖
4
≥
√

1− ‖qv‖
2

4
.

Using ‖pv‖
2

4 = σ(v)2, we get from (15)

(23)
‖qv‖2

4
= σ(v)2 − dTx ds,
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and hence

(24) min(vf ) ≥

√
1− ‖qv‖

2

4
=
√

1− σ(v)2 + dTx ds.

Using (23), (24) and (20) we obtain

σ(v+) =
1√

1− θ

∥∥∥∥∥ −θe+ q2v
4√

1− θe+ vf

∥∥∥∥∥ ≤
∥∥∥−θe+ q2v

4

∥∥∥
√

1− θ(
√

1− θ +
√

1− σ(v)2 + dTx ds)

≤ θ
√
n+ σ(v)2 − dTx ds

1− θ +
√

(1− θ)(1− σ(v)2 + dTx ds)

≤ θ
√
n+ σ(v)2 + 2ω(v)2

1− θ +
√

(1− θ)(1− σ(v)2 − 2ω(v)2)
.

This proves the lemma. �
As a consequence we get that Lemma 7 of [2] holds under different assumptions.
The next lemma gives an upper bound for ω(v). In order to accomplish this,
we introduce the following notations as in [16]. Let

L =
{
ξ ∈ Rn : Āξ = 0

}
be the null space of the matrix Ā and

L⊥ =
{
ĀT y : y ∈ Rm

}
the row space of Ā. Note that L⊥L⊥, L+ L⊥ = Rn and L ∩ L⊥ = {0}. The{
ξ ∈ Rn : Āξ = θνr0

b

}
affine space is identical with the space dx +L. We have

ds ∈ θνvs−1r0
c +L⊥, hence dx +L and ds +L⊥ meet in a unique point, which

is denoted by q. The following two lemmas can be proved as in [16]. They
determine upper bounds for ω(v) and ‖q‖.
Lemma 6.3 (cf. Roos [16], Lemma 4.6) If {q} = (dx + L) ∩ (ds + L⊥),
then

2ω(v) ≤
√
‖q‖2 + (‖q‖+ 2σ(v))2.

Lemma 6.4 (cf. Roos [16], Lemma 4.7) The inequality

√
µ ‖q‖ ≤ θνζ

√
eT
(x
s

+
s

x

)
holds.
In the next lemma we give lower and upper bounds for the components of xsµ .

Lemma 6.5 Let σ(xs, µ) < τ < 1. Then(
1−
√
τ
)2
<
xisi
µ

<
(
1 +
√
τ
)2
, for all 1 ≤ i ≤ n.
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Proof. From σ(v) < τ < 1 we obtain ‖v − e‖ < τ . Thus,

(vi − 1)2 ≤
n∑
i=1

(vi − 1)2 < τ, for all 1 ≤ i ≤ n,

and this yields

1−
√
τ < vi < 1 +

√
τ .

This proves the lemma. �
Lemma 6.6 One has√

eT
(x
s

+
s

x

)
<

1
√
µ (1−

√
τ)

√
‖x‖2 + ‖s‖2.

Proof. We know that

xi
si

+
si
xi

=
x2
i + s2

i

xisi
, for all 1 ≤ i ≤ n.

From Lemma 6.5 we get xisi > µ (1−
√
τ)

2
, thus

1

xisi
<

1

µ (1−
√
τ)

2 .

Using this we obtain

x2
i + s2

i

xisi
<

1

µ (1−
√
τ)

2

(
x2
i + s2

i

)
, for all 1 ≤ i ≤ n,

hence

eT
(x
s

+
s

x

)
<

1

µ (1−
√
τ)

2

(
‖x‖2 + ‖s‖2

)
,

and this implies the lemma. �
Lemma 6.7 If x and s are strictly feasible solutions of (Pν) and (Dν) and
σ(xs, µ) < τ , then the following inequality holds:√

‖x‖2 + ‖s‖2 ≤ ζn
(
2 + 2

√
τ + τ

)
.

Proof. Using that x̄ and (ȳ, s̄) are optimal solutions of the original primal-
dual pair, from (6) we get the following system:

Ax̄ = b, 0 ≤ x̄ ≤ ζe,
AT ȳ + s̄ = c, 0 ≤ s̄ ≤ ζe,(25)

x̄s̄ = 0.
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Let y be the vector such that x and (y, s) are the feasible solutions of (Pν) and
(Dν). Then, using (7) we may write

Ax = b− ν(b−Aζe), x ≥ 0,

AT y + s = c− ν(c− ζe), s ≥ 0.
(26)

We follow the method introduced in [16] using the characteristics of the search
direction specified by us. However, our approach differs from the one proposed
in [16] in the sense that we don’t assume that x and (y, s) are perfectly centered.
Hence, we have

Ax̄−Ax = ν(Ax̄−Aζe), x ≥ 0,

AT ȳ + s̄−AT y − s = ν(AT ȳ + s̄− ζe), s ≥ 0.
(27)

Therefore

A (x̄− x− νx̄+ νζe) = 0, x ≥ 0,

AT (ȳ − y − νȳ) = s− s̄+ νs̄− νζe, s ≥ 0.
(28)

Since the null space and the row space of a matrix are orthogonal we get

(x̄− x− νx̄+ νζe)T (s− s̄+ νs̄− νζe) = 0.

Let

a := (1− ν)x̄+ νζe, d := (1− ν)s̄+ νζe.

Then (a− x)T (d− s) = 0, which implies

aTd+ xT s = aT s+ dTx.

From Lemma 6.5 we get xisi < µ (1 +
√
τ)

2
, and this yields

xT s < µn
(
1 +
√
τ
)2
.

In addition, x̄T s̄ = 0, x̄+ s̄ ≤ ζe and µ = νµ0 = νζ2. Thus, we may write

aTd+ xT s = ((1− ν)x̄+ νζe)T ((1− ν)s̄+ νζe) + xT s

= ν(1− ν)(x̄+ s̄)T ζe+ ν2ζ2n+ xT s

≤ ν(1− ν)(ζe)T ζe+ ν2ζ2n+ µn
(
1 +
√
τ
)2

= ν(1− ν)ζ2n+ ν2ζ2n+ µn
(
1 +
√
τ
)2

= νζ2n+ µn
(
1 +
√
τ
)2

= νζ2n(2 + 2
√
τ + τ).(29)

Using a ≥ νζe and d ≥ νζe it follows that

(30) aT s+ dTx ≥ νζeT (x+ s) = νζ(‖x‖1 + ‖s‖1).
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Moreover,

‖x‖1 + ‖s‖1 ≤
aT s+ dTx

νζ
=
aTd+ xT s

νζ
≤ ζn(2 + 2

√
τ + τ).

Since

‖x‖2 + ‖s‖2 ≤ (‖x‖1 + ‖s‖1)2 ≤ ζ2n2(2 + 2
√
τ + τ)2,

it follows that
√
‖x‖2 + ‖s‖2 ≤ ζn (2 + 2

√
τ + τ). This proves the lemma. �

In the next lemma we give an upper bound for ‖q‖, which depends only
on θ, n and τ .
Lemma 6.8 One has

‖q‖ < θn
2 + 2

√
τ + τ

1−
√
τ

.

Proof. From Lemma 6.7, Lemma 6.6 and
√
µ =
√
νζ we get√

eT
(x
s

+
s

x

)
<
ζn (2 + 2

√
τ + τ)

√
µ(1−

√
τ)

=
n√
ν

(2 + 2
√
τ + τ)

(1−
√
τ)

.

From the previous inequality and Lemma 6.4 we obtain

√
µ ‖q‖ ≤ θνζ

√
eT
(x
s

+
s

x

)
<
θn
√
νζ (2 + 2

√
τ + τ)

1−
√
τ

.

Since
√
µ =
√
νζ, the proof of the lemma is complete. �

Let xf and sf be strictly feasible solutions of (Pν) and (Dν). Assuming that
the value of µ+ does not change, the vectors x+ and s+ can be determined
by a full-Newton step at xf and sf . Suppose that σ+ = σ(x+s+, µ+) and we
want to show that the algorithm is well defined. We have to specify the values
of θ and τ such that after a main iteration the inequality σ+ < τ holds.

7. Polynomiality of the Algorithm

Now we analyse the consequences of the previous lemmas when τ = 1
16 and

θ = 1
8n .

Corollary 7.1 If σ(v) < 1
16 and θ = 1

8n , then ω(v) < 1
2
√

2
.

Proof. From Lemma 6.3 and Lemma 6.8 it follows that

4ω(v)2 ≤ ‖q‖2 + (‖q‖+ 2σ(v))2

<

(
θn

2 + 2
√
τ + τ

1−
√
τ

)2

+

(
θn

2 + 2
√
τ + τ

1−
√
τ

+ 2τ

)2

.

Using τ = 1
16 and θn = 1

8 we get 4ω(v)2 < 1
2 , which implies ω(v) < 1

2
√

2
. �

Corollary 7.2 If σ(v) < 1
16 and θ = 1

8n , then xf and sf are strictly feasible.
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Proof. Using Lemma 6.1 and Corollary 7.1 we may write

σ(v)2 + 2ω(v)2 <
1

162
+

1

4
< 1,

so xf > 0 and sf > 0, thus xf and sf are strictly feasible. �
Corollary 7.3 We can define an upper bound for σ(v+). The following
inequality holds:

σ(v+) <
1

4
.

Proof. Using Lemma 6.2 we get

σ(v+) ≤ θ
√
n+ σ(v)2 + 2ω(v)2

1− θ +
√

(1− θ)(1− σ(v)2 − 2ω(v)2)

≤ θ
√
n+ τ2 + 2ω(v)2

1− θ +
√

(1− θ)(1− τ2 − 2ω(v)2)
.

From τ = 1
16 and θ = 1

8n , using n ≥ 1, we obtain σ(v+) < 1
4 . �

The following corollary defines an upper bound for the proximity measure.
Corollary 7.4 Let x+ and s+ be the vectors obtained by a full-Newton step
at xf and sf . Then σ+ = σ(x+s+, µ+) < 1

16 .
Proof. We use Lemma 3.2 for (Pν) and (Dν), when the initial points are

xf and sf . �
We call (x, y, s) an ε-solution if the following inequality holds

max(xT s, ‖b−Ax‖, ‖c−AT y − s‖) < ε.

Corollary 7.5 The algorithm requires at most

8nlog
max{nζ2, ‖r0

b‖, ‖r0
c‖}

ε

iterations.
Proof. Since µ and ν are multiplied by 1−θ at each iteration, we can prove

that after at most

1

θ

max{nζ2, ‖r0
b‖, ‖r0

c‖}
ε

inner iterations the algorithm finds an ε-solution. The proof is similar to the
one of Lemma 3.6. Using θ = 1

8n we obtain the upper bound given in the
corollary. �
Since every main iteration contains two inner iterations, we get the following
theorem.

Theorem 7.6 If (P ) and (D) are feasible and ζ > 0 is defined such that
‖x̄ + s̄‖∞ ≤ ζ, where x̄ and (ȳ, s̄) are the optimal solutions of (P) and (D),
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then after at most

16nlog
max{nζ2, ‖r0

b‖, ‖r0
c‖}

ε

interior-point iterations the algorithm finds an ε-solution of (P ) and (D).

8. Numerical experiment

In order to compare the efficiency of infeasible interior-point algorithms
with different number of centering steps we have implemented in the C++
programming language a short-step IIPM in the following way. We have used
Mehrotra’s heuristic [12] followed by a few standard primal-dual steps to de-
fine the starting points x0, y0 and s0. In each major iteration the algorithm
performs a feasibility step using (10) and one or more centering steps using (4).
We calculate the maximum step sizes in order to maintain the nonnegativity
of the variables x and s, and we reduce these step sizes with a factor ρ, where
0 < ρ < 1. As in the case of the algorithm in Figure 2, after the feasibility
step we reduce the value of µ and ν by a factor 1− θ, where 0 < θ < 1.

The algorithm of Roos [16] performs at most three centering steps in each
major iteration. We have solved the problem afiro, given in the standard MPS
form in the Netlib test collection, using the following parameters: ε = 0.0001,
θ = 0.5 and ρ = 0.9999. The number of major iterations was the same in
the case of one centering step and three centering steps. Thus, the algorithm
performed 15 major iterations, and a total number of 30 interior-point itera-
tions for one centering step, and 60 iterations for three centering steps. In the
algorithm proposed by Roos in each major iteration the centering steps are
performed until the proximity measure becomes smaller than the parameter
τ . Taking τ = 0.25, the first main iteration of the algorithm performed three
centering steps, followed by 4 major iterations with two centering steps and
10 iterations with one centering step. This yields a total number of 36 inner
iterations.

9. Conclusion

We have defined a full-Newton step infeasible interior-point algorithm with
new search directions. We have applied the square root function for the cen-
tering equations and we have used Newton’s method in order to get the new
search directions. We have proved that the algorithm finds an ε-solution in
polynomial time. We have shown that in a major iteration it is enough to take
only one centering step in order to prove that the algorithm is well defined.
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